Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Jan 12;69(Pt 2):o222. doi: 10.1107/S1600536813000597

N-(4,4′-Dibromo-[1,1′-biphen­yl]-2-yl)benzamide

J Josephine Novina a, G Vasuki b,*, Abhishek Baheti c, K R Justin Thomas c
PMCID: PMC3569757  PMID: 23424503

Abstract

In the title compound, C19H13Br2NO, the dihedral angle between the rings of the biphenyl group is 53.59 (14)°. The ring of the benzamide group is inclined to the phenyl rings of the biphenyl group by 23.87 (15) and 75.89 (15)°. There are no significant inter­molecular inter­actions in the crystal structure.

Related literature  

For applications of the title compound, see: Libman & Slack (1951); Mandadapu et al. (2009); Youn & Bihn (2009); Yulan et al. (2010). For pharmacological properties of biphenyl aniline, see: Zhu et al. (2008). For related structures, see: Li & Cui (2011); Kuś et al. (2009); Hammond et al. (2009); Gowda et al. (2010); Novina et al. (2012).graphic file with name e-69-0o222-scheme1.jpg

Experimental  

Crystal data  

  • C19H13Br2NO

  • M r = 431.12

  • Monoclinic, Inline graphic

  • a = 9.0188 (5) Å

  • b = 11.6415 (9) Å

  • c = 16.0068 (12) Å

  • β = 100.737 (2)°

  • V = 1651.2 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.91 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

Data collection  

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004) T min = 0.238, T max = 0.374

  • 16420 measured reflections

  • 3453 independent reflections

  • 2302 reflections with I > 2σ(I)

  • R int = 0.032

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.033

  • wR(F 2) = 0.075

  • S = 1.01

  • 3453 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.49 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813000597/su2551sup1.cif

e-69-0o222-sup1.cif (24.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813000597/su2551Isup2.hkl

e-69-0o222-Isup2.hkl (169.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813000597/su2551Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Sophisticated Analytical Instrument Facility, IIT Madras, Chennai, for the data collection.

supplementary crystallographic information

Comment

Biphenyl aniline, a subclass of biaryl compounds, has been recognized as a privileged structure in drug discovery. Its derivatives have been pursued as anti–phlogistic, analgesic, anti–obesity, and anti–tumor agents (Zhu et al., 2008). Amide substituted biphenyl derivatives are commonly used to develop antiparasitic agents for the treatment of African sleeping sickness disease (Libman & Slack, 1951; Mandadapu et al., 2009; Youn & Bihn, 2009; Yulan et al., 2010). Benzamides are recognized as one of the important bioactive skeletons and exhibit various potent pharmaceutical activities. As part of our studies on the substituent effects on the structures and other aspects of dibromo biphenyl derivatives, 4,4'-Dibromo-2-nitrobiphenyl (Novina et al., 2012), in the present work we report herein on the synthesis and crystal structure of the title compound.

In the molecular structure of the title compound (Fig. 1), the two benzene rings of the biphenyl group are twisted with respect to each other by 53.59 (14)°, which is similar to to the arrangement [53.52 (14)°] found in 2,5-Bis(bromomethyl)biphenyl (Kuś et al., 2009), but is somewhat larger than the angle of 45.5 (2)° found in 3,3',5,5'-Tetranitrobiphenyl (Hammond et al., 2009). The amide unit C1—N1—C13(O1)—C14 is planar [r.m.s deviation = 0.013 Å], and subtends dihedral angles of 12.38 (12)° and 32.34 (11)° respectively to the C1-C6 and C14-C19 phenyl rings. These two aromatic rings are inclined to one another by 23.87 (15)°, while rings C7-C12 and C14-C19 are inclined to one another by 75.89 (15)°. The C13═O1 and C13—N1 bond distances are 1.221 (3) and 1.360 (3) Å, respectively, showing the electron delocalization in the amide fragment. The N—H and C═O bonds in the amide group are anti to each other, similar to that observed in 2-Chloro-N-(2,3-dimethylphenyl)-benzamide (Gowda et al., 2010), and N-(3,5-Dimethoxyphenyl)benzamide (Li & Cui, 2011). The length of the bond connecting the phenyl rings, 1.489 (4) Å, is close to the standard value of 1.48 Å for a Csp2—Csp2 single bond.

In the crystal, there are no significant interactions and the structure is stabilized by Van der Waals interactions (Fig. 2).

Experimental

To a dry THF solution of 4,4'-dibromo-[1,1'-biphenyl]-2-amine (3.27 g, 10 mmol) and triethylamine (3 ml) was added drop wise a dry THF solution (40 ml) of benzoyl chloride at 273 K. After stirring at room temperature for 20 h, the solution was poured into water (80 ml) and extracted with dichloromethane (2 × 50 ml). The combined organic extracts were dried over anhydrous Na2SO4 and evaporated to dryness. This gave white solid which was further recrystallized with dichloromethane-hexanes [Yield 3.0 g (70%); M.p. 443–445 K]. HRMS calcd. for C19H13Br2NO [M]+ m/z 428.9364 found 428.9363. Spectroscopic data for the title compound is available in the archived CIF.

Refinement

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms: N—H = 0.86 Å and C—H = 0.93 Å with Uiso(H) = 1.2Ueq(C,N).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title molecule, with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Crystal packing of the title compound viewed along the b axis.

Crystal data

C19H13Br2NO F(000) = 848
Mr = 431.12 Dx = 1.734 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 3453 reflections
a = 9.0188 (5) Å θ = 2.2–26.6°
b = 11.6415 (9) Å µ = 4.91 mm1
c = 16.0068 (12) Å T = 293 K
β = 100.737 (2)° Block, colourless
V = 1651.2 (2) Å3 0.30 × 0.25 × 0.20 mm
Z = 4

Data collection

Bruker Kappa APEXII CCD diffractometer 3453 independent reflections
Radiation source: fine-focus sealed tube 2302 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.032
ω and φ scan θmax = 26.6°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2004) h = −11→11
Tmin = 0.238, Tmax = 0.374 k = −14→14
16420 measured reflections l = −19→20

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0267P)2 + 1.1775P] where P = (Fo2 + 2Fc2)/3
3453 reflections (Δ/σ)max = 0.001
208 parameters Δρmax = 0.46 e Å3
0 restraints Δρmin = −0.49 e Å3

Special details

Experimental. Spectroscopic data for the title compound: IR (νN—H) 3399 cm-1, 1567 cm-1, (νCO) 1666 cm-1, 1H NMR (CDCl3, 500 MHz) δ: 8.74 (d, J = 1.5 Hz, 1 H), 7.85 (s, 1H), 7.60 (dd, J = 6.5, 2.0 Hz, 2 H), 7.59–7.61 (m, 2 H), 7.52–7.55 (m, 1 H), 7.42–7.45 (m, 2 H), 7.35 (d, J = 1.5 Hz, 1 H), 7.30 (dd, J = 6.5, 2.0 Hz, 2 H), 7.11 (d, J = 8.0 Hz, 1 H); 13C NMR (CDCl3, 125 MHz) δ 165.1, 136.0, 135.8, 134.1, 133.7, 32.6, 131.1, 130.8, 130.2, 130.1, 129.0, 128.5, 127.7, 126.8, 124.6, 122.9, 122.7.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.63621 (4) 0.21302 (3) 0.15668 (2) 0.06302 (13)
Br2 0.22124 (4) 1.08134 (3) 0.04697 (3) 0.07108 (15)
O1 0.1733 (2) 0.33800 (17) −0.05842 (14) 0.0542 (6)
C1 0.3653 (3) 0.4886 (2) 0.06373 (17) 0.0342 (6)
C8 0.4769 (3) 0.7869 (2) 0.09646 (18) 0.0414 (7)
H8 0.5785 0.7681 0.1022 0.050*
C19 0.0269 (3) 0.4448 (3) −0.2115 (2) 0.0496 (8)
H19 0.0688 0.3731 −0.2180 0.060*
N1 0.2512 (2) 0.51464 (19) −0.00712 (14) 0.0380 (6)
H1 0.2333 0.5866 −0.0160 0.046*
C11 0.1763 (3) 0.8444 (3) 0.07935 (19) 0.0480 (8)
H11 0.0750 0.8640 0.0737 0.058*
C2 0.4251 (3) 0.3787 (2) 0.07720 (18) 0.0397 (7)
H2 0.3859 0.3185 0.0417 0.048*
C4 0.6025 (3) 0.4467 (3) 0.19891 (18) 0.0455 (8)
H4 0.6806 0.4320 0.2444 0.055*
C3 0.5430 (3) 0.3604 (3) 0.14369 (18) 0.0410 (7)
C7 0.3728 (3) 0.7005 (2) 0.10278 (17) 0.0361 (6)
C12 0.2218 (3) 0.7322 (3) 0.09524 (19) 0.0440 (7)
H12 0.1504 0.6766 0.1010 0.053*
C14 0.0602 (3) 0.5010 (2) −0.13340 (18) 0.0372 (7)
C9 0.4329 (3) 0.8994 (2) 0.08194 (19) 0.0439 (7)
H9 0.5043 0.9562 0.0789 0.053*
C10 0.2825 (3) 0.9271 (2) 0.07198 (19) 0.0437 (7)
C5 0.5431 (3) 0.5548 (3) 0.18479 (19) 0.0455 (7)
H5 0.5831 0.6139 0.2213 0.055*
C6 0.4249 (3) 0.5796 (2) 0.11777 (17) 0.0367 (6)
C13 0.1656 (3) 0.4425 (2) −0.06326 (18) 0.0373 (7)
C18 −0.0677 (4) 0.4950 (3) −0.2791 (2) 0.0626 (10)
H18 −0.0875 0.4581 −0.3315 0.075*
C17 −0.1326 (4) 0.5993 (4) −0.2690 (3) 0.0746 (11)
H17 −0.1956 0.6334 −0.3149 0.089*
C15 −0.0075 (3) 0.6061 (3) −0.1242 (2) 0.0493 (8)
H15 0.0130 0.6446 −0.0725 0.059*
C16 −0.1055 (4) 0.6535 (3) −0.1922 (3) 0.0664 (10)
H16 −0.1532 0.7228 −0.1855 0.080*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0675 (2) 0.0512 (2) 0.0659 (2) 0.01286 (17) 0.00079 (18) 0.01402 (17)
Br2 0.0641 (2) 0.0444 (2) 0.0985 (3) 0.00851 (17) −0.0009 (2) 0.0004 (2)
O1 0.0578 (13) 0.0335 (12) 0.0629 (14) −0.0026 (10) −0.0104 (11) −0.0010 (10)
C1 0.0326 (15) 0.0391 (16) 0.0314 (15) −0.0046 (12) 0.0071 (12) 0.0051 (13)
C8 0.0324 (15) 0.0438 (18) 0.0471 (18) −0.0032 (13) 0.0048 (13) −0.0074 (15)
C19 0.0484 (18) 0.0491 (19) 0.0467 (19) −0.0067 (15) −0.0033 (15) −0.0017 (16)
N1 0.0417 (13) 0.0296 (13) 0.0390 (14) −0.0036 (10) −0.0018 (11) 0.0029 (11)
C11 0.0359 (16) 0.054 (2) 0.052 (2) 0.0038 (15) 0.0044 (14) −0.0088 (16)
C2 0.0421 (16) 0.0373 (16) 0.0389 (17) −0.0044 (13) 0.0055 (14) 0.0031 (13)
C4 0.0430 (17) 0.060 (2) 0.0311 (16) 0.0009 (15) 0.0000 (14) 0.0086 (15)
C3 0.0417 (16) 0.0442 (17) 0.0382 (17) 0.0009 (14) 0.0104 (14) 0.0127 (14)
C7 0.0369 (15) 0.0385 (16) 0.0316 (15) −0.0024 (13) 0.0035 (12) −0.0055 (13)
C12 0.0369 (16) 0.0481 (19) 0.0473 (18) −0.0097 (14) 0.0082 (14) −0.0066 (15)
C14 0.0324 (14) 0.0391 (16) 0.0394 (17) −0.0069 (12) 0.0050 (13) 0.0024 (13)
C9 0.0408 (17) 0.0397 (17) 0.0498 (19) −0.0085 (13) 0.0052 (14) −0.0060 (14)
C10 0.0478 (18) 0.0375 (17) 0.0428 (18) 0.0015 (14) 0.0003 (14) −0.0059 (14)
C5 0.0442 (17) 0.0528 (19) 0.0368 (17) −0.0030 (15) 0.0004 (14) −0.0036 (15)
C6 0.0349 (15) 0.0421 (17) 0.0337 (16) −0.0037 (13) 0.0083 (13) 0.0013 (13)
C13 0.0348 (15) 0.0381 (17) 0.0393 (17) −0.0065 (12) 0.0072 (13) 0.0005 (13)
C18 0.063 (2) 0.073 (3) 0.045 (2) −0.019 (2) −0.0081 (18) 0.0018 (18)
C17 0.060 (2) 0.086 (3) 0.068 (3) 0.001 (2) −0.015 (2) 0.026 (2)
C15 0.0505 (18) 0.0472 (19) 0.0496 (19) 0.0029 (15) 0.0079 (16) 0.0050 (15)
C16 0.062 (2) 0.060 (2) 0.074 (3) 0.0151 (18) 0.005 (2) 0.016 (2)

Geometric parameters (Å, º)

Br1—C3 1.904 (3) C4—C5 1.370 (4)
Br2—C10 1.899 (3) C4—C3 1.379 (4)
O1—C13 1.221 (3) C4—H4 0.9300
C1—C2 1.390 (4) C7—C12 1.394 (4)
C1—C6 1.409 (4) C7—C6 1.489 (4)
C1—N1 1.415 (3) C12—H12 0.9300
C8—C9 1.376 (4) C14—C15 1.388 (4)
C8—C7 1.393 (4) C14—C13 1.493 (4)
C8—H8 0.9300 C9—C10 1.374 (4)
C19—C18 1.377 (4) C9—H9 0.9300
C19—C14 1.393 (4) C5—C6 1.395 (4)
C19—H19 0.9300 C5—H5 0.9300
N1—C13 1.360 (3) C18—C17 1.371 (5)
N1—H1 0.8600 C18—H18 0.9300
C11—C12 1.378 (4) C17—C16 1.362 (5)
C11—C10 1.379 (4) C17—H17 0.9300
C11—H11 0.9300 C15—C16 1.382 (4)
C2—C3 1.374 (4) C15—H15 0.9300
C2—H2 0.9300 C16—H16 0.9300
C2—C1—C6 120.3 (2) C15—C14—C19 118.9 (3)
C2—C1—N1 121.7 (2) C15—C14—C13 123.6 (3)
C6—C1—N1 117.9 (2) C19—C14—C13 117.5 (3)
C9—C8—C7 121.5 (3) C10—C9—C8 119.4 (3)
C9—C8—H8 119.2 C10—C9—H9 120.3
C7—C8—H8 119.2 C8—C9—H9 120.3
C18—C19—C14 120.3 (3) C9—C10—C11 120.8 (3)
C18—C19—H19 119.8 C9—C10—Br2 119.2 (2)
C14—C19—H19 119.8 C11—C10—Br2 119.9 (2)
C13—N1—C1 129.5 (2) C4—C5—C6 122.4 (3)
C13—N1—H1 115.3 C4—C5—H5 118.8
C1—N1—H1 115.3 C6—C5—H5 118.8
C12—C11—C10 119.3 (3) C5—C6—C1 117.8 (3)
C12—C11—H11 120.3 C5—C6—C7 119.5 (3)
C10—C11—H11 120.3 C1—C6—C7 122.6 (2)
C3—C2—C1 119.0 (3) O1—C13—N1 123.7 (3)
C3—C2—H2 120.5 O1—C13—C14 121.5 (3)
C1—C2—H2 120.5 N1—C13—C14 114.8 (2)
C5—C4—C3 118.1 (3) C17—C18—C19 119.9 (3)
C5—C4—H4 121.0 C17—C18—H18 120.1
C3—C4—H4 121.0 C19—C18—H18 120.1
C2—C3—C4 122.4 (3) C16—C17—C18 120.5 (3)
C2—C3—Br1 119.1 (2) C16—C17—H17 119.7
C4—C3—Br1 118.4 (2) C18—C17—H17 119.7
C8—C7—C12 117.6 (3) C16—C15—C14 119.9 (3)
C8—C7—C6 119.9 (2) C16—C15—H15 120.1
C12—C7—C6 122.5 (2) C14—C15—H15 120.1
C11—C12—C7 121.3 (3) C17—C16—C15 120.4 (3)
C11—C12—H12 119.4 C17—C16—H16 119.8
C7—C12—H12 119.4 C15—C16—H16 119.8
C2—C1—N1—C13 11.6 (4) C4—C5—C6—C7 −175.9 (3)
C6—C1—N1—C13 −172.7 (3) C2—C1—C6—C5 −0.8 (4)
C6—C1—C2—C3 −0.1 (4) N1—C1—C6—C5 −176.5 (2)
N1—C1—C2—C3 175.5 (2) C2—C1—C6—C7 175.5 (2)
C1—C2—C3—C4 1.4 (4) N1—C1—C6—C7 −0.2 (4)
C1—C2—C3—Br1 −174.8 (2) C8—C7—C6—C5 51.6 (4)
C5—C4—C3—C2 −1.7 (4) C12—C7—C6—C5 −127.9 (3)
C5—C4—C3—Br1 174.6 (2) C8—C7—C6—C1 −124.6 (3)
C9—C8—C7—C12 −1.0 (4) C12—C7—C6—C1 55.9 (4)
C9—C8—C7—C6 179.5 (3) C1—N1—C13—O1 2.2 (5)
C10—C11—C12—C7 −0.9 (5) C1—N1—C13—C14 −177.1 (2)
C8—C7—C12—C11 2.1 (4) C15—C14—C13—O1 148.3 (3)
C6—C7—C12—C11 −178.4 (3) C19—C14—C13—O1 −30.4 (4)
C18—C19—C14—C15 2.2 (4) C15—C14—C13—N1 −32.3 (4)
C18—C19—C14—C13 −179.0 (3) C19—C14—C13—N1 149.0 (3)
C7—C8—C9—C10 −1.1 (5) C14—C19—C18—C17 −1.7 (5)
C8—C9—C10—C11 2.3 (5) C19—C18—C17—C16 −0.7 (6)
C8—C9—C10—Br2 −177.2 (2) C19—C14—C15—C16 −0.4 (4)
C12—C11—C10—C9 −1.3 (5) C13—C14—C15—C16 −179.1 (3)
C12—C11—C10—Br2 178.3 (2) C18—C17—C16—C15 2.5 (6)
C3—C4—C5—C6 0.7 (4) C14—C15—C16—C17 −2.0 (5)
C4—C5—C6—C1 0.5 (4)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2551).

References

  1. Bruker (2004). APEX2, SAINT and XPREP, Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  3. Gowda, B. T., Tokarčík, M., Rodrigues, V. Z., Kožíšek, J. & Fuess, H. (2010). Acta Cryst. E66, o1897. [DOI] [PMC free article] [PubMed]
  4. Hammond, N., Carvalho, P., Wu, Y. & Avery, M. A. (2009). Acta Cryst. E65, o1052–o1053. [DOI] [PMC free article] [PubMed]
  5. Kuś, P., Zemanek, A. & Jones, P. G. (2009). Acta Cryst. E65, o1327. [DOI] [PMC free article] [PubMed]
  6. Li, H.-L. & Cui, J.-T. (2011). Acta Cryst. E67, o1596. [DOI] [PMC free article] [PubMed]
  7. Libman, D. D. & Slack, R. (1951). J. Chem. Soc. pp. 2588–2590.
  8. Mandadapu, A. K., Saifuddin, M., Agarwal, P. K. & Kundu, B. (2009). Org. Biomol. Chem. 7, 2796–2803. [DOI] [PubMed]
  9. Novina, J. J., Vasuki, G., Kumar, S. & Thomas, K. R. J. (2012). Acta Cryst. E68, o319. [DOI] [PMC free article] [PubMed]
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  12. Youn, S. W. & Bihn, J. H. (2009). Tetrahedron Lett. 50, 4598–4601.
  13. Yulan, C., Fenghong, L. & Zhishan, B. (2010). Macromolecules, 43, 1349–1355.
  14. Zhu, L., Patel, M. & Zhang, M. (2008). Tetrahedron Lett. 49, 2734–2737.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813000597/su2551sup1.cif

e-69-0o222-sup1.cif (24.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813000597/su2551Isup2.hkl

e-69-0o222-Isup2.hkl (169.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813000597/su2551Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES