Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Jan 12;69(Pt 2):o227–o228. doi: 10.1107/S1600536813000123

N-(5-Amino-1H-1,2,4-triazol-3-yl)pyridine-2-carboxamide

Javier Hernández-Gil a, Sacramento Ferrer a, Rafael Ballesteros b, Alfonso Castiñeiras c,*
PMCID: PMC3569762  PMID: 23424508

Abstract

The title compound, C8H8N6O, was obtained by the reaction of 3,5-diamino-1,2,4-triazole with ethyl 2-picolinate in a glass oven. The dihedral angles formed between the plane of the amide group and the pyridine and triazole rings are 11.8 (3) and 5.8 (3)°, respectively. In the crystal, an extensive system of classical N—H⋯N and N—H⋯O hydrogen bonds generate an infinite three-dimensional network.

Related literature  

For background to triazole derivatives, see: Aromí et al. (2011); Olguín et al. (2012). For related triazole structures, see: Allouch et al. (2008); Ouakkaf et al. (2011). For structures of metal complexes with related triazoles, see: Ferrer et al. (2004, 2012). For the synthesis of triazoles, see: Chernyshev et al. (2005). For hydrogen-bond motifs, see: Bernstein et al. (1995).graphic file with name e-69-0o227-scheme1.jpg

Experimental  

Crystal data  

  • C8H8N6O

  • M r = 204.20

  • Tetragonal, Inline graphic

  • a = 9.5480 (5) Å

  • c = 21.9570 (9) Å

  • V = 2001.69 (17) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.15 × 0.09 × 0.05 mm

Data collection  

  • Nonius KappaCCD diffractometer

  • 4484 measured reflections

  • 1407 independent reflections

  • 915 reflections with I > 2σ(I)

  • R int = 0.048

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.038

  • wR(F 2) = 0.107

  • S = 1.07

  • 1407 reflections

  • 137 parameters

  • H-atom parameters constrained

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.13 e Å−3

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and DIAMOND (Brandenburg & Putz, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813000123/gk2547sup1.cif

e-69-0o227-sup1.cif (20.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813000123/gk2547Isup2.hkl

e-69-0o227-Isup2.hkl (69.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813000123/gk2547Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N21—H21⋯N23i 0.86 2.02 2.788 (3) 149
N21—H21⋯O17i 0.86 2.41 3.061 (3) 133
N18—H18⋯N20ii 0.86 2.45 3.253 (3) 155
N22—H22A⋯O17i 0.86 2.08 2.860 (3) 150
N22—H22B⋯N20iii 0.86 2.26 3.068 (3) 157

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

This work was supported by the Ministerio de Educación y Ciencia (MEC, Spain) (project CTQ2007–63690/BQU) and by the Ministerio de Ciencia e Innovación and FEDER-EC (project MAT2010–15594). JHG acknowledges a PhD grant (project CTQ2007–63690/BQU, MEC, Spain). Technical support (X-ray measurements at S.C.S.I.E., University of Valencia) from M. Liu-González is gratefully acknowledged.

supplementary crystallographic information

Comment

A significantly large variety of 1,2,4-triazole-based compounds have been prepared to serve as ligands with the aim of obtaining discrete polynuclear metal complexes or polymeric coordination networks, owing to the ability of the 1,2,4-triazole ring to bridge metal ions through different coordination ways (Aromí et al., 2011; Olguín et al., 2012). Usually the 1,2,4-triazole-based family of ligands are classified in three categories (Aromí et al., 2011): (a) those containing an unique coordinative ring, (b) those possessing two or more coordinative rings linked by a spacer, and (c) the mixed ligands, which present two or more functional groups. Most of the 3,5-disubstituted derivatives can be included in the last category (Allouch et al., 2008; Ouakkaf et al., 2011).

Our group has been reporting on the synthesis and structure of some 3,5-disubstituted triazole-based ligands, i.e. 5-amino-3-pyridin-2-yl-1,2,4-triazole (Ferrer et al., 2004) and 3-acetylamino-5-amino-1,2,4-triazole (Ferrer et al., 2012). In those cases, single crystals of the ligands suitable for X-ray analysis were not obtained. Instead, crystal structures of some of their CuII complexes could be determined, thus confirming the structure of the triazole, either in neutral or in anionic form. In this work we describe a novel compound of this series, namely: 5-amino-3-picolinamido-1H-1,2,4-triazole or 5-amino-3-(pyridin-2-yl-acetamido)-1H-1,2,4-triazole (abbreviated as H2V to account for the presence of two acidic H atoms), for which it has been possible to solve the crystal structure.

The obtained H2V species is an attractive ligand since it presents 5 to 7 donor atoms (depending on the degree of deprotonation) but also the possibility of forming different chelating rings when coordinated to metals. Besides, in metal complexes the pyridyl ring often rotates around the single C–C bond leading to different binding conformations (Ouakkaf et al., 2011). This enlarges its capability to produce novel metal-organic structures.

As shown in Figure 1, the NH hydrogen is trans to the C=O group, as is observed for all N monosustituted amides. Molecular dimensions, such as the C=O bond length of 1.227 (3) Å and the central C–N–C amide angle of 127.40 (17)°, may be considered normal.

In the crystal packing, the triazole ligands are linked by pairs of weak N—H···N hydrogen bonds involving the H18 and N20 atoms, thus generating a characteristic R22(8) ring motif (Bernstein et al., 1995) (Fig. 2). Moreover, the molecules are also linked by N—H···N and N—H···O hydrogen bonds, forming fused non-centrosymmetric rings R22(7), R21(6) and R12(6) and giving rise to one-dimensional tapes parallel to the [010] and [100] directions (Fig. 3). These tapes joined by the R22(8) motif of N-H···N hydrogen bonds form a three dimensional framework (Fig.4).

Experimental

An evaporating flask containing 3,5-diamino-1,2,4-triazole (41.4 mmol, 4.10 g) and ethyl 2-picolinate (6.3 ml, 7 g, 46.3 mmol) was connected to a glass oven and the reaction temperature was slowly raised to 210 °C. The mixture was stirred (rotated) for 4 h. At this point, a vacuum pump was connected during 60 minutes to remove the excess of ethyl 2-picolinate. Afterwards, the reaction was cooled down to room temperature and the mixture solidified. The crude product was washed with ethanol and acetone and then recrystallized from methanol to give analytically pure crystals.

Refinement

All H atoms were positioned geometrically and were treated as riding on their parent atoms, with C—H distances of 0.93 Å and N—H distances of 0.86 Å with Uiso(H) = 1.2Ueq(C/N). In the absence of significant anomalous dispersion, Friedel pairs were merged.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title molecule with atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as spheres of arbitrary radii.

Fig. 2.

Fig. 2.

Scheme with details of the crossing of two chains of molecules (along the cb plane). Hydrogen bonds are shown as dashed lines. Symmetry code: (ii) -y, -x, -z + 1/2

Fig. 3.

Fig. 3.

Tapes of title molecules via N—H···N and N—H···O interactions seen along the [100] direction. Hydrogen bonds are shown as orange dashed lines.

Fig. 4.

Fig. 4.

A view of the unit-cell content of the title compound in projection down the b axis. Hydrogen bonds are shown as dashed lines.

Crystal data

C8H8N6O Dx = 1.355 Mg m3
Mr = 204.20 Melting point: 494(1) K
Tetragonal, P41212 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 4abw 2nw Cell parameters from 2353 reflections
a = 9.5480 (5) Å θ = 1.0–27.5°
c = 21.9570 (9) Å µ = 0.10 mm1
V = 2001.69 (17) Å3 T = 293 K
Z = 8 Prism, colourless
F(000) = 848 0.15 × 0.09 × 0.05 mm

Data collection

Nonius KappaCCD diffractometer 915 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.048
Graphite monochromator θmax = 27.5°, θmin = 2.3°
Detector resolution: 9 pixels mm-1 h = −12→12
ω and phi scans k = −8→8
4484 measured reflections l = −28→27
1407 independent reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038 H-atom parameters constrained
wR(F2) = 0.107 w = 1/[σ2(Fo2) + (0.0557P)2 + 0.0085P] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max < 0.001
1407 reflections Δρmax = 0.12 e Å3
137 parameters Δρmin = −0.13 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.013 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O17 0.1793 (2) 0.33529 (18) 0.25244 (8) 0.0726 (6)
N11 0.0462 (3) 0.1210 (3) 0.36912 (9) 0.0708 (7)
N18 0.1596 (2) 0.09855 (19) 0.25946 (8) 0.0513 (5)
H18 0.1399 0.0318 0.2843 0.062*
N20 0.2076 (2) −0.0746 (2) 0.18712 (8) 0.0495 (5)
N21 0.2450 (2) −0.0695 (2) 0.12653 (8) 0.0503 (5)
H21 0.2593 −0.1412 0.1036 0.060*
N22 0.2887 (3) 0.1049 (2) 0.05253 (9) 0.0797 (9)
H22A 0.3046 0.0438 0.0246 0.096*
H22B 0.2939 0.1928 0.0442 0.096*
N23 0.2279 (2) 0.14920 (19) 0.15549 (8) 0.0543 (6)
C12 −0.0006 (4) 0.1273 (4) 0.42633 (13) 0.0885 (11)
H12 −0.0387 0.0467 0.4434 0.106*
C13 0.0043 (4) 0.2465 (4) 0.46156 (14) 0.0871 (10)
H13 −0.0288 0.2460 0.5014 0.104*
C14 0.0583 (5) 0.3637 (4) 0.43690 (15) 0.1011 (12)
H14 0.0627 0.4458 0.4596 0.121*
C15 0.1072 (4) 0.3613 (3) 0.37768 (13) 0.0877 (11)
H15 0.1451 0.4412 0.3599 0.105*
C16 0.0983 (3) 0.2377 (3) 0.34567 (11) 0.0585 (7)
C17 0.1488 (3) 0.2302 (3) 0.28160 (11) 0.0541 (6)
C19 0.1992 (2) 0.0590 (2) 0.20093 (10) 0.0463 (6)
C22 0.2557 (3) 0.0633 (2) 0.10904 (10) 0.0503 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O17 0.1132 (17) 0.0408 (10) 0.0639 (11) −0.0008 (10) 0.0054 (11) 0.0032 (9)
N11 0.0937 (19) 0.0633 (16) 0.0552 (13) −0.0053 (13) 0.0148 (12) −0.0079 (11)
N18 0.0701 (14) 0.0370 (11) 0.0468 (11) −0.0015 (10) 0.0061 (10) −0.0016 (9)
N20 0.0677 (14) 0.0356 (11) 0.0453 (10) 0.0003 (9) 0.0062 (9) −0.0003 (9)
N21 0.0723 (14) 0.0345 (11) 0.0442 (10) 0.0013 (10) 0.0061 (9) −0.0020 (8)
N22 0.147 (3) 0.0395 (13) 0.0522 (13) 0.0045 (14) 0.0264 (15) 0.0046 (10)
N23 0.0790 (15) 0.0351 (10) 0.0487 (11) −0.0009 (10) 0.0068 (11) 0.0014 (9)
C12 0.115 (3) 0.085 (2) 0.0647 (18) −0.010 (2) 0.0275 (18) −0.0075 (17)
C13 0.104 (3) 0.093 (3) 0.0643 (18) 0.014 (2) 0.0149 (17) −0.0163 (19)
C14 0.148 (4) 0.080 (3) 0.076 (2) 0.018 (3) 0.009 (2) −0.033 (2)
C15 0.136 (3) 0.0541 (19) 0.073 (2) 0.0064 (19) 0.0134 (19) −0.0150 (16)
C16 0.0715 (18) 0.0512 (17) 0.0528 (14) 0.0080 (13) 0.0001 (12) −0.0059 (13)
C17 0.0664 (16) 0.0402 (14) 0.0558 (14) 0.0025 (12) −0.0052 (12) −0.0005 (12)
C19 0.0576 (15) 0.0364 (13) 0.0448 (13) −0.0009 (11) 0.0011 (11) 0.0022 (10)
C22 0.0686 (17) 0.0355 (13) 0.0468 (13) −0.0007 (12) 0.0043 (12) −0.0005 (11)

Geometric parameters (Å, º)

O17—C17 1.225 (3) N22—H22B 0.8600
N11—C16 1.324 (3) N23—C22 1.335 (3)
N11—C12 1.335 (3) N23—C19 1.347 (3)
N18—C17 1.352 (3) C12—C13 1.377 (4)
N18—C19 1.392 (3) C12—H12 0.9300
N18—H18 0.8600 C13—C14 1.346 (5)
N20—C19 1.314 (3) C13—H13 0.9300
N20—N21 1.378 (2) C14—C15 1.382 (4)
N21—C22 1.329 (3) C14—H14 0.9300
N21—H21 0.8600 C15—C16 1.376 (4)
N22—C22 1.340 (3) C15—H15 0.9300
N22—H22A 0.8600 C16—C17 1.489 (3)
C16—N11—C12 117.0 (2) C13—C14—C15 119.6 (3)
C17—N18—C19 127.3 (2) C13—C14—H14 120.2
C17—N18—H18 116.4 C15—C14—H14 120.2
C19—N18—H18 116.3 C16—C15—C14 118.3 (3)
C19—N20—N21 101.78 (18) C16—C15—H15 120.9
C22—N21—N20 109.41 (18) C14—C15—H15 120.9
C22—N21—H21 125.3 N11—C16—C15 123.1 (2)
N20—N21—H21 125.3 N11—C16—C17 116.7 (2)
C22—N22—H22A 120.0 C15—C16—C17 120.2 (3)
C22—N22—H22B 120.0 O17—C17—N18 123.7 (2)
H22A—N22—H22B 120.0 O17—C17—C16 122.1 (2)
C22—N23—C19 102.32 (19) N18—C17—C16 114.1 (2)
N11—C12—C13 123.7 (3) N20—C19—N23 116.0 (2)
N11—C12—H12 118.1 N20—C19—N18 119.6 (2)
C13—C12—H12 118.1 N23—C19—N18 124.4 (2)
C14—C13—C12 118.3 (3) N21—C22—N23 110.5 (2)
C14—C13—H13 120.8 N21—C22—N22 124.6 (2)
C12—C13—H13 120.8 N23—C22—N22 124.9 (2)
C19—N20—N21—C22 −0.1 (3) N11—C16—C17—N18 −12.1 (4)
C16—N11—C12—C13 −0.8 (6) C15—C16—C17—N18 167.8 (3)
N11—C12—C13—C14 0.6 (6) N21—N20—C19—N23 −0.2 (3)
C12—C13—C14—C15 −0.2 (6) N21—N20—C19—N18 178.5 (2)
C13—C14—C15—C16 0.2 (5) C22—N23—C19—N20 0.5 (3)
C12—N11—C16—C15 0.8 (5) C22—N23—C19—N18 −178.2 (2)
C12—N11—C16—C17 −179.3 (3) C17—N18—C19—N20 178.4 (2)
C14—C15—C16—N11 −0.5 (5) C17—N18—C19—N23 −3.0 (4)
C14—C15—C16—C17 179.6 (3) N20—N21—C22—N23 0.4 (3)
C19—N18—C17—O17 −3.3 (4) N20—N21—C22—N22 −179.1 (3)
C19—N18—C17—C16 177.7 (2) C19—N23—C22—N21 −0.5 (3)
N11—C16—C17—O17 168.9 (3) C19—N23—C22—N22 179.0 (3)
C15—C16—C17—O17 −11.3 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N21—H21···N23i 0.86 2.02 2.788 (3) 149
N21—H21···O17i 0.86 2.41 3.061 (3) 133
N18—H18···N20ii 0.86 2.45 3.253 (3) 155
N22—H22A···O17i 0.86 2.08 2.860 (3) 150
N22—H22B···N20iii 0.86 2.26 3.068 (3) 157

Symmetry codes: (i) −x+1/2, y−1/2, −z+1/4; (ii) −y, −x, −z+1/2; (iii) −x+1/2, y+1/2, −z+1/4.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2547).

References

  1. Allouch, F., Zouari, F., Chabchoub, F. & Salem, M. (2008). Acta Cryst. E64, o684. [DOI] [PMC free article] [PubMed]
  2. Aromí, G., Barrios, L., Roubeuau, O. & Gámez, P. (2011). Coord. Chem. Rev. 255, 485–546.
  3. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  4. Brandenburg, K. & Putz, H. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  5. Chernyshev, V. M., Rakitov, V. A., Taranushich, V. A. & Blinov, V. V. (2005). Chem. Heterocycl. Compd, 41, 1139–1146.
  6. Ferrer, S., Ballesteros, R., Sambartolomé, A., González, M., Alzuet, M. G., Borrás, J. & Liu, M. (2004). J. Inorg. Biochem. 98, 1436–1446. [DOI] [PubMed]
  7. Ferrer, S., Lloret, F., Pardo, E., Clemente-Juan, J. M., Liu-González, M. & García-Granda, S. (2012). Inorg. Chem. 51, 985–1001. [DOI] [PubMed]
  8. Nonius (1998). COLLECT. Nonius BV, Delft. The Netherlands.
  9. Olguín, J., Kalisz, J. M., Clé, R. & Brooker, S. (2012). Inorg. Chem. 51, 5058–5069. [DOI] [PubMed]
  10. Otwinowski, Z. & Minor, W. (1997). Methods in Enzimology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Cortes Jr & R. M. Sweet, pp 307–326. New York: Academic Press.
  11. Ouakkaf, A., Berrah, F., Bouacida, S. & Roisnel, T. (2011). Acta Cryst. E67, o1171–o1172. [DOI] [PMC free article] [PubMed]
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  14. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813000123/gk2547sup1.cif

e-69-0o227-sup1.cif (20.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813000123/gk2547Isup2.hkl

e-69-0o227-Isup2.hkl (69.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813000123/gk2547Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES