Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Jan 12;69(Pt 2):o219. doi: 10.1107/S160053681205180X

3-Methyl-1-tosyl-1H-indole-2-carbaldehyde

Priyamvada Pradeep a, Sanaz Khorasani a, Charles B de Koning a, Manuel A Fernandes a,*
PMCID: PMC3569754  PMID: 23424500

Abstract

The title indole derivative, C17H15NO3S, crystallizes with two independent mol­ecules in the asymmetric unit. The benzene ring of the tosyl group is almost perpedicular to the indole ring in both mol­ecules, with inter­planar angles of 82.60 (5)° and 81.82 (6)°. The two mol­ecules are, as a consequence, able to form an almost centrosymmetric non-bonded dimer, in which the molecules are linked by pairs of C—H⋯π inter­actions. The crystal structure displays a three-dimensional network of C—H⋯O inter­actions. A π–π inter­action occurs between inversion-related indole rings with a centroid–centroid distance of 3.6774 (16) Å and an inter­planar angle of 1.53 (15)°. This inter­action leads to a stacking of mol­ecules along the a axis.

Related literature  

For studies of reactions involving indoles, see: Pathak et al. (2006); Pelly et al. (2005); Sharma et al. (2010). It is inter­esting to note that the reaction used to synthesize this product has been reported to be ineffective when carried out in acetone, see: Kothandaraman et al. (2011).graphic file with name e-69-0o219-scheme1.jpg

Experimental  

Crystal data  

  • C17H15NO3S

  • M r = 313.36

  • Triclinic, Inline graphic

  • a = 8.4276 (2) Å

  • b = 13.0126 (3) Å

  • c = 14.2522 (4) Å

  • α = 79.968 (2)°

  • β = 79.794 (2)°

  • γ = 83.505 (2)°

  • V = 1509.25 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 173 K

  • 0.28 × 0.25 × 0.05 mm

Data collection  

  • Bruker APEX-II CCD diffractometer

  • 16378 measured reflections

  • 5936 independent reflections

  • 3668 reflections with I > 2σ(I)

  • R int = 0.051

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.049

  • wR(F 2) = 0.126

  • S = 1.01

  • 5936 reflections

  • 401 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-NT (Bruker, 2005); data reduction: SAINT-NT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and SCHAKAL-99 (Keller, 1999); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681205180X/fy2083sup1.cif

e-69-0o219-sup1.cif (38KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681205180X/fy2083Isup2.hkl

e-69-0o219-Isup2.hkl (284.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg3, Cg4, Cg5 and Cg6 are the centroids of the C11B–C16B, C3B–C8B, C3A–C8A and C11A–C16A rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C16B—H16B⋯O1B i 0.95 2.50 3.153 (3) 126
C12A—H12A⋯O1A ii 0.95 2.48 3.218 (3) 134
C16A—H16A⋯O2A iii 0.95 2.52 3.220 (3) 131
C17B—H17F⋯O2B iv 0.98 2.53 3.396 (4) 147
C8A—H8ACg3 0.95 2.87 3.804 (3) 167
C9A—H9CCg4 0.98 2.80 3.726 (4) 158
C9B—H9DCg5 0.98 2.65 3.576 (4) 158
C9B—H9ECg6 0.98 2.95 3.755 (4) 140

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

This work was supported by the University of the Witwatersrand and National Research Foundation, Pretoria.

supplementary crystallographic information

Comment

Indoles are heterocyclic compounds containing a pyrrole ring fused to a benzene ring at the a,b positions. Indole is an important biological heterocyclic system as it is present, for example, in the amino acid tryptophan. As a consequence, it is a biologically accepted pharmacophore. Derivatives possess a broad spectrum of biological activities (Sharma et al., 2010), for example indomethacin (a non-steroidal anti-inflammatory drug) would fit in this class. The title compound is part of our continuing efforts to synthesize indole-based derivatives (Pathak et al., 2006; Pelly et al. 2005)

The title organic compound (Fig. 1) crystallizes in the space group P-1 with two independent molecules in the asymmetric unit. The aromatic moieties [indole (C1—C8 and N1) and tosyl group (C11—C17)] in each molecule are orientated with respect to each other at an angle of 82.60 (5)° and 81.82 (6)° in molecules A and B, respectively. The crystal structure contains C—H···O, C—H···π and π···π interactions. The π···π interaction occurs over a Cg1···Cg2 distance of 3.6774 (16) Å between two indole rings [Cg1 = N1A—C1A—C2A—C3A—C4A; Cg2 = N1B—C1B—C2B—C3B—C4B] with an interplanar angle of 1.53 (15) ° (Fig. 2). This leads to a stacking of molecules along the a axis. The structure contains several C—H···π interactions which are shown in Fig. 2. A layer of A and B molecules along the (001) plane is given in Fig. 3 showing the relative orientation of the A and B molecules in the layer. Geometrical details for the C—H···π and C—H···O interactions are given in Table 1.

Experimental

The title compound was synthesized by reaction of iodine (942 mg, 3.70 mmol) with N-(2-(2-hydroxybut-3-yn-2-yl)phenyl-4-methyl)benzenesulfonamide (584.9 mg,1.854 mmol) in the presence of methanol (20 ml) as a solvent. The resulting mixture was stirred for 6 h at 60°C. The reaction was then quenched by adding a saturated aq. solution of Na2S2O3 and extracted with ethyl acetate (3×20 mL). The combined organics were then washed with aq. NaHCO3 and brine, and dried over anhydrous Na2SO4. After removal of solvent, the left over residue was purified by flash column chromatography, with silica gel using a mixture of hexane and ethyl acetate (20:1) to give 3-methyl-1-tosyl-1H-indole-2-carbaldehyde (329 mg, 86%). Single crystals were grown by slow evaporation from dichloromethane.

Refinement

All H atoms attached to carbon were positioned geometrically, and allowed to ride on their parent atoms, with C—H bond lengths of 0.95 Å (CH) or 0.98 Å (CH3), and isotropic displacement parameters set to 1.2 (CH) or 1.5 times (CH3) the Ueq of the parent atom.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

C—H···π and π···π interactions in the title structure. C—H···π and π···π interactions are respectively indicated by dollar ($) or hash (#) signs.

Fig. 3.

Fig. 3.

A layer of molecules along the (001) plane, showing the orientation of the A and B molecules with respect to each other. Also shown are the interactions between the molecules which result in molecules A and B forming almost centrosymmetric C—H···π stabilized dimers.

Crystal data

C17H15NO3S Z = 4
Mr = 313.36 F(000) = 656
Triclinic, P1 Dx = 1.379 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.4276 (2) Å Cell parameters from 2992 reflections
b = 13.0126 (3) Å θ = 2.3–28.0°
c = 14.2522 (4) Å µ = 0.23 mm1
α = 79.968 (2)° T = 173 K
β = 79.794 (2)° Plate, colourless
γ = 83.505 (2)° 0.28 × 0.25 × 0.05 mm
V = 1509.25 (7) Å3

Data collection

Bruker APEX-II CCD diffractometer 3668 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.051
Graphite monochromator θmax = 26.0°, θmin = 1.5°
φ and ω scans h = −10→10
16378 measured reflections k = −16→16
5936 independent reflections l = −17→17

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0581P)2] where P = (Fo2 + 2Fc2)/3
5936 reflections (Δ/σ)max = 0.028
401 parameters Δρmax = 0.31 e Å3
0 restraints Δρmin = −0.27 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1A −0.1003 (3) 0.1746 (2) 0.32889 (17) 0.0336 (6)
C2A −0.0243 (3) 0.2622 (2) 0.32277 (19) 0.0378 (7)
C3A 0.0263 (3) 0.2996 (2) 0.22233 (19) 0.0377 (6)
C4A −0.0216 (3) 0.2323 (2) 0.16787 (18) 0.0351 (6)
C5A 0.0136 (3) 0.2468 (2) 0.06829 (19) 0.0440 (7)
H5A −0.0172 0.1999 0.0319 0.053*
C6A 0.0963 (4) 0.3335 (3) 0.0240 (2) 0.0577 (9)
H6A 0.1225 0.3464 −0.0444 0.069*
C7A 0.1418 (4) 0.4021 (3) 0.0776 (2) 0.0621 (9)
H7A 0.1975 0.4610 0.0450 0.075*
C8A 0.1078 (4) 0.3861 (2) 0.1755 (2) 0.0529 (8)
H8A 0.1392 0.4332 0.2114 0.063*
C9A −0.0073 (4) 0.3179 (2) 0.4035 (2) 0.0558 (8)
H9A −0.0690 0.2846 0.4638 0.084*
H9B −0.0488 0.3914 0.3894 0.084*
H9C 0.1071 0.3141 0.4100 0.084*
C10A −0.1948 (4) 0.1188 (2) 0.41602 (18) 0.0440 (7)
H10A −0.2867 0.0862 0.4094 0.053*
C11A 0.0869 (3) −0.0205 (2) 0.19507 (17) 0.0324 (6)
C12A 0.1566 (3) −0.0613 (2) 0.27611 (18) 0.0368 (6)
H12A 0.0971 −0.0580 0.3388 0.044*
C13A 0.3128 (3) −0.1065 (2) 0.2650 (2) 0.0426 (7)
H13A 0.3609 −0.1339 0.3206 0.051*
C14A 0.4018 (3) −0.1130 (2) 0.1740 (2) 0.0398 (7)
C15A 0.3290 (3) −0.0719 (2) 0.0937 (2) 0.0426 (7)
H15A 0.3877 −0.0763 0.0309 0.051*
C16A 0.1733 (3) −0.0251 (2) 0.10334 (18) 0.0375 (6)
H16A 0.1256 0.0038 0.0478 0.045*
C17A 0.5725 (3) −0.1633 (2) 0.1625 (2) 0.0585 (9)
H17A 0.6351 −0.1291 0.1030 0.088*
H17B 0.5712 −0.2378 0.1593 0.088*
H17C 0.6222 −0.1559 0.2179 0.088*
O1A −0.1603 (3) 0.11289 (18) 0.49508 (14) 0.0689 (7)
O2A −0.1671 (2) 0.05043 (15) 0.11669 (12) 0.0436 (5)
O3A −0.2055 (2) −0.02049 (14) 0.29029 (12) 0.0422 (5)
S1A −0.11298 (8) 0.03517 (5) 0.20793 (4) 0.03321 (18)
N1A −0.1070 (2) 0.15447 (16) 0.23392 (13) 0.0316 (5)
C1B 0.5657 (3) 0.3352 (2) 0.19951 (17) 0.0356 (6)
C2B 0.4829 (3) 0.2483 (2) 0.22155 (19) 0.0384 (7)
C3B 0.4422 (3) 0.2264 (2) 0.32444 (19) 0.0375 (6)
C4B 0.5034 (3) 0.3020 (2) 0.36399 (17) 0.0345 (6)
C5B 0.4824 (4) 0.3024 (2) 0.46271 (19) 0.0474 (8)
H5B 0.5227 0.3548 0.4887 0.057*
C6B 0.4001 (4) 0.2230 (3) 0.5211 (2) 0.0602 (9)
H6B 0.3836 0.2208 0.5891 0.072*
C7B 0.3405 (4) 0.1461 (3) 0.4838 (2) 0.0656 (10)
H7B 0.2845 0.0926 0.5265 0.079*
C8B 0.3613 (4) 0.1465 (2) 0.3863 (2) 0.0536 (8)
H8B 0.3215 0.0933 0.3611 0.064*
C9B 0.4467 (4) 0.1824 (2) 0.1536 (2) 0.0588 (9)
H9D 0.3486 0.2128 0.1277 0.088*
H9E 0.4300 0.1114 0.1880 0.088*
H9F 0.5376 0.1795 0.1005 0.088*
C10B 0.6480 (4) 0.3793 (2) 0.1047 (2) 0.0568 (9)
H10B 0.7340 0.4218 0.1014 0.068*
C11B 0.4026 (3) 0.5558 (2) 0.28498 (18) 0.0350 (6)
C12B 0.2877 (4) 0.5569 (2) 0.3677 (2) 0.0465 (7)
H12B 0.3129 0.5245 0.4290 0.056*
C13B 0.1363 (4) 0.6062 (2) 0.3589 (2) 0.0510 (8)
H13B 0.0568 0.6070 0.4151 0.061*
C14B 0.0965 (3) 0.6543 (2) 0.2710 (2) 0.0446 (7)
C15B 0.2131 (3) 0.6505 (2) 0.1895 (2) 0.0441 (7)
H15B 0.1875 0.6822 0.1281 0.053*
C16B 0.3649 (3) 0.6017 (2) 0.19591 (19) 0.0379 (6)
H16B 0.4434 0.5995 0.1394 0.045*
C17B −0.0688 (4) 0.7093 (3) 0.2647 (3) 0.0652 (10)
H17D −0.0698 0.7495 0.2000 0.098*
H17E −0.0956 0.7568 0.3127 0.098*
H17F −0.1488 0.6574 0.2775 0.098*
O1B 0.6121 (3) 0.3644 (2) 0.03045 (15) 0.0846 (8)
O2B 0.7045 (2) 0.53596 (15) 0.20847 (15) 0.0543 (6)
O3B 0.6359 (2) 0.49819 (16) 0.38571 (14) 0.0553 (6)
S1B 0.59748 (9) 0.49595 (6) 0.29261 (5) 0.0408 (2)
N1B 0.5867 (2) 0.36954 (16) 0.28676 (14) 0.0337 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1A 0.0385 (16) 0.0350 (16) 0.0275 (14) 0.0018 (12) −0.0051 (11) −0.0089 (11)
C2A 0.0366 (16) 0.0349 (17) 0.0434 (16) 0.0010 (13) −0.0083 (13) −0.0109 (12)
C3A 0.0357 (16) 0.0298 (15) 0.0460 (16) −0.0025 (12) −0.0032 (13) −0.0049 (12)
C4A 0.0327 (15) 0.0343 (16) 0.0349 (15) −0.0017 (12) −0.0013 (12) −0.0008 (12)
C5A 0.0482 (18) 0.0459 (19) 0.0333 (15) −0.0037 (14) −0.0031 (13) 0.0025 (13)
C6A 0.060 (2) 0.059 (2) 0.0407 (17) −0.0007 (17) 0.0054 (16) 0.0130 (16)
C7A 0.062 (2) 0.044 (2) 0.071 (2) −0.0155 (17) 0.0048 (18) 0.0116 (17)
C8A 0.053 (2) 0.0361 (18) 0.066 (2) −0.0110 (15) −0.0048 (16) −0.0005 (15)
C9A 0.062 (2) 0.056 (2) 0.058 (2) −0.0030 (17) −0.0125 (16) −0.0293 (16)
C10A 0.059 (2) 0.0413 (18) 0.0276 (15) 0.0027 (14) −0.0013 (13) −0.0040 (12)
C11A 0.0389 (15) 0.0323 (15) 0.0277 (13) −0.0090 (12) −0.0024 (11) −0.0083 (11)
C12A 0.0443 (17) 0.0370 (16) 0.0307 (14) −0.0077 (13) −0.0074 (12) −0.0059 (11)
C13A 0.0497 (18) 0.0375 (17) 0.0435 (17) −0.0041 (14) −0.0197 (14) −0.0018 (13)
C14A 0.0390 (16) 0.0305 (16) 0.0533 (18) −0.0076 (13) −0.0069 (14) −0.0137 (13)
C15A 0.0426 (17) 0.0450 (18) 0.0418 (16) −0.0056 (14) −0.0003 (13) −0.0169 (13)
C16A 0.0448 (17) 0.0401 (17) 0.0308 (14) −0.0063 (13) −0.0090 (12) −0.0094 (12)
C17A 0.0469 (19) 0.048 (2) 0.084 (2) −0.0030 (16) −0.0127 (17) −0.0167 (17)
O1A 0.0877 (18) 0.0860 (18) 0.0295 (12) −0.0068 (14) −0.0072 (11) −0.0022 (11)
O2A 0.0411 (11) 0.0591 (13) 0.0366 (10) −0.0050 (9) −0.0145 (9) −0.0149 (9)
O3A 0.0450 (12) 0.0386 (11) 0.0412 (11) −0.0151 (9) 0.0032 (9) −0.0041 (8)
S1A 0.0365 (4) 0.0362 (4) 0.0287 (3) −0.0086 (3) −0.0042 (3) −0.0074 (3)
N1A 0.0366 (13) 0.0321 (13) 0.0260 (11) −0.0076 (10) −0.0031 (9) −0.0036 (9)
C1B 0.0363 (15) 0.0395 (17) 0.0295 (14) 0.0024 (13) −0.0036 (12) −0.0069 (11)
C2B 0.0344 (15) 0.0402 (17) 0.0426 (16) 0.0026 (13) −0.0068 (12) −0.0154 (13)
C3B 0.0338 (16) 0.0306 (16) 0.0464 (16) −0.0043 (12) −0.0017 (12) −0.0051 (12)
C4B 0.0346 (15) 0.0331 (15) 0.0324 (14) −0.0002 (12) −0.0034 (12) 0.0003 (11)
C5B 0.059 (2) 0.0468 (19) 0.0331 (16) 0.0010 (15) −0.0058 (14) −0.0032 (13)
C6B 0.067 (2) 0.070 (2) 0.0305 (16) 0.0054 (19) 0.0038 (15) 0.0071 (16)
C7B 0.063 (2) 0.053 (2) 0.065 (2) −0.0080 (18) 0.0075 (18) 0.0186 (18)
C8B 0.052 (2) 0.0363 (18) 0.068 (2) −0.0095 (15) −0.0011 (16) −0.0013 (15)
C9B 0.066 (2) 0.055 (2) 0.065 (2) 0.0038 (17) −0.0207 (17) −0.0315 (17)
C10B 0.059 (2) 0.057 (2) 0.0419 (18) 0.0087 (17) 0.0091 (16) 0.0001 (15)
C11B 0.0393 (16) 0.0286 (15) 0.0396 (15) −0.0086 (12) −0.0067 (12) −0.0084 (11)
C12B 0.059 (2) 0.0482 (19) 0.0365 (16) −0.0104 (16) −0.0064 (14) −0.0157 (13)
C13B 0.049 (2) 0.056 (2) 0.0523 (19) −0.0076 (16) 0.0029 (15) −0.0299 (16)
C14B 0.0428 (17) 0.0321 (17) 0.067 (2) −0.0043 (13) −0.0127 (15) −0.0240 (14)
C15B 0.0510 (19) 0.0342 (17) 0.0510 (18) −0.0056 (14) −0.0160 (15) −0.0084 (13)
C16B 0.0416 (17) 0.0337 (16) 0.0388 (15) −0.0093 (13) −0.0035 (13) −0.0063 (12)
C17B 0.049 (2) 0.052 (2) 0.101 (3) −0.0003 (17) −0.0153 (19) −0.0289 (19)
O1B 0.0863 (19) 0.128 (2) 0.0307 (13) 0.0125 (16) −0.0052 (12) −0.0067 (13)
O2B 0.0395 (12) 0.0464 (13) 0.0713 (14) −0.0175 (10) 0.0006 (10) 0.0051 (10)
O3B 0.0653 (14) 0.0514 (14) 0.0607 (13) −0.0082 (11) −0.0325 (11) −0.0154 (10)
S1B 0.0401 (4) 0.0355 (4) 0.0493 (4) −0.0103 (3) −0.0117 (3) −0.0042 (3)
N1B 0.0397 (13) 0.0295 (13) 0.0307 (12) −0.0058 (10) −0.0027 (10) −0.0023 (9)

Geometric parameters (Å, º)

C1A—C2A 1.353 (3) C1B—C2B 1.356 (4)
C1A—N1A 1.434 (3) C1B—N1B 1.437 (3)
C1A—C10A 1.473 (4) C1B—C10B 1.457 (4)
C2A—C3A 1.434 (4) C2B—C3B 1.431 (4)
C2A—C9A 1.497 (3) C2B—C9B 1.490 (3)
C3A—C8A 1.391 (4) C3B—C8B 1.397 (4)
C3A—C4A 1.400 (3) C3B—C4B 1.401 (3)
C4A—C5A 1.381 (3) C4B—C5B 1.388 (3)
C4A—N1A 1.422 (3) C4B—N1B 1.416 (3)
C5A—C6A 1.390 (4) C5B—C6B 1.379 (4)
C5A—H5A 0.9500 C5B—H5B 0.9500
C6A—C7A 1.394 (4) C6B—C7B 1.390 (4)
C6A—H6A 0.9500 C6B—H6B 0.9500
C7A—C8A 1.357 (4) C7B—C8B 1.368 (4)
C7A—H7A 0.9500 C7B—H7B 0.9500
C8A—H8A 0.9500 C8B—H8B 0.9500
C9A—H9A 0.9800 C9B—H9D 0.9800
C9A—H9B 0.9800 C9B—H9E 0.9800
C9A—H9C 0.9800 C9B—H9F 0.9800
C10A—O1A 1.200 (3) C10B—O1B 1.204 (4)
C10A—H10A 0.9500 C10B—H10B 0.9500
C11A—C12A 1.385 (3) C11B—C16B 1.381 (4)
C11A—C16A 1.387 (3) C11B—C12B 1.388 (4)
C11A—S1A 1.748 (3) C11B—S1B 1.749 (3)
C12A—C13A 1.373 (4) C12B—C13B 1.378 (4)
C12A—H12A 0.9500 C12B—H12B 0.9500
C13A—C14A 1.390 (4) C13B—C14B 1.379 (4)
C13A—H13A 0.9500 C13B—H13B 0.9500
C14A—C15A 1.391 (4) C14B—C15B 1.386 (4)
C14A—C17A 1.505 (4) C14B—C17B 1.502 (4)
C15A—C16A 1.377 (4) C15B—C16B 1.373 (4)
C15A—H15A 0.9500 C15B—H15B 0.9500
C16A—H16A 0.9500 C16B—H16B 0.9500
C17A—H17A 0.9800 C17B—H17D 0.9800
C17A—H17B 0.9800 C17B—H17E 0.9800
C17A—H17C 0.9800 C17B—H17F 0.9800
O2A—S1A 1.4275 (17) O2B—S1B 1.424 (2)
O3A—S1A 1.4206 (18) O3B—S1B 1.4262 (19)
S1A—N1A 1.666 (2) S1B—N1B 1.675 (2)
C2A—C1A—N1A 109.9 (2) C2B—C1B—N1B 109.8 (2)
C2A—C1A—C10A 126.7 (2) C2B—C1B—C10B 126.9 (3)
N1A—C1A—C10A 122.2 (2) N1B—C1B—C10B 122.5 (2)
C1A—C2A—C3A 107.5 (2) C1B—C2B—C3B 107.5 (2)
C1A—C2A—C9A 127.6 (3) C1B—C2B—C9B 127.6 (3)
C3A—C2A—C9A 124.8 (2) C3B—C2B—C9B 124.8 (3)
C8A—C3A—C4A 119.6 (3) C8B—C3B—C4B 119.1 (3)
C8A—C3A—C2A 131.7 (3) C8B—C3B—C2B 132.3 (3)
C4A—C3A—C2A 108.7 (2) C4B—C3B—C2B 108.5 (2)
C5A—C4A—C3A 122.2 (2) C5B—C4B—C3B 122.4 (2)
C5A—C4A—N1A 130.6 (2) C5B—C4B—N1B 129.9 (2)
C3A—C4A—N1A 107.2 (2) C3B—C4B—N1B 107.7 (2)
C4A—C5A—C6A 116.6 (3) C6B—C5B—C4B 116.6 (3)
C4A—C5A—H5A 121.7 C6B—C5B—H5B 121.7
C6A—C5A—H5A 121.7 C4B—C5B—H5B 121.7
C5A—C6A—C7A 121.6 (3) C5B—C6B—C7B 122.1 (3)
C5A—C6A—H6A 119.2 C5B—C6B—H6B 118.9
C7A—C6A—H6A 119.2 C7B—C6B—H6B 118.9
C8A—C7A—C6A 121.1 (3) C8B—C7B—C6B 120.9 (3)
C8A—C7A—H7A 119.5 C8B—C7B—H7B 119.6
C6A—C7A—H7A 119.5 C6B—C7B—H7B 119.6
C7A—C8A—C3A 118.9 (3) C7B—C8B—C3B 118.8 (3)
C7A—C8A—H8A 120.5 C7B—C8B—H8B 120.6
C3A—C8A—H8A 120.5 C3B—C8B—H8B 120.6
C2A—C9A—H9A 109.5 C2B—C9B—H9D 109.5
C2A—C9A—H9B 109.5 C2B—C9B—H9E 109.5
H9A—C9A—H9B 109.5 H9D—C9B—H9E 109.5
C2A—C9A—H9C 109.5 C2B—C9B—H9F 109.5
H9A—C9A—H9C 109.5 H9D—C9B—H9F 109.5
H9B—C9A—H9C 109.5 H9E—C9B—H9F 109.5
O1A—C10A—C1A 122.6 (3) O1B—C10B—C1B 123.0 (3)
O1A—C10A—H10A 118.7 O1B—C10B—H10B 118.5
C1A—C10A—H10A 118.7 C1B—C10B—H10B 118.5
C12A—C11A—C16A 120.6 (2) C16B—C11B—C12B 120.6 (3)
C12A—C11A—S1A 120.00 (19) C16B—C11B—S1B 119.2 (2)
C16A—C11A—S1A 119.4 (2) C12B—C11B—S1B 120.2 (2)
C13A—C12A—C11A 119.4 (2) C13B—C12B—C11B 118.5 (3)
C13A—C12A—H12A 120.3 C13B—C12B—H12B 120.8
C11A—C12A—H12A 120.3 C11B—C12B—H12B 120.8
C12A—C13A—C14A 121.3 (2) C12B—C13B—C14B 122.1 (3)
C12A—C13A—H13A 119.3 C12B—C13B—H13B 119.0
C14A—C13A—H13A 119.3 C14B—C13B—H13B 119.0
C13A—C14A—C15A 118.3 (3) C13B—C14B—C15B 118.1 (3)
C13A—C14A—C17A 120.9 (3) C13B—C14B—C17B 120.4 (3)
C15A—C14A—C17A 120.8 (3) C15B—C14B—C17B 121.4 (3)
C16A—C15A—C14A 121.3 (3) C16B—C15B—C14B 121.1 (3)
C16A—C15A—H15A 119.4 C16B—C15B—H15B 119.4
C14A—C15A—H15A 119.4 C14B—C15B—H15B 119.4
C15A—C16A—C11A 119.2 (2) C15B—C16B—C11B 119.6 (3)
C15A—C16A—H16A 120.4 C15B—C16B—H16B 120.2
C11A—C16A—H16A 120.4 C11B—C16B—H16B 120.2
C14A—C17A—H17A 109.5 C14B—C17B—H17D 109.5
C14A—C17A—H17B 109.5 C14B—C17B—H17E 109.5
H17A—C17A—H17B 109.5 H17D—C17B—H17E 109.5
C14A—C17A—H17C 109.5 C14B—C17B—H17F 109.5
H17A—C17A—H17C 109.5 H17D—C17B—H17F 109.5
H17B—C17A—H17C 109.5 H17E—C17B—H17F 109.5
O3A—S1A—O2A 119.72 (11) O2B—S1B—O3B 119.64 (13)
O3A—S1A—N1A 105.70 (10) O2B—S1B—N1B 106.31 (11)
O2A—S1A—N1A 106.01 (11) O3B—S1B—N1B 105.92 (11)
O3A—S1A—C11A 109.47 (12) O2B—S1B—C11B 108.81 (12)
O2A—S1A—C11A 109.02 (11) O3B—S1B—C11B 109.75 (13)
N1A—S1A—C11A 106.01 (11) N1B—S1B—C11B 105.42 (11)
C4A—N1A—C1A 106.58 (19) C4B—N1B—C1B 106.39 (19)
C4A—N1A—S1A 121.62 (16) C4B—N1B—S1B 121.72 (17)
C1A—N1A—S1A 123.55 (17) C1B—N1B—S1B 122.05 (17)
N1A—C1A—C2A—C3A −2.1 (3) N1B—C1B—C2B—C3B 2.3 (3)
C10A—C1A—C2A—C3A −169.6 (2) C10B—C1B—C2B—C3B 172.1 (3)
N1A—C1A—C2A—C9A 172.6 (3) N1B—C1B—C2B—C9B −174.6 (3)
C10A—C1A—C2A—C9A 5.2 (5) C10B—C1B—C2B—C9B −4.8 (5)
C1A—C2A—C3A—C8A 179.6 (3) C1B—C2B—C3B—C8B −178.5 (3)
C9A—C2A—C3A—C8A 4.6 (5) C9B—C2B—C3B—C8B −1.5 (5)
C1A—C2A—C3A—C4A 0.2 (3) C1B—C2B—C3B—C4B −0.4 (3)
C9A—C2A—C3A—C4A −174.8 (3) C9B—C2B—C3B—C4B 176.7 (3)
C8A—C3A—C4A—C5A 2.0 (4) C8B—C3B—C4B—C5B −2.0 (4)
C2A—C3A—C4A—C5A −178.5 (2) C2B—C3B—C4B—C5B 179.5 (2)
C8A—C3A—C4A—N1A −177.7 (2) C8B—C3B—C4B—N1B 176.7 (2)
C2A—C3A—C4A—N1A 1.9 (3) C2B—C3B—C4B—N1B −1.7 (3)
C3A—C4A—C5A—C6A −1.4 (4) C3B—C4B—C5B—C6B 1.1 (4)
N1A—C4A—C5A—C6A 178.1 (3) N1B—C4B—C5B—C6B −177.3 (3)
C4A—C5A—C6A—C7A 0.2 (5) C4B—C5B—C6B—C7B −0.1 (5)
C5A—C6A—C7A—C8A 0.5 (5) C5B—C6B—C7B—C8B −0.1 (5)
C6A—C7A—C8A—C3A 0.0 (5) C6B—C7B—C8B—C3B −0.8 (5)
C4A—C3A—C8A—C7A −1.2 (4) C4B—C3B—C8B—C7B 1.8 (4)
C2A—C3A—C8A—C7A 179.4 (3) C2B—C3B—C8B—C7B 179.8 (3)
C2A—C1A—C10A—O1A −34.5 (4) C2B—C1B—C10B—O1B 24.1 (5)
N1A—C1A—C10A—O1A 159.5 (3) N1B—C1B—C10B—O1B −167.3 (3)
C16A—C11A—C12A—C13A 0.0 (4) C16B—C11B—C12B—C13B −1.0 (4)
S1A—C11A—C12A—C13A 178.8 (2) S1B—C11B—C12B—C13B 179.1 (2)
C11A—C12A—C13A—C14A −0.6 (4) C11B—C12B—C13B—C14B −0.3 (4)
C12A—C13A—C14A—C15A 0.3 (4) C12B—C13B—C14B—C15B 1.3 (4)
C12A—C13A—C14A—C17A −179.6 (2) C12B—C13B—C14B—C17B −178.6 (3)
C13A—C14A—C15A—C16A 0.6 (4) C13B—C14B—C15B—C16B −1.0 (4)
C17A—C14A—C15A—C16A −179.6 (2) C17B—C14B—C15B—C16B 178.9 (2)
C14A—C15A—C16A—C11A −1.1 (4) C14B—C15B—C16B—C11B −0.2 (4)
C12A—C11A—C16A—C15A 0.8 (4) C12B—C11B—C16B—C15B 1.2 (4)
S1A—C11A—C16A—C15A −178.0 (2) S1B—C11B—C16B—C15B −178.84 (19)
C12A—C11A—S1A—O3A −35.0 (2) C16B—C11B—S1B—O2B 20.3 (2)
C16A—C11A—S1A—O3A 143.9 (2) C12B—C11B—S1B—O2B −159.7 (2)
C12A—C11A—S1A—O2A −167.7 (2) C16B—C11B—S1B—O3B 153.0 (2)
C16A—C11A—S1A—O2A 11.2 (2) C12B—C11B—S1B—O3B −27.1 (3)
C12A—C11A—S1A—N1A 78.6 (2) C16B—C11B—S1B—N1B −93.4 (2)
C16A—C11A—S1A—N1A −102.6 (2) C12B—C11B—S1B—N1B 86.6 (2)
C5A—C4A—N1A—C1A 177.3 (3) C5B—C4B—N1B—C1B −178.3 (3)
C3A—C4A—N1A—C1A −3.0 (3) C3B—C4B—N1B—C1B 3.1 (3)
C5A—C4A—N1A—S1A 28.0 (4) C5B—C4B—N1B—S1B −32.0 (4)
C3A—C4A—N1A—S1A −152.42 (18) C3B—C4B—N1B—S1B 149.36 (19)
C2A—C1A—N1A—C4A 3.2 (3) C2B—C1B—N1B—C4B −3.4 (3)
C10A—C1A—N1A—C4A 171.4 (2) C10B—C1B—N1B—C4B −173.7 (2)
C2A—C1A—N1A—S1A 151.88 (19) C2B—C1B—N1B—S1B −149.54 (19)
C10A—C1A—N1A—S1A −40.0 (3) C10B—C1B—N1B—S1B 40.1 (3)
O3A—S1A—N1A—C4A 179.08 (18) O2B—S1B—N1B—C4B 173.42 (18)
O2A—S1A—N1A—C4A −52.9 (2) O3B—S1B—N1B—C4B 45.1 (2)
C11A—S1A—N1A—C4A 62.9 (2) C11B—S1B—N1B—C4B −71.2 (2)
O3A—S1A—N1A—C1A 34.9 (2) O2B—S1B—N1B—C1B −45.5 (2)
O2A—S1A—N1A—C1A 163.00 (19) O3B—S1B—N1B—C1B −173.75 (19)
C11A—S1A—N1A—C1A −81.2 (2) C11B—S1B—N1B—C1B 69.9 (2)

Hydrogen-bond geometry (Å, º)

Cg3, Cg4, Cg5 and Cg6 are the centroids of the C11B–C16B, C3B–C8B, C3A–C8A and C11A–C16A rings, respectively.

D—H···A D—H H···A D···A D—H···A
C16B—H16B···O1Bi 0.95 2.50 3.153 (3) 126
C12A—H12A···O1Aii 0.95 2.48 3.218 (3) 134
C16A—H16A···O2Aiii 0.95 2.52 3.220 (3) 131
C17B—H17F···O2Biv 0.98 2.53 3.396 (4) 147
C8A—H8A···Cg3 0.95 2.87 3.804 (3) 167
C9A—H9C···Cg4 0.98 2.80 3.726 (4) 158
C9B—H9D···Cg5 0.98 2.65 3.576 (4) 158
C9B—H9E···Cg6 0.98 2.95 3.755 (4) 140

Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x, −y, −z+1; (iii) −x, −y, −z; (iv) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FY2083).

References

  1. Bruker (2005). APEX2 and SAINT-NT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  3. Keller, E. (1999). SCHAKAL99 University of Freiberg, Germany.
  4. Kothandaraman, P., Mothe, S. R., Toh, S. S. M. & Chan, P. W. H. (2011). J. Org. Chem. 76, 7633–7640. [DOI] [PubMed]
  5. Pathak, R., Nhlapo, J. M., Govender, S., Michael, J. P., van Otterlo, W. A. L. & de Koning, C. B. (2006). Tetrahedron, 62, 2820–2830.
  6. Pelly, P. C., Parkinson, C. J., van Otterlo, W. A. L. & de Koning, C. B. (2005). J. Org. Chem. 70, 10474–10481. [DOI] [PubMed]
  7. Sharma, V., Kumar, P. & Pathak, D. (2010). J. Heterocycl. Chem. 47, 491–502.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681205180X/fy2083sup1.cif

e-69-0o219-sup1.cif (38KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681205180X/fy2083Isup2.hkl

e-69-0o219-Isup2.hkl (284.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES