Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Jan 12;69(Pt 2):o223. doi: 10.1107/S1600536813000354

(S)-2,2′-Dihy­droxy-N,N′-(6-hy­droxy­hexane-1,5-di­yl)dibenzamide

Sabine Wilbrand a, Christian Neis a, Kaspar Hegetschweiler a,*
PMCID: PMC3569758  PMID: 23424504

Abstract

In the title compound, C20H24N2O5, the dihedral angle between the two roughly planar salicyl­amide fragments [r.m.s. deviations = 0.043 (2) and 0.149 (2) Å] is 25.50 (5)°. The mol­ecular conformation is stabilized by intra­molecular O—H⋯O hydrogen bonds involving phenol –OH groups and amide O atoms. Inter­molecular hy­droxy­meth­yl–amide O—H⋯O and amine–hy­droxy­methyl N—H⋯O hydrogen bonds form infinite chains along the b axis. These chains are further inter­linked by amine–amide N—H⋯O and phenol–phenol O—H⋯O inter­actions, thus giving layers parallel to (001).

Related literature  

For the isolation and physico-chemical properties of myxochelin A, see: Kunze et al. (1989). For the crystal structure of N,N′-(pentane-1,5-di­yl)bis­(3-meth­oxy­salicyl­amide), see: Huang et al. (1995). For metal complex formation with linear bis-catechol amides and linear bis-salicyl­amides, see: Duhme et al. (1996); Huang et al. (1995); Cappillino et al. (2009); Stoicescu et al. (2009). For the treatment of H atoms in SHELXL, see: Müller et al. (2006).graphic file with name e-69-0o223-scheme1.jpg

Experimental  

Crystal data  

  • C20H24N2O5

  • M r = 372.41

  • Monoclinic, Inline graphic

  • a = 9.5934 (7) Å

  • b = 9.2266 (7) Å

  • c = 10.3565 (7) Å

  • β = 96.172 (4)°

  • V = 911.39 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 123 K

  • 0.26 × 0.21 × 0.04 mm

Data collection  

  • Bruker Nonius X8 APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2010) T min = 0.975, T max = 0.996

  • 10366 measured reflections

  • 2111 independent reflections

  • 1943 reflections with I > 2σ(I)

  • R int = 0.028

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.031

  • wR(F 2) = 0.076

  • S = 1.05

  • 2111 reflections

  • 259 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2012); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813000354/yk2084sup1.cif

e-69-0o223-sup1.cif (21KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813000354/yk2084Isup2.hkl

e-69-0o223-Isup2.hkl (103.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813000354/yk2084Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6O⋯O7 0.88 (2) 1.70 (2) 2.530 (2) 155 (3)
N8—H8N⋯O14i 0.87 (2) 2.21 (2) 3.051 (2) 163 (2)
O14—H14O⋯O16ii 0.85 (2) 2.03 (2) 2.858 (2) 165 (3)
N15—H15N⋯O7iii 0.86 (2) 2.25 (2) 3.046 (2) 154 (2)
O22—H22O⋯O16 0.84 (2) 1.95 (2) 2.648 (2) 140 (3)
O22—H22O⋯O6iv 0.84 (2) 2.19 (2) 2.776 (2) 127 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

The authors thank Dr Volker Huch (Universität des Saarlandes) for the collection of the data set.

supplementary crystallographic information

Comment

Myxochelin A ((S)-N,N'-(6-hydroxyhexane-1,5-diyl)bis(2,3-dihydroxybenzamide)) belongs to the family of siderophores (Kunze et al., 1989) and is well known for its selective complex formation with iron(III). In a neutral medium, metal binding probably occurs via the two catecholate groups (Huang et al., 1995; Duhme et al., 1996). However, myxochelin A also forms stable ferric complexes in an acidic medium around pH 2–3. Under such conditions, a complete deprotonation of all four phenolic hydroxy groups is unfavourable and, alternatively, metal binding may rather occur in a bis-bidentate fashion via the two ortho-hydroxy-benzamide moieties (Cappillino et al., 2009; Stoicescu et al., 2009). For a direct investigation of such a coordination mode, we prepared dideoxy-myxochelin A as a model ligand and report here its crystal structure. The structure elucidation of a related achiral derivative, which is devoid of the hydroxymethyl group, has been reported by Huang et al. (1995).

The crystal structure of the title compound exhibits an all-staggered zigzag arrangement of the O14—C14—C13—C12—C11—C10—C9 chain with corresponding torsional angles of 172–179°. With regard to this chain, the two ortho-hydroxybenzamide moieties adopt a gauche conformation with C—C—C—N torsional angles of 54.2 (2) and -63.9 (2)°. The two phenyl rings are aligned roughly parallel (the angle between the two mean planes is 23°). Inspection of interatomic distances revealed, however, that the interaction between the two aromatic moieties should be interpreted in terms of simple van der Waals contacts rather than π–π stacking. The amide groups and the corresponding phenyl rings are almost, but not fully, coplanar. The angle between the mean planes defined by C1–C6 and N8, C7, O7, C1 or C17–C22 and N15, C16, O16, C17 is 5° or 19°, respectively. Both aromatic hydroxy groups are involved in intramolecular O—H···O(carbonyl) hydrogen bonding, forming a six-membered ring structure which is quite often observed for salicylamides. Additionally, the aliphatic hydroxy group (O14) donates its proton to the carbonyl O atom O16 of a neighbour, and the amide moiety N8—H8N donates its proton to a further aliphatic hydroxy group (O14). The two types of interactions occur along 21 screws and result in the formation of infinite chains, aligned parallel to the crystallographic b axis. Interlinking of these chains occurs via N15—H15N···O7 bonding. In addition, H22O is bifurcated; beside the above-mentioned intramolecular O22—H22O···O16 bond, an intermolecular O22—H22O···O6 bond generates further interlinking along the crystallographic a axis. Altogether, the various types of intermolecular hydrogen bonding interactions resulted in the generation of layers, oriented parallel to the ab plane. Between these layers, only weak van der Waals contacts can be observed.

Experimental

2-Hydroxybenzoic acid was allowed to react with benzyl bromide in acetone yielding 2-benzyloxy-benzoic acid, which was further transformed into (S)-2,6-bis(2-benzoxybenzamido)-hexan-1-ol in a two-step procedure, using thionyl chloride and subsequently (S)-2,6-diaminohexan-1-ol. The protecting benzoxy groups were then removed with ammonium formate and Pd/C. Off-white single crystals were grown from MeOH. Elemental analysis calculated for C20H24N2O5 (%): C 64.50, H 6.50, N 7.52; found (%): C 64.19, H 6.35, N 7.50. 1H NMR (DMSO-d6): δ (p.p.m.) = 1.38 (m, 2H), 1.62 (m, 4H), 3.30 (dt, 2H), 3.48 (m, 2H), 4.04 (m, 1H), 6.89 (m, 4H), 7.40 (m, 2H), 7.84 (dd, 1H), 7.94 (dd, 1H), 8.47 (d, NH), 8.85 (t, NH). 13C NMR (DMSO-d6): δ (p.p.m.) = 23.1, 28.7, 30.1, 38.8, 51.0, 62.9, 115.0, 115.4, 117.2, 117.3, 118.3, 127.4, 127.9, 133.4, 133.5, 160.0, 160.2.

Refinement

In accordance with the use of the chiral and enantiomerically pure (S)-2,6-diaminohexan-1-ol as one of the starting materials, the title compound crystallized in a Sohncke space group. The structure contains, however, only H, C, N and O atoms and an assignment of an absolute structure was thus not possible. Therefore, a total of 1572 Friedel pairs were merged prior to the refinement and the S-configuration of the diaminohexanol was adopted to the title compound. All H atoms could be located. They were treated as recommended by Müller et al. (2006); a riding model was used for H(—C) atoms. The positional parameters of the O- and N-bonded H atoms were refined using isotropic displacement parameters, which were set to 1.5Ueq or 1.2Ueq of the pivotal O or N atom, respectively. In addition, restraints of 0.84 and 0.88 Å were used for the O—H and N—H distances.

Figures

Fig. 1.

Fig. 1.

Ellipsoid plot (50% probability level) and numbering scheme of the title compound.

Fig. 2.

Fig. 2.

Section of a strand generated by a 21 screw (with intra- and intermolecular hydrogen bonds shown as green and black dashed lines, respectively); interlinking of such strands by additional N—H···O(amide) and O(phenolic)—H···O(phenolic) hydrogen bonding is indicated by yellow dashed lines. C atoms (black) are shown as a stick model; O (red), N (blue), H(—O) and H(—N) atoms are shown as spheres of arbitrary size. H(—C) atoms are omitted for clarity.

Crystal data

C20H24N2O5 F(000) = 396
Mr = 372.41 Dx = 1.357 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2yb Cell parameters from 4681 reflections
a = 9.5934 (7) Å θ = 2.8–29.3°
b = 9.2266 (7) Å µ = 0.10 mm1
c = 10.3565 (7) Å T = 123 K
β = 96.172 (4)° Prism, light brown
V = 911.39 (11) Å3 0.26 × 0.21 × 0.04 mm
Z = 2

Data collection

Bruker Nonius X8 APEX diffractometer 2111 independent reflections
Radiation source: fine-focus sealed tube 1943 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.028
Detector resolution: 8.4 pixels mm-1 θmax = 27.0°, θmin = 2.0°
φ and ω scans h = −12→11
Absorption correction: multi-scan (SADABS; Bruker, 2010) k = −11→9
Tmin = 0.975, Tmax = 0.996 l = −13→13
10366 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076 H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0425P)2 + 0.1259P] where P = (Fo2 + 2Fc2)/3
2111 reflections (Δ/σ)max < 0.001
259 parameters Δρmax = 0.21 e Å3
6 restraints Δρmin = −0.22 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.4529 (2) 0.4184 (2) 0.20414 (18) 0.0199 (4)
C2 0.3185 (2) 0.4340 (2) 0.13843 (19) 0.0258 (5)
H2 0.2437 0.3768 0.1637 0.031*
C3 0.2930 (2) 0.5314 (3) 0.0374 (2) 0.0313 (5)
H3 0.2012 0.5410 −0.0062 0.038*
C4 0.4021 (2) 0.6157 (3) −0.0004 (2) 0.0288 (5)
H4 0.3841 0.6832 −0.0694 0.035*
C5 0.5358 (2) 0.6018 (3) 0.06145 (19) 0.0254 (5)
H5 0.6098 0.6594 0.0352 0.030*
C6 0.5621 (2) 0.5026 (2) 0.16297 (19) 0.0210 (4)
O6 0.69536 (15) 0.49364 (19) 0.22033 (15) 0.0296 (4)
H6O 0.685 (3) 0.441 (3) 0.290 (2) 0.044*
C7 0.4830 (2) 0.3244 (2) 0.32048 (18) 0.0203 (4)
O7 0.60410 (15) 0.32025 (17) 0.38085 (14) 0.0273 (4)
N8 0.37834 (19) 0.2474 (2) 0.36263 (16) 0.0230 (4)
H8N 0.2929 (18) 0.259 (3) 0.325 (2) 0.028*
C9 0.3912 (2) 0.1825 (3) 0.4921 (2) 0.0284 (5)
H9A 0.4837 0.1345 0.5091 0.034*
H9B 0.3178 0.1078 0.4960 0.034*
C10 0.3766 (2) 0.2972 (2) 0.59675 (19) 0.0259 (5)
H10A 0.3778 0.2490 0.6823 0.031*
H10B 0.4577 0.3640 0.6009 0.031*
C11 0.2419 (2) 0.3837 (2) 0.56963 (19) 0.0228 (4)
H11A 0.1620 0.3153 0.5593 0.027*
H11B 0.2440 0.4355 0.4861 0.027*
C12 0.2160 (2) 0.4936 (2) 0.67388 (18) 0.0213 (4)
H12A 0.3007 0.5545 0.6932 0.026*
H12B 0.1994 0.4417 0.7545 0.026*
C13 0.0901 (2) 0.5910 (2) 0.63192 (18) 0.0192 (4)
H13 0.0072 0.5277 0.6059 0.023*
C14 0.0553 (2) 0.6883 (2) 0.74253 (18) 0.0225 (4)
H14A 0.0368 0.6270 0.8173 0.027*
H14B 0.1377 0.7497 0.7703 0.027*
O14 −0.06297 (15) 0.77953 (17) 0.70901 (14) 0.0272 (4)
H14O −0.044 (3) 0.857 (2) 0.672 (2) 0.041*
N15 0.11840 (17) 0.6788 (2) 0.51866 (15) 0.0194 (4)
H15N 0.187 (2) 0.739 (2) 0.527 (2) 0.023*
C16 0.06071 (19) 0.6524 (2) 0.39742 (18) 0.0185 (4)
O16 −0.02958 (14) 0.55555 (16) 0.37353 (13) 0.0234 (3)
C17 0.1056 (2) 0.7449 (2) 0.29126 (18) 0.0191 (4)
C18 0.2307 (2) 0.8247 (2) 0.30504 (19) 0.0245 (5)
H18 0.2899 0.8195 0.3846 0.029*
C19 0.2701 (2) 0.9106 (3) 0.2062 (2) 0.0290 (5)
H19 0.3560 0.9627 0.2174 0.035*
C20 0.1832 (2) 0.9204 (3) 0.09003 (19) 0.0288 (5)
H20 0.2086 0.9811 0.0223 0.035*
C21 0.0605 (2) 0.8422 (3) 0.07330 (19) 0.0259 (5)
H21 0.0018 0.8491 −0.0064 0.031*
C22 0.0211 (2) 0.7531 (2) 0.17155 (18) 0.0213 (4)
O22 −0.10130 (15) 0.68092 (19) 0.14603 (14) 0.0306 (4)
H22O −0.115 (3) 0.621 (3) 0.204 (2) 0.046*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0203 (10) 0.0213 (10) 0.0184 (9) 0.0025 (8) 0.0027 (7) −0.0035 (8)
C2 0.0206 (10) 0.0316 (13) 0.0246 (10) −0.0007 (9) −0.0001 (8) 0.0035 (10)
C3 0.0202 (10) 0.0467 (15) 0.0256 (11) 0.0020 (10) −0.0033 (8) 0.0057 (10)
C4 0.0328 (12) 0.0306 (12) 0.0227 (10) 0.0027 (10) 0.0012 (9) 0.0049 (9)
C5 0.0249 (11) 0.0276 (12) 0.0241 (10) −0.0028 (9) 0.0053 (8) 0.0003 (9)
C6 0.0199 (9) 0.0229 (10) 0.0199 (9) 0.0021 (8) 0.0006 (7) −0.0051 (9)
O6 0.0168 (7) 0.0382 (9) 0.0329 (8) −0.0023 (7) −0.0016 (6) 0.0053 (7)
C7 0.0210 (10) 0.0190 (10) 0.0207 (9) 0.0047 (8) 0.0017 (8) −0.0044 (8)
O7 0.0210 (8) 0.0343 (9) 0.0260 (7) 0.0070 (7) −0.0007 (6) 0.0038 (7)
N8 0.0239 (9) 0.0221 (9) 0.0228 (8) 0.0022 (8) 0.0006 (7) 0.0003 (7)
C9 0.0353 (12) 0.0225 (11) 0.0278 (10) 0.0058 (10) 0.0053 (9) 0.0068 (9)
C10 0.0295 (11) 0.0254 (12) 0.0224 (10) 0.0040 (9) 0.0017 (8) 0.0058 (9)
C11 0.0214 (10) 0.0231 (11) 0.0238 (10) −0.0014 (9) 0.0015 (8) −0.0003 (9)
C12 0.0213 (10) 0.0224 (10) 0.0200 (10) −0.0026 (9) 0.0008 (8) 0.0019 (8)
C13 0.0171 (9) 0.0217 (11) 0.0187 (9) −0.0023 (8) 0.0016 (7) 0.0033 (8)
C14 0.0220 (10) 0.0261 (11) 0.0194 (9) 0.0018 (9) 0.0020 (8) 0.0047 (9)
O14 0.0233 (8) 0.0274 (9) 0.0313 (8) 0.0060 (7) 0.0049 (6) 0.0075 (7)
N15 0.0190 (8) 0.0212 (9) 0.0173 (8) −0.0061 (7) −0.0009 (6) 0.0013 (7)
C16 0.0161 (9) 0.0184 (10) 0.0206 (9) 0.0031 (8) 0.0005 (7) 0.0001 (8)
O16 0.0216 (7) 0.0227 (7) 0.0247 (7) −0.0053 (6) −0.0028 (6) −0.0004 (6)
C17 0.0200 (10) 0.0194 (10) 0.0178 (9) 0.0023 (8) 0.0020 (7) −0.0025 (8)
C18 0.0213 (10) 0.0324 (12) 0.0191 (9) −0.0033 (9) −0.0017 (8) 0.0026 (9)
C19 0.0263 (11) 0.0345 (13) 0.0268 (10) −0.0073 (10) 0.0058 (9) 0.0010 (10)
C20 0.0314 (12) 0.0329 (12) 0.0232 (10) 0.0024 (10) 0.0083 (9) 0.0074 (10)
C21 0.0263 (11) 0.0338 (12) 0.0171 (9) 0.0079 (10) 0.0003 (8) 0.0018 (9)
C22 0.0178 (9) 0.0251 (11) 0.0204 (9) 0.0018 (8) 0.0003 (7) −0.0032 (9)
O22 0.0285 (8) 0.0389 (9) 0.0223 (7) −0.0099 (7) −0.0060 (6) 0.0021 (7)

Geometric parameters (Å, º)

C1—C2 1.399 (3) C12—C13 1.531 (3)
C1—C6 1.406 (3) C12—H12A 0.9900
C1—C7 1.488 (3) C12—H12B 0.9900
C2—C3 1.381 (3) C13—N15 1.475 (2)
C2—H2 0.9500 C13—C14 1.521 (3)
C3—C4 1.394 (3) C13—H13 1.0000
C3—H3 0.9500 C14—O14 1.425 (2)
C4—C5 1.377 (3) C14—H14A 0.9900
C4—H4 0.9500 C14—H14B 0.9900
C5—C6 1.396 (3) O14—H14O 0.846 (18)
C5—H5 0.9500 N15—C16 1.339 (2)
C6—O6 1.353 (2) N15—H15N 0.858 (16)
O6—H6O 0.882 (17) C16—O16 1.251 (2)
C7—O7 1.259 (2) C16—C17 1.492 (3)
C7—N8 1.341 (3) C17—C18 1.402 (3)
N8—C9 1.462 (3) C17—C22 1.408 (3)
N8—H8N 0.874 (16) C18—C19 1.379 (3)
C9—C10 1.532 (3) C18—H18 0.9500
C9—H9A 0.9900 C19—C20 1.391 (3)
C9—H9B 0.9900 C19—H19 0.9500
C10—C11 1.519 (3) C20—C21 1.376 (3)
C10—H10A 0.9900 C20—H20 0.9500
C10—H10B 0.9900 C21—C22 1.392 (3)
C11—C12 1.521 (3) C21—H21 0.9500
C11—H11A 0.9900 C22—O22 1.351 (2)
C11—H11B 0.9900 O22—H22O 0.838 (18)
C2—C1—C6 118.24 (18) C11—C12—H12A 109.2
C2—C1—C7 122.86 (18) C13—C12—H12A 109.2
C6—C1—C7 118.77 (17) C11—C12—H12B 109.2
C3—C2—C1 120.9 (2) C13—C12—H12B 109.2
C3—C2—H2 119.5 H12A—C12—H12B 107.9
C1—C2—H2 119.5 N15—C13—C14 110.40 (17)
C2—C3—C4 119.94 (19) N15—C13—C12 109.94 (15)
C2—C3—H3 120.0 C14—C13—C12 111.31 (15)
C4—C3—H3 120.0 N15—C13—H13 108.4
C5—C4—C3 120.5 (2) C14—C13—H13 108.4
C5—C4—H4 119.8 C12—C13—H13 108.4
C3—C4—H4 119.8 O14—C14—C13 113.51 (15)
C4—C5—C6 119.7 (2) O14—C14—H14A 108.9
C4—C5—H5 120.2 C13—C14—H14A 108.9
C6—C5—H5 120.2 O14—C14—H14B 108.9
O6—C6—C5 117.14 (18) C13—C14—H14B 108.9
O6—C6—C1 122.18 (18) H14A—C14—H14B 107.7
C5—C6—C1 120.67 (18) C14—O14—H14O 114.1 (18)
C6—O6—H6O 102.2 (17) C16—N15—C13 123.58 (17)
O7—C7—N8 120.36 (18) C16—N15—H15N 116.8 (15)
O7—C7—C1 120.57 (18) C13—N15—H15N 118.5 (15)
N8—C7—C1 119.04 (17) O16—C16—N15 121.54 (18)
C7—N8—C9 121.54 (18) O16—C16—C17 120.79 (17)
C7—N8—H8N 119.3 (16) N15—C16—C17 117.65 (17)
C9—N8—H8N 116.1 (16) C18—C17—C22 117.82 (18)
N8—C9—C10 111.17 (18) C18—C17—C16 122.51 (16)
N8—C9—H9A 109.4 C22—C17—C16 119.67 (17)
C10—C9—H9A 109.4 C19—C18—C17 121.74 (18)
N8—C9—H9B 109.4 C19—C18—H18 119.1
C10—C9—H9B 109.4 C17—C18—H18 119.1
H9A—C9—H9B 108.0 C18—C19—C20 119.5 (2)
C11—C10—C9 111.91 (17) C18—C19—H19 120.2
C11—C10—H10A 109.2 C20—C19—H19 120.2
C9—C10—H10A 109.2 C21—C20—C19 120.0 (2)
C11—C10—H10B 109.2 C21—C20—H20 120.0
C9—C10—H10B 109.2 C19—C20—H20 120.0
H10A—C10—H10B 107.9 C20—C21—C22 120.90 (18)
C10—C11—C12 114.81 (16) C20—C21—H21 119.5
C10—C11—H11A 108.6 C22—C21—H21 119.5
C12—C11—H11A 108.6 O22—C22—C21 116.52 (17)
C10—C11—H11B 108.6 O22—C22—C17 123.48 (18)
C12—C11—H11B 108.6 C21—C22—C17 119.97 (19)
H11A—C11—H11B 107.5 C22—O22—H22O 112.6 (19)
C11—C12—C13 111.96 (16)
C6—C1—C2—C3 −1.2 (3) C11—C12—C13—C14 173.46 (16)
C7—C1—C2—C3 174.6 (2) N15—C13—C14—O14 58.6 (2)
C1—C2—C3—C4 0.1 (3) C12—C13—C14—O14 −178.98 (16)
C2—C3—C4—C5 0.6 (4) C14—C13—N15—C16 −131.63 (19)
C3—C4—C5—C6 −0.1 (3) C12—C13—N15—C16 105.2 (2)
C4—C5—C6—O6 −179.9 (2) C13—N15—C16—O16 4.9 (3)
C4—C5—C6—C1 −1.0 (3) C13—N15—C16—C17 −176.42 (17)
C2—C1—C6—O6 −179.51 (19) O16—C16—C17—C18 −161.58 (19)
C7—C1—C6—O6 4.5 (3) N15—C16—C17—C18 19.7 (3)
C2—C1—C6—C5 1.7 (3) O16—C16—C17—C22 17.9 (3)
C7—C1—C6—C5 −174.34 (18) N15—C16—C17—C22 −160.80 (19)
C2—C1—C7—O7 −175.9 (2) C22—C17—C18—C19 1.0 (3)
C6—C1—C7—O7 0.0 (3) C16—C17—C18—C19 −179.5 (2)
C2—C1—C7—N8 2.1 (3) C17—C18—C19—C20 0.8 (3)
C6—C1—C7—N8 177.93 (19) C18—C19—C20—C21 −1.5 (3)
O7—C7—N8—C9 13.5 (3) C19—C20—C21—C22 0.2 (3)
C1—C7—N8—C9 −164.46 (18) C20—C21—C22—O22 179.86 (19)
C7—N8—C9—C10 75.7 (2) C20—C21—C22—C17 1.6 (3)
N8—C9—C10—C11 54.2 (2) C18—C17—C22—O22 179.7 (2)
C9—C10—C11—C12 176.49 (17) C16—C17—C22—O22 0.2 (3)
C10—C11—C12—C13 172.07 (17) C18—C17—C22—C21 −2.2 (3)
C11—C12—C13—N15 −63.9 (2) C16—C17—C22—C21 178.28 (18)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O6—H6O···O7 0.88 (2) 1.70 (2) 2.530 (2) 155 (3)
N8—H8N···O14i 0.87 (2) 2.21 (2) 3.051 (2) 163 (2)
O14—H14O···O16ii 0.85 (2) 2.03 (2) 2.858 (2) 165 (3)
N15—H15N···O7iii 0.86 (2) 2.25 (2) 3.046 (2) 154 (2)
O22—H22O···O16 0.84 (2) 1.95 (2) 2.648 (2) 140 (3)
O22—H22O···O6iv 0.84 (2) 2.19 (2) 2.776 (2) 127 (2)

Symmetry codes: (i) −x, y−1/2, −z+1; (ii) −x, y+1/2, −z+1; (iii) −x+1, y+1/2, −z+1; (iv) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: YK2084).

References

  1. Brandenburg, K. (2012). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2010). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cappillino, P. J., Tarves, P. C., Rowe, G. T., Lewis, A. J., Harvey, M., Rogge, C., Stassinopoulos, A., Lo, W., Armstrong, W. H. & Caradonna, J. P. (2009). Inorg. Chim. Acta, 362, 2136–2150.
  4. Duhme, A.-K., Dauter, Z., Hider, R. C. & Pohl, S. (1996). Inorg. Chem. 35, 3059–3061.
  5. Huang, S.-P., Franz, K. J., Olmstead, M. M. & Fish, R. H. (1995). Inorg. Chem. 34, 2820–2825.
  6. Kunze, B., Bedorf, N., Kohl, W., Höfle, G. & Reichenbach, H. (1989). J. Antibiot. 42, 14–17. [DOI] [PubMed]
  7. Müller, P., Herbst-Irmer, R., Spek, A. L., Schneider, T. R. & Sawaya, M. R. (2006). In Crystal Structure Refinement - A Crystallographer’s Guide to SHELXL Oxford University Press.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Stoicescu, L., Duhayon, C., Vendier, L., Tesouro-Vallina, A., Costes, J.-P. & Tuchagues, J.-P. (2009). Eur. J. Inorg. Chem. pp. 5483–5493.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813000354/yk2084sup1.cif

e-69-0o223-sup1.cif (21KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813000354/yk2084Isup2.hkl

e-69-0o223-Isup2.hkl (103.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813000354/yk2084Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES