Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Jan 12;69(Pt 2):o224. doi: 10.1107/S1600536813000500

Dimethyl 2-[(acridin-9-yl)methyl­idene]malonate

Sinara M V de Almeida a, Ivan R Pitta b, Maria do Carmo A de Lima b, Francisco J B Mendonça Junior c, Carlos A de Simone d,*
PMCID: PMC3569759  PMID: 23424505

Abstract

In the title compound, C19H15NO4, the acridine system is essentially planar (r.m.s. deviation = 0.015 Å). The crystal packing exhibits π–π inter­actions between pairs of centrosymmetric mol­ecules, one of them between the central heterocyclic rings and others between the outer benzene rings of the acridine systems, with centroid–centroid distances of 3.692 (1) and 3.754 (1) Å, respectively. These pairs are further linked by additional π–π inter­actions along the a-axis direction through one of the two outer benzene ring of neighboring mol­ecules, with a centroid–centroid distance of 3.642 (2) Å.

Related literature  

For background to acridines, see: Kumar et al. (2012). For the biological activity of acridine derivatives, see: Pigatto et al. (2011); Das et al. (2011); Kumar et al. (2012). For the synthesis of acridines, see: Tomar et al. (2010). For related structures, see: Buckleton & Waters (1984).graphic file with name e-69-0o224-scheme1.jpg

Experimental  

Crystal data  

  • C19H15NO4

  • M r = 321.32

  • Triclinic, Inline graphic

  • a = 8.3022 (2) Å

  • b = 9.0208 (3) Å

  • c = 12.0334 (4) Å

  • α = 96.468 (2)°

  • β = 93.652 (2)°

  • γ = 117.422 (2)°

  • V = 787.98 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 295 K

  • 0.32 × 0.28 × 0.22 mm

Data collection  

  • Nonius KappaCCD diffractometer

  • 10674 measured reflections

  • 3626 independent reflections

  • 2805 reflections with I > 2σ(I)

  • R int = 0.050

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.052

  • wR(F 2) = 0.148

  • S = 1.05

  • 3626 reflections

  • 218 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: COLLECT (Nonius, 1997); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813000500/lr2094sup1.cif

e-69-0o224-sup1.cif (17.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813000500/lr2094Isup2.hkl

e-69-0o224-Isup2.hkl (169.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813000500/lr2094Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work received partial support from CNPq and PROPESQ/UEPB. The authors thank the Instituto de Física de São Carlos – USP for allowing the use of the KappaCCD diffractometer.

supplementary crystallographic information

Comment

The pharmacological uses of acridine derivatives have been well documented (Kumar et al. 2012). Amongst these applications can be highlighted: Proflavin an antibacterial agent against many Gram positive bacteria; Bucricaine which is used topically for surface anesthesia (Kumar et al. 2012); Quinacrine and 9-aminoacridine that act as antimalarial and disinfectant agents respectively (Das et al. 2011); and several antitumor agents as nitracrina, amsacrine and 9-arylacridines which are potent topoisomerase inhibitors (Pigatto et al. 2011).

In this work, we report the structure of the title compound synthesized by the reaction between acridine-9-carbaldehyde and dimethyl malonate. The mean plane analysis of molecule shows that the acridine ring is essentially planar. The deviation observed is maximum for the C5 [(0.0311 (2) Å].The crystal packing exhibits π- π interactions between pairs of centrosymmetric molecules, one of them between the central heterocyclic rings and others between the side benzene rings of the acridine moieties, with centroid-centroid distances of 3.692 (1) and 3.754 (1) Årespectively. These pairs are further linked by additional π- π interactions along the a axis through one of the two side benzene ring of neighboring molecules, with centroid-centroid distance of 3.642 (2) Å.

Experimental

In a Dean-Stark apparatus, acridine-9-carbaldehyde (0.1 mmol), dimethyl malonate (0.1 mmol) and morpholine (0.01 mmol) were refluxed in toluene (10 ml). The reaction mixture was refluxed at 383 K for 24 h, and the solvent was evaporated under reduced pressure. The title compound was purified by flash chromatography on silica gel (230–400 mesh) Merck (Germany), eluting with n-hexane/ethyl acetate (9.5:0.5) to give analytically pure yellow crystals of 2-acridin-9-yl-methylene-malonic acid dimethyl ester; yield 33%, M.p. 405–407 K. Crystals suitable for suitable for single-crystal X-ray diffraction were grown by slow evaporation at 289 K of a solution of the pure title compound in absolute ethanol.

FTIR (KBr, cm-1) Umax: 2954, 2924, 1730, 1628, 1435, 1266, 1232, 1076, 785, 749. NMR 1H (300 MHz, DMSO-d6) δ 3.15 (s, 3H), 3.92 (s, 3H), 7.65 (m, 2H), 7.89 (m, 2H), 7.99 (d, 2H,J = 8.6 Hz), 8.20 (d, 2H, J = 8.6 Hz), 8.70 (s, 1H). HRMS calcd for C19H15NO4 = 321.1001, found = 322.0617.

Refinement

All H-atoms were included in the refinement at calculated positions [C—H = 0.93 Å (aromatic) and 0.96 Å (methyl), with Uiso(H) = 1.2Ueq(aromatic C) or 1.5Ueq(methyl C)],also using a riding-model approximation. The maximum and minimum residual electron density peaks were located 0.16 and 0.77 Å, from the C9 and H14 atoms respectively.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound. with the ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

A partial view of the packing showing the π - π interactions.

Crystal data

C19H15NO4 Z = 2
Mr = 321.32 F(000) = 336
Triclinic, P1 Dx = 1.354 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.3022 (2) Å Cell parameters from 6418 reflections
b = 9.0208 (3) Å θ = 2.5–27.5°
c = 12.0334 (4) Å µ = 0.10 mm1
α = 96.468 (2)° T = 295 K
β = 93.652 (2)° Prism, yellow
γ = 117.422 (2)° 0.32 × 0.28 × 0.22 mm
V = 787.98 (4) Å3

Data collection

Nonius KappaCCD diffractometer 2805 reflections with I > 2σ(I)
Radiation source: Enraf Nonius FR590 Rint = 0.050
Horizonally mounted graphite crystal monochromator θmax = 27.5°, θmin = 2.6°
Detector resolution: 9 pixels mm-1 h = −10→10
CCD rotation images,thick slices scans k = −11→10
10674 measured reflections l = −15→15
3626 independent reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052 H-atom parameters constrained
wR(F2) = 0.148 w = 1/[σ2(Fo2) + (0.0817P)2 + 0.1056P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max < 0.001
3626 reflections Δρmax = 0.26 e Å3
218 parameters Δρmin = −0.24 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.168 (19)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C2 0.18856 (17) −0.04107 (16) 0.05238 (10) 0.0416 (3)
C8 0.27051 (18) 0.29435 (17) 0.10755 (11) 0.0439 (3)
C1 0.12960 (17) 0.00751 (16) 0.15015 (10) 0.0409 (3)
C16 0.25132 (19) −0.00447 (18) 0.38809 (12) 0.0475 (3)
N1 0.32779 (16) 0.24918 (14) 0.01345 (9) 0.0477 (3)
C14 0.02296 (18) −0.12607 (17) 0.21649 (11) 0.0455 (3)
H14 −0.0906 −0.2111 0.1815 0.055*
O4 −0.19557 (15) −0.38893 (13) 0.31911 (9) 0.0630 (3)
C13 0.16978 (17) 0.17719 (16) 0.17992 (10) 0.0412 (3)
C12 0.11370 (19) 0.24024 (18) 0.27615 (11) 0.0484 (3)
H12 0.0464 0.1665 0.3236 0.058*
C11 0.1572 (2) 0.4058 (2) 0.29913 (12) 0.0544 (4)
H11 0.1202 0.4443 0.3625 0.065*
C6 0.3548 (2) 0.0411 (2) −0.11100 (12) 0.0549 (4)
H6 0.4194 0.1228 −0.1546 0.066*
C9 0.3139 (2) 0.46746 (18) 0.13512 (13) 0.0538 (4)
H9 0.3808 0.5443 0.0892 0.065*
O2 0.22592 (15) 0.05138 (14) 0.48843 (9) 0.0593 (3)
O1 0.39648 (15) 0.04600 (18) 0.35414 (10) 0.0745 (4)
O3 0.02856 (18) −0.31220 (15) 0.46082 (10) 0.0716 (4)
C7 0.28933 (18) 0.08723 (17) −0.01311 (11) 0.0445 (3)
C18 −0.0314 (2) −0.28576 (17) 0.37642 (11) 0.0488 (3)
C5 0.3247 (2) −0.1193 (2) −0.14145 (14) 0.0618 (4)
H5 0.3696 −0.1466 −0.2051 0.074*
C3 0.1592 (2) −0.20857 (18) 0.01646 (12) 0.0508 (3)
H3 0.0939 −0.2935 0.0577 0.061*
C15 0.07425 (18) −0.13590 (17) 0.32134 (11) 0.0452 (3)
C10 0.2585 (2) 0.52130 (19) 0.22792 (13) 0.0578 (4)
H10 0.2871 0.6345 0.2449 0.069*
C4 0.2252 (2) −0.2462 (2) −0.07701 (14) 0.0588 (4)
H4 0.2048 −0.3563 −0.0989 0.071*
C19 −0.3052 (3) −0.5404 (2) 0.36533 (18) 0.0765 (5)
H19A −0.4202 −0.6062 0.3179 0.115*
H19B −0.3267 −0.5095 0.4398 0.115*
H19C −0.2415 −0.6059 0.3690 0.115*
C17 0.3884 (3) 0.1685 (3) 0.56385 (16) 0.0767 (5)
H17A 0.3545 0.2006 0.6338 0.115*
H17B 0.4557 0.2672 0.5302 0.115*
H17C 0.4634 0.1156 0.5779 0.115*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C2 0.0385 (6) 0.0446 (7) 0.0367 (6) 0.0149 (5) 0.0014 (5) 0.0111 (5)
C8 0.0422 (7) 0.0438 (7) 0.0379 (6) 0.0126 (5) 0.0030 (5) 0.0124 (5)
C1 0.0387 (6) 0.0446 (7) 0.0350 (6) 0.0143 (5) 0.0027 (5) 0.0143 (5)
C16 0.0493 (7) 0.0517 (7) 0.0466 (7) 0.0249 (6) 0.0081 (6) 0.0219 (6)
N1 0.0484 (6) 0.0451 (6) 0.0397 (6) 0.0120 (5) 0.0080 (5) 0.0136 (5)
C14 0.0465 (7) 0.0429 (7) 0.0428 (7) 0.0157 (5) 0.0075 (5) 0.0136 (5)
O4 0.0636 (7) 0.0495 (6) 0.0614 (7) 0.0110 (5) 0.0127 (5) 0.0236 (5)
C13 0.0395 (6) 0.0448 (7) 0.0348 (6) 0.0153 (5) 0.0023 (5) 0.0117 (5)
C12 0.0506 (7) 0.0535 (8) 0.0411 (7) 0.0230 (6) 0.0081 (6) 0.0134 (6)
C11 0.0619 (9) 0.0575 (9) 0.0440 (7) 0.0291 (7) 0.0051 (6) 0.0058 (6)
C6 0.0510 (8) 0.0602 (9) 0.0419 (7) 0.0153 (6) 0.0115 (6) 0.0105 (6)
C9 0.0574 (8) 0.0425 (7) 0.0497 (8) 0.0127 (6) 0.0043 (6) 0.0139 (6)
O2 0.0593 (6) 0.0619 (7) 0.0536 (6) 0.0279 (5) 0.0027 (5) 0.0030 (5)
O1 0.0492 (6) 0.1023 (10) 0.0627 (7) 0.0255 (6) 0.0115 (5) 0.0222 (6)
O3 0.0931 (9) 0.0618 (7) 0.0579 (7) 0.0302 (6) 0.0085 (6) 0.0315 (5)
C7 0.0399 (6) 0.0491 (7) 0.0366 (6) 0.0137 (5) 0.0038 (5) 0.0109 (5)
C18 0.0622 (8) 0.0441 (7) 0.0440 (7) 0.0252 (6) 0.0168 (6) 0.0155 (6)
C5 0.0587 (9) 0.0693 (10) 0.0482 (8) 0.0241 (8) 0.0113 (7) −0.0008 (7)
C3 0.0500 (8) 0.0477 (7) 0.0493 (8) 0.0180 (6) 0.0048 (6) 0.0107 (6)
C15 0.0502 (7) 0.0455 (7) 0.0425 (7) 0.0220 (6) 0.0119 (6) 0.0165 (5)
C10 0.0661 (9) 0.0442 (8) 0.0545 (8) 0.0204 (7) 0.0005 (7) 0.0048 (6)
C4 0.0603 (9) 0.0542 (8) 0.0561 (9) 0.0246 (7) 0.0041 (7) 0.0001 (7)
C19 0.0826 (12) 0.0459 (9) 0.0854 (13) 0.0120 (8) 0.0267 (10) 0.0254 (8)
C17 0.0776 (12) 0.0741 (11) 0.0667 (11) 0.0323 (9) −0.0107 (9) −0.0063 (9)

Geometric parameters (Å, º)

C2—C1 1.4037 (18) C6—C5 1.351 (2)
C2—C3 1.425 (2) C6—C7 1.427 (2)
C2—C7 1.4345 (17) C6—H6 0.9300
C8—N1 1.3482 (18) C9—C10 1.358 (2)
C8—C9 1.424 (2) C9—H9 0.9300
C8—C13 1.4356 (17) O2—C17 1.441 (2)
C1—C13 1.4049 (19) O3—C18 1.1981 (17)
C1—C14 1.4823 (16) C18—C15 1.4899 (18)
C16—O1 1.1940 (17) C5—C4 1.415 (2)
C16—O2 1.3226 (18) C5—H5 0.9300
C16—C15 1.497 (2) C3—C4 1.358 (2)
N1—C7 1.3381 (18) C3—H3 0.9300
C14—C15 1.3315 (18) C10—H10 0.9300
C14—H14 0.9300 C4—H4 0.9300
O4—C18 1.3293 (19) C19—H19A 0.9600
O4—C19 1.4474 (18) C19—H19B 0.9600
C13—C12 1.4301 (19) C19—H19C 0.9600
C12—C11 1.355 (2) C17—H17A 0.9600
C12—H12 0.9300 C17—H17B 0.9600
C11—C10 1.419 (2) C17—H17C 0.9600
C11—H11 0.9300
C1—C2—C3 123.94 (12) N1—C7—C6 117.91 (12)
C1—C2—C7 117.80 (12) N1—C7—C2 123.52 (12)
C3—C2—C7 118.24 (12) C6—C7—C2 118.55 (13)
N1—C8—C9 117.44 (12) O3—C18—O4 124.20 (13)
N1—C8—C13 123.21 (12) O3—C18—C15 123.33 (14)
C9—C8—C13 119.35 (12) O4—C18—C15 112.42 (12)
C2—C1—C13 119.54 (11) C6—C5—C4 120.40 (14)
C2—C1—C14 117.57 (12) C6—C5—H5 119.8
C13—C1—C14 122.87 (12) C4—C5—H5 119.8
O1—C16—O2 124.32 (15) C4—C3—C2 121.06 (14)
O1—C16—C15 124.28 (14) C4—C3—H3 119.5
O2—C16—C15 111.38 (11) C2—C3—H3 119.5
C7—N1—C8 118.15 (11) C14—C15—C18 122.41 (13)
C15—C14—C1 126.22 (12) C14—C15—C16 122.17 (11)
C15—C14—H14 116.9 C18—C15—C16 115.18 (11)
C1—C14—H14 116.9 C9—C10—C11 120.38 (14)
C18—O4—C19 115.93 (13) C9—C10—H10 119.8
C1—C13—C12 124.38 (12) C11—C10—H10 119.8
C1—C13—C8 117.77 (12) C3—C4—C5 120.61 (15)
C12—C13—C8 117.83 (12) C3—C4—H4 119.7
C11—C12—C13 120.94 (13) C5—C4—H4 119.7
C11—C12—H12 119.5 O4—C19—H19A 109.5
C13—C12—H12 119.5 O4—C19—H19B 109.5
C12—C11—C10 120.94 (14) H19A—C19—H19B 109.5
C12—C11—H11 119.5 O4—C19—H19C 109.5
C10—C11—H11 119.5 H19A—C19—H19C 109.5
C5—C6—C7 121.14 (14) H19B—C19—H19C 109.5
C5—C6—H6 119.4 O2—C17—H17A 109.5
C7—C6—H6 119.4 O2—C17—H17B 109.5
C10—C9—C8 120.55 (13) H17A—C17—H17B 109.5
C10—C9—H9 119.7 O2—C17—H17C 109.5
C8—C9—H9 119.7 H17A—C17—H17C 109.5
C16—O2—C17 116.36 (13) H17B—C17—H17C 109.5

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LR2094).

References

  1. Buckleton, J. S. & Waters, T. N. (1984). Acta Cryst. C40, 1587–1589.
  2. Das, S., Kundu, S. & Suresh, K. G. (2011). DNA Cell Biol. 30, 525–535. [DOI] [PubMed]
  3. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  4. Kumar, R., Kaur, M. & Kumari, M. (2012). Acta Pol. Pharm. 69, 3–9. [PubMed]
  5. Nonius (1997). COLLECT. Nonius BV, Delft, The Netherlands.
  6. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  7. Pigatto, M. C., Lima, M. C. A., Galdino, S. L., Pitta, I. R., Vessecchi, R., Assis, M. D., Santos, J. S., Costa, T. C. T. D. & Lopes, P. N. (2011). Eur. J. Med. Chem. 1, 4245–4251. [DOI] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Tomar, V., Bhattacharjee, G., Uddin, K., Rajakumar, S., Srivastava, K. & Puri, S. K. (2010). Eur. J. Med. Chem. 45, 745–751. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813000500/lr2094sup1.cif

e-69-0o224-sup1.cif (17.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813000500/lr2094Isup2.hkl

e-69-0o224-Isup2.hkl (169.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813000500/lr2094Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES