Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Jan 12;69(Pt 2):o230. doi: 10.1107/S1600536813000421

Methyl N-hy­droxy-N-(2-methyl­phen­yl)carbamate

Binbin Zhang a, Yifeng Wang a, Kun Dong a, Danqian Xu a,*
PMCID: PMC3569764  PMID: 23424510

Abstract

There are three independent mol­ecules in the asymmetric unit of the title compound, C9H11NO3, which are connected by O—H⋯O hydrogen bonds, forming an R 3 3(15) ring. The dihedral angles between the planes of the benzene and amide groups are 75.16 (3), 71.47 (3) and 70.56 (3)°. The hy­droxy O atom lies 0.912 (3), 1.172 (2) and 1.339 (2) Å from the mean plane of the corresponding benzene ring in the three mol­ecules.

Related literature  

The title compound is an inter­mediate in the synthesis of the strobilurin fungicide pyraclostrobin. For general background, see: Hou et al. (2002); Yang et al. (2012); Tao et al. (2009). For related structures, see: Mercader et al. (2011). For graph-set notation, see: Bernstein et al. (1995).graphic file with name e-69-0o230-scheme1.jpg

Experimental  

Crystal data  

  • C9H11NO3

  • M r = 181.19

  • Monoclinic, Inline graphic

  • a = 7.6418 (3) Å

  • b = 20.8825 (9) Å

  • c = 18.0412 (9) Å

  • β = 94.485 (1)°

  • V = 2870.2 (2) Å3

  • Z = 12

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.54 × 0.37 × 0.18 mm

Data collection  

  • Rigaku R-AXIS RAPID/ZJUG diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995) T min = 0.946, T max = 0.983

  • 24402 measured reflections

  • 5643 independent reflections

  • 3163 reflections with I > 2σ(I)

  • R int = 0.051

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.063

  • wR(F 2) = 0.161

  • S = 1.01

  • 5643 reflections

  • 362 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 2006); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813000421/pk2462sup1.cif

e-69-0o230-sup1.cif (33.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813000421/pk2462Isup2.hkl

e-69-0o230-Isup2.hkl (270.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813000421/pk2462Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1A—H1A⋯O2B 0.82 1.94 2.719 (3) 157
O1B—H1B⋯O2C 0.82 1.94 2.716 (3) 157
O1C—H1C⋯O2A 0.82 1.99 2.757 (3) 156

Acknowledgments

This work was supported by the Zhejiang Provincial Natural Science Foundation of China (No. Y4110373). We are also grateful for the help of Professor Jian-Ming Gu of Zhejiang University.

supplementary crystallographic information

Comment

N-aryl hydroxylamines are a significant class of compounds that are key building blocks in the synthesis of natural products and biologically active compounds. The title compound, which was readily synthesized from (N)-(2-methylphenyl)hydroxylamine, act as an intermediate for the synthesis of Strobilurin fungicide Pyraclostrobin. In this article, the crystal structure of the title compound methyl(N)-hydroxy-2- methylphenylcarbamate is described (Fig. 1). There are three independent molecules in the asymmetric unit, which are connected by intermolecular O—H···O hydrogen bonds to construct a large ring involving 15 atoms with graph set notation R33(15) (Fig. 2). In each molecule, the dihedral angles of the plane of the phenyl ring and the plane of the amide moiety are 75.16 (3)°, 71.47 (3)°, 70.56 (3)° respectively, while the phenyl rings of the three molecules make dihedral angles of 79.87 (3)°, 71.01 (3)°, 55.86 (3)° with each other. Each hydroxyl O atom lies 0.912 (3) Å, 1.172 (2) Å and 1.339 (2) Å from the mean plane of the corresponding phenyl ring.

Experimental

To a solution of (N)-(2-methylphenyl)hydroxylamine (0.022 mol) in CH2Cl2 (20 ml), sodium bicarbonate (0.033 mol) was added and methyl chloroformate(0.024 mol) was added dropwise, and the mixture was stirred at 0° C for 2 h (monitored by HPLC). Then the reaction mixture was filtered and distilled under vacuum, and the residue was recrystallized from petroleum ether to give the title compound. Single crystals were obtained by slow evaporation of a CH2Cl2 and cyclohexane solution.

Refinement

H atoms were placed in calculated positions with O—H = 0.82 Å, C—H = 0.96 Å (sp), C—H = 0.93 Å (aromatic). All H atoms included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2Ueq or 1.5Ueq (sp3) of the carrier atoms.

Figures

Fig. 1.

Fig. 1.

The structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Placement of the hydrogen-bonded trimer in the unit cell.

Crystal data

C9H11NO3 F(000) = 1152
Mr = 181.19 Dx = 1.258 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 13549 reflections
a = 7.6418 (3) Å θ = 3.0–27.4°
b = 20.8825 (9) Å µ = 0.10 mm1
c = 18.0412 (9) Å T = 296 K
β = 94.485 (1)° Needle, colorless
V = 2870.2 (2) Å3 0.54 × 0.37 × 0.18 mm
Z = 12

Data collection

Rigaku R-AXIS RAPID/ZJUG diffractometer 5643 independent reflections
Radiation source: rotating anode 3163 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.051
Detector resolution: 10.00 pixels mm-1 θmax = 26.0°, θmin = 3.0°
ω scans h = −8→9
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) k = −25→24
Tmin = 0.946, Tmax = 0.983 l = −22→22
24402 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.063 H-atom parameters constrained
wR(F2) = 0.161 w = 1/[σ2(Fo2) + (0.0464P)2 + 2.225P] where P = (Fo2 + 2Fc2)/3
S = 1.01 (Δ/σ)max < 0.001
5643 reflections Δρmax = 0.41 e Å3
362 parameters Δρmin = −0.18 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0071 (7)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1A 0.7015 (7) 0.0013 (2) 0.4220 (3) 0.1281 (17)
H1A1 0.8160 0.0147 0.4417 0.192*
H1A2 0.6990 −0.0445 0.4173 0.192*
H1A3 0.6157 0.0146 0.4550 0.192*
C2A 0.6622 (5) 0.02987 (19) 0.3507 (3) 0.0855 (11)
C3A 0.6870 (5) −0.0069 (3) 0.2864 (3) 0.1027 (15)
H3A 0.7291 −0.0486 0.2901 0.123*
C4A 0.6481 (5) 0.0204 (3) 0.2205 (4) 0.1099 (17)
H4A 0.6686 −0.0035 0.1785 0.132*
C5A 0.5789 (6) 0.0819 (3) 0.2091 (2) 0.1206 (18)
H5A 0.5485 0.0977 0.1616 0.145*
C6A 0.5584 (5) 0.1173 (2) 0.2709 (2) 0.0930 (13)
H6A 0.5189 0.1593 0.2662 0.112*
C7A 0.5973 (3) 0.09029 (14) 0.34306 (18) 0.0586 (8)
C8A 0.4200 (4) 0.15525 (14) 0.42474 (15) 0.0522 (7)
C9A 0.1141 (4) 0.1418 (2) 0.4157 (2) 0.0876 (12)
H9A1 0.1087 0.1362 0.4683 0.131*
H9A2 0.0244 0.1164 0.3896 0.131*
H9A3 0.0962 0.1861 0.4032 0.131*
N1A 0.5733 (3) 0.13103 (12) 0.40482 (13) 0.0576 (6)
O1A 0.7214 (2) 0.16837 (11) 0.42788 (11) 0.0633 (6)
H1A 0.7555 0.1589 0.4707 0.095*
O2A 0.4081 (3) 0.20012 (10) 0.46662 (12) 0.0667 (6)
O3A 0.2843 (2) 0.12164 (11) 0.39471 (12) 0.0685 (6)
C1B 0.9234 (4) 0.19851 (18) 0.78477 (18) 0.0734 (9)
H1B1 0.8450 0.2246 0.7535 0.110*
H1B2 0.9386 0.2171 0.8335 0.110*
H1B3 0.8751 0.1563 0.7881 0.110*
C2B 1.0991 (4) 0.19463 (14) 0.75196 (16) 0.0552 (7)
C3B 1.2551 (4) 0.19938 (17) 0.79671 (18) 0.0725 (9)
H3B 1.2507 0.2035 0.8479 0.087*
C4B 1.4155 (4) 0.19809 (18) 0.7672 (2) 0.0772 (10)
H4B 1.5179 0.2008 0.7984 0.093*
C5B 1.4247 (4) 0.19279 (17) 0.6920 (2) 0.0735 (9)
H5B 1.5333 0.1930 0.6721 0.088*
C6B 1.2733 (4) 0.18723 (14) 0.64585 (17) 0.0593 (8)
H6B 1.2791 0.1835 0.5947 0.071*
C7B 1.1122 (3) 0.18725 (13) 0.67609 (15) 0.0478 (6)
C8B 0.8634 (4) 0.12549 (15) 0.61676 (18) 0.0586 (7)
C9B 0.7983 (6) 0.02666 (19) 0.6715 (3) 0.1248 (18)
H9B1 0.6769 0.0378 0.6732 0.187*
H9B2 0.8351 0.0009 0.7139 0.187*
H9B3 0.8136 0.0030 0.6268 0.187*
N1B 0.9562 (3) 0.18018 (11) 0.62738 (12) 0.0525 (6)
O1B 0.9443 (3) 0.22088 (9) 0.56502 (10) 0.0586 (5)
H1B 0.8743 0.2497 0.5714 0.088*
O2B 0.7543 (3) 0.11544 (11) 0.56597 (13) 0.0803 (7)
O3B 0.9030 (3) 0.08435 (10) 0.67221 (13) 0.0744 (6)
C1C 0.5743 (5) 0.43964 (19) 0.4292 (3) 0.1070 (14)
H1C1 0.6516 0.4438 0.4736 0.161*
H1C2 0.5595 0.4807 0.4056 0.161*
H1C3 0.6238 0.4101 0.3958 0.161*
C2C 0.4036 (5) 0.41579 (18) 0.4486 (2) 0.0846 (11)
C3C 0.2437 (6) 0.4432 (2) 0.4177 (2) 0.1088 (15)
H3C 0.2472 0.4771 0.3844 0.131*
C4C 0.0889 (7) 0.4210 (3) 0.4356 (3) 0.1309 (19)
H4C −0.0135 0.4403 0.4152 0.157*
C5C 0.0768 (5) 0.3698 (3) 0.4841 (3) 0.1148 (16)
H5C −0.0324 0.3549 0.4956 0.138*
C6C 0.2236 (4) 0.34211 (18) 0.5139 (2) 0.0800 (10)
H6C 0.2175 0.3073 0.5457 0.096*
C9C 0.5530 (5) 0.3753 (2) 0.71892 (19) 0.0984 (13)
H9C1 0.5448 0.3326 0.7379 0.148*
H9C2 0.4735 0.4027 0.7427 0.148*
H9C3 0.6708 0.3908 0.7288 0.148*
C7C 0.3899 (4) 0.36664 (15) 0.49641 (17) 0.0646 (8)
C8C 0.6045 (4) 0.33602 (14) 0.60086 (17) 0.0547 (7)
N1C 0.5431 (3) 0.33508 (12) 0.52944 (13) 0.0592 (6)
O1C 0.6448 (3) 0.29974 (10) 0.48250 (11) 0.0627 (6)
H1C 0.6012 0.2642 0.4754 0.094*
O2C 0.7308 (3) 0.30629 (11) 0.62704 (11) 0.0682 (6)
O3C 0.5079 (3) 0.37516 (11) 0.64001 (12) 0.0741 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1A 0.134 (4) 0.114 (4) 0.136 (4) 0.002 (3) 0.007 (3) 0.027 (3)
C2A 0.063 (2) 0.081 (3) 0.112 (3) −0.0024 (19) 0.002 (2) −0.017 (2)
C3A 0.072 (3) 0.126 (4) 0.109 (4) 0.005 (2) 0.004 (2) −0.063 (3)
C4A 0.065 (3) 0.123 (4) 0.143 (5) 0.003 (3) 0.014 (3) −0.062 (4)
C5A 0.090 (3) 0.206 (6) 0.066 (3) −0.009 (4) 0.006 (2) −0.016 (3)
C6A 0.079 (2) 0.137 (4) 0.063 (2) −0.012 (2) 0.0030 (19) −0.037 (2)
C7A 0.0411 (15) 0.0571 (18) 0.078 (2) −0.0017 (14) 0.0078 (14) −0.0214 (16)
C8A 0.0461 (16) 0.0638 (18) 0.0470 (16) 0.0028 (14) 0.0054 (13) −0.0060 (14)
C9A 0.0410 (17) 0.133 (3) 0.091 (3) 0.0032 (19) 0.0174 (17) −0.028 (2)
N1A 0.0386 (12) 0.0714 (16) 0.0622 (15) 0.0011 (12) 0.0000 (11) −0.0223 (13)
O1A 0.0450 (11) 0.0824 (15) 0.0615 (13) −0.0052 (10) −0.0012 (9) −0.0166 (11)
O2A 0.0605 (13) 0.0747 (14) 0.0665 (14) 0.0030 (11) 0.0150 (10) −0.0227 (12)
O3A 0.0395 (10) 0.0911 (15) 0.0756 (14) −0.0023 (11) 0.0092 (10) −0.0285 (12)
C1B 0.0615 (19) 0.101 (3) 0.059 (2) −0.0030 (18) 0.0166 (16) −0.0048 (18)
C2B 0.0498 (16) 0.0672 (18) 0.0488 (17) −0.0035 (14) 0.0040 (13) −0.0018 (14)
C3B 0.064 (2) 0.102 (3) 0.0503 (19) −0.0097 (19) −0.0019 (15) −0.0053 (18)
C4B 0.0501 (18) 0.105 (3) 0.075 (2) −0.0117 (18) −0.0063 (17) −0.002 (2)
C5B 0.0491 (18) 0.093 (3) 0.080 (3) −0.0057 (17) 0.0119 (17) 0.000 (2)
C6B 0.0597 (18) 0.0678 (19) 0.0516 (18) 0.0000 (15) 0.0127 (15) −0.0013 (15)
C7B 0.0470 (15) 0.0499 (15) 0.0460 (16) −0.0019 (12) 0.0005 (12) 0.0006 (12)
C8B 0.0542 (17) 0.0606 (19) 0.060 (2) 0.0039 (15) −0.0015 (15) −0.0007 (16)
C9B 0.133 (4) 0.078 (3) 0.157 (4) −0.046 (3) −0.031 (3) 0.035 (3)
N1B 0.0566 (14) 0.0528 (14) 0.0468 (14) −0.0014 (11) −0.0043 (11) 0.0066 (11)
O1B 0.0638 (13) 0.0631 (13) 0.0490 (12) 0.0123 (10) 0.0050 (9) 0.0096 (10)
O2B 0.0765 (15) 0.0873 (17) 0.0722 (15) −0.0163 (13) −0.0246 (13) −0.0017 (13)
O3B 0.0747 (15) 0.0585 (13) 0.0865 (16) −0.0123 (11) −0.0162 (12) 0.0143 (12)
C1C 0.098 (3) 0.085 (3) 0.142 (4) −0.010 (2) 0.040 (3) 0.004 (3)
C2C 0.086 (3) 0.079 (2) 0.091 (3) −0.004 (2) 0.024 (2) 0.004 (2)
C3C 0.087 (3) 0.129 (4) 0.109 (3) 0.042 (3) −0.001 (3) 0.036 (3)
C4C 0.085 (3) 0.170 (5) 0.135 (4) 0.029 (3) −0.006 (3) 0.061 (4)
C5C 0.063 (2) 0.152 (4) 0.127 (4) −0.007 (3) −0.004 (2) 0.031 (3)
C6C 0.063 (2) 0.089 (3) 0.087 (3) 0.0022 (19) 0.0027 (19) 0.016 (2)
C9C 0.109 (3) 0.127 (3) 0.057 (2) 0.030 (3) −0.008 (2) −0.035 (2)
C7C 0.073 (2) 0.0644 (19) 0.0556 (19) 0.0068 (17) −0.0026 (16) −0.0058 (16)
C8C 0.0504 (17) 0.0554 (17) 0.0577 (19) 0.0015 (14) 0.0013 (14) −0.0084 (15)
N1C 0.0570 (14) 0.0695 (16) 0.0505 (15) 0.0180 (12) −0.0002 (12) −0.0072 (12)
O1C 0.0628 (13) 0.0682 (13) 0.0579 (13) 0.0055 (10) 0.0108 (10) −0.0100 (11)
O2C 0.0620 (13) 0.0795 (14) 0.0607 (14) 0.0194 (12) −0.0091 (10) −0.0087 (11)
O3C 0.0716 (14) 0.0880 (16) 0.0612 (14) 0.0252 (12) −0.0039 (11) −0.0230 (12)

Geometric parameters (Å, º)

C1A—C2A 1.429 (6) C6B—C7B 1.385 (4)
C1A—H1A1 0.9600 C6B—H6B 0.9300
C1A—H1A2 0.9600 C7B—N1B 1.432 (3)
C1A—H1A3 0.9600 C8B—O2B 1.208 (3)
C2A—C7A 1.359 (5) C8B—O3B 1.335 (3)
C2A—C3A 1.416 (5) C8B—N1B 1.350 (4)
C3A—C4A 1.330 (6) C9B—O3B 1.445 (4)
C3A—H3A 0.9300 C9B—H9B1 0.9600
C4A—C5A 1.398 (7) C9B—H9B2 0.9600
C4A—H4A 0.9300 C9B—H9B3 0.9600
C5A—C6A 1.357 (6) N1B—O1B 1.407 (3)
C5A—H5A 0.9300 O1B—H1B 0.8200
C6A—C7A 1.429 (5) C1C—C2C 1.464 (5)
C6A—H6A 0.9300 C1C—H1C1 0.9600
C7A—N1A 1.425 (4) C1C—H1C2 0.9600
C8A—O2A 1.212 (3) C1C—H1C3 0.9600
C8A—O3A 1.332 (3) C2C—C7C 1.351 (5)
C8A—N1A 1.350 (3) C2C—C3C 1.423 (5)
C9A—O3A 1.445 (3) C3C—C4C 1.333 (6)
C9A—H9A1 0.9600 C3C—H3C 0.9300
C9A—H9A2 0.9600 C4C—C5C 1.389 (6)
C9A—H9A3 0.9600 C4C—H4C 0.9300
N1A—O1A 1.410 (3) C5C—C6C 1.337 (5)
O1A—H1A 0.8200 C5C—H5C 0.9300
C1B—C2B 1.511 (4) C6C—C7C 1.428 (5)
C1B—H1B1 0.9600 C6C—H6C 0.9300
C1B—H1B2 0.9600 C9C—O3C 1.438 (4)
C1B—H1B3 0.9600 C9C—H9C1 0.9600
C2B—C7B 1.389 (4) C9C—H9C2 0.9600
C2B—C3B 1.390 (4) C9C—H9C3 0.9600
C3B—C4B 1.374 (4) C7C—N1C 1.432 (4)
C3B—H3B 0.9300 C8C—O2C 1.212 (3)
C4B—C5B 1.369 (5) C8C—N1C 1.337 (4)
C4B—H4B 0.9300 C8C—O3C 1.339 (3)
C5B—C6B 1.377 (4) N1C—O1C 1.403 (3)
C5B—H5B 0.9300 O1C—H1C 0.8200
C2A—C1A—H1A1 109.5 C5B—C6B—H6B 120.2
C2A—C1A—H1A2 109.5 C7B—C6B—H6B 120.2
H1A1—C1A—H1A2 109.5 C6B—C7B—C2B 121.5 (3)
C2A—C1A—H1A3 109.5 C6B—C7B—N1B 118.8 (3)
H1A1—C1A—H1A3 109.5 C2B—C7B—N1B 119.7 (2)
H1A2—C1A—H1A3 109.5 O2B—C8B—O3B 124.0 (3)
C7A—C2A—C3A 119.4 (4) O2B—C8B—N1B 125.3 (3)
C7A—C2A—C1A 121.9 (4) O3B—C8B—N1B 110.6 (3)
C3A—C2A—C1A 118.7 (4) O3B—C9B—H9B1 109.5
C4A—C3A—C2A 117.7 (5) O3B—C9B—H9B2 109.5
C4A—C3A—H3A 121.1 H9B1—C9B—H9B2 109.5
C2A—C3A—H3A 121.1 O3B—C9B—H9B3 109.5
C3A—C4A—C5A 125.5 (5) H9B1—C9B—H9B3 109.5
C3A—C4A—H4A 117.3 H9B2—C9B—H9B3 109.5
C5A—C4A—H4A 117.3 C8B—N1B—O1B 113.4 (2)
C6A—C5A—C4A 116.5 (5) C8B—N1B—C7B 125.2 (2)
C6A—C5A—H5A 121.8 O1B—N1B—C7B 115.3 (2)
C4A—C5A—H5A 121.8 N1B—O1B—H1B 109.5
C5A—C6A—C7A 120.3 (5) C8B—O3B—C9B 115.9 (3)
C5A—C6A—H6A 119.8 C2C—C1C—H1C1 109.5
C7A—C6A—H6A 119.8 C2C—C1C—H1C2 109.5
C2A—C7A—N1A 122.9 (3) H1C1—C1C—H1C2 109.5
C2A—C7A—C6A 120.5 (3) C2C—C1C—H1C3 109.5
N1A—C7A—C6A 116.5 (3) H1C1—C1C—H1C3 109.5
O2A—C8A—O3A 124.5 (2) H1C2—C1C—H1C3 109.5
O2A—C8A—N1A 124.4 (3) C7C—C2C—C3C 116.6 (4)
O3A—C8A—N1A 111.0 (2) C7C—C2C—C1C 121.7 (4)
O3A—C9A—H9A1 109.5 C3C—C2C—C1C 121.6 (4)
O3A—C9A—H9A2 109.5 C4C—C3C—C2C 121.1 (4)
H9A1—C9A—H9A2 109.5 C4C—C3C—H3C 119.4
O3A—C9A—H9A3 109.5 C2C—C3C—H3C 119.4
H9A1—C9A—H9A3 109.5 C3C—C4C—C5C 121.6 (4)
H9A2—C9A—H9A3 109.5 C3C—C4C—H4C 119.2
C8A—N1A—O1A 114.0 (2) C5C—C4C—H4C 119.2
C8A—N1A—C7A 126.8 (2) C6C—C5C—C4C 119.4 (4)
O1A—N1A—C7A 114.3 (2) C6C—C5C—H5C 120.3
N1A—O1A—H1A 109.5 C4C—C5C—H5C 120.3
C8A—O3A—C9A 115.3 (2) C5C—C6C—C7C 119.3 (4)
C2B—C1B—H1B1 109.5 C5C—C6C—H6C 120.4
C2B—C1B—H1B2 109.5 C7C—C6C—H6C 120.4
H1B1—C1B—H1B2 109.5 O3C—C9C—H9C1 109.5
C2B—C1B—H1B3 109.5 O3C—C9C—H9C2 109.5
H1B1—C1B—H1B3 109.5 H9C1—C9C—H9C2 109.5
H1B2—C1B—H1B3 109.5 O3C—C9C—H9C3 109.5
C7B—C2B—C3B 117.1 (3) H9C1—C9C—H9C3 109.5
C7B—C2B—C1B 121.8 (3) H9C2—C9C—H9C3 109.5
C3B—C2B—C1B 121.1 (3) C2C—C7C—C6C 121.9 (3)
C4B—C3B—C2B 121.6 (3) C2C—C7C—N1C 120.9 (3)
C4B—C3B—H3B 119.2 C6C—C7C—N1C 117.1 (3)
C2B—C3B—H3B 119.2 O2C—C8C—N1C 125.3 (3)
C5B—C4B—C3B 120.1 (3) O2C—C8C—O3C 124.2 (3)
C5B—C4B—H4B 119.9 N1C—C8C—O3C 110.5 (3)
C3B—C4B—H4B 119.9 C8C—N1C—O1C 114.8 (2)
C4B—C5B—C6B 120.0 (3) C8C—N1C—C7C 127.5 (2)
C4B—C5B—H5B 120.0 O1C—N1C—C7C 117.7 (2)
C6B—C5B—H5B 120.0 N1C—O1C—H1C 109.5
C5B—C6B—C7B 119.5 (3) C8C—O3C—C9C 115.1 (3)
C7A—C2A—C3A—C4A 1.2 (6) O2B—C8B—N1B—O1B −13.3 (4)
C1A—C2A—C3A—C4A 179.4 (4) O3B—C8B—N1B—O1B 169.4 (2)
C2A—C3A—C4A—C5A −2.2 (7) O2B—C8B—N1B—C7B −164.4 (3)
C3A—C4A—C5A—C6A 3.4 (7) O3B—C8B—N1B—C7B 18.4 (4)
C4A—C5A—C6A—C7A −3.4 (6) C6B—C7B—N1B—C8B 101.2 (3)
C3A—C2A—C7A—N1A −178.1 (3) C2B—C7B—N1B—C8B −79.5 (4)
C1A—C2A—C7A—N1A 3.8 (5) C6B—C7B—N1B—O1B −49.4 (3)
C3A—C2A—C7A—C6A −1.5 (5) C2B—C7B—N1B—O1B 129.9 (3)
C1A—C2A—C7A—C6A −179.6 (4) O2B—C8B—O3B—C9B −3.8 (5)
C5A—C6A—C7A—C2A 2.8 (5) N1B—C8B—O3B—C9B 173.5 (3)
C5A—C6A—C7A—N1A 179.5 (3) C7C—C2C—C3C—C4C 0.1 (7)
O2A—C8A—N1A—O1A −9.2 (4) C1C—C2C—C3C—C4C 179.9 (5)
O3A—C8A—N1A—O1A 173.4 (2) C2C—C3C—C4C—C5C −1.1 (9)
O2A—C8A—N1A—C7A −162.9 (3) C3C—C4C—C5C—C6C 0.4 (9)
O3A—C8A—N1A—C7A 19.7 (4) C4C—C5C—C6C—C7C 1.2 (7)
C2A—C7A—N1A—C8A −117.7 (4) C3C—C2C—C7C—C6C 1.5 (5)
C6A—C7A—N1A—C8A 65.6 (4) C1C—C2C—C7C—C6C −178.3 (4)
C2A—C7A—N1A—O1A 88.7 (4) C3C—C2C—C7C—N1C 178.9 (3)
C6A—C7A—N1A—O1A −88.0 (3) C1C—C2C—C7C—N1C −1.0 (5)
O2A—C8A—O3A—C9A −0.5 (4) C5C—C6C—C7C—C2C −2.2 (6)
N1A—C8A—O3A—C9A 177.0 (3) C5C—C6C—C7C—N1C −179.6 (4)
C7B—C2B—C3B—C4B 1.2 (5) O2C—C8C—N1C—O1C −4.7 (4)
C1B—C2B—C3B—C4B −177.8 (3) O3C—C8C—N1C—O1C 174.7 (2)
C2B—C3B—C4B—C5B 0.8 (6) O2C—C8C—N1C—C7C 176.6 (3)
C3B—C4B—C5B—C6B −1.5 (6) O3C—C8C—N1C—C7C −4.0 (4)
C4B—C5B—C6B—C7B 0.2 (5) C2C—C7C—N1C—C8C 111.8 (4)
C5B—C6B—C7B—C2B 1.9 (4) C6C—C7C—N1C—C8C −70.7 (4)
C5B—C6B—C7B—N1B −178.8 (3) C2C—C7C—N1C—O1C −66.8 (4)
C3B—C2B—C7B—C6B −2.6 (4) C6C—C7C—N1C—O1C 110.6 (3)
C1B—C2B—C7B—C6B 176.4 (3) O2C—C8C—O3C—C9C −6.0 (5)
C3B—C2B—C7B—N1B 178.2 (3) N1C—C8C—O3C—C9C 174.6 (3)
C1B—C2B—C7B—N1B −2.9 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1A—H1A···O2B 0.82 1.94 2.719 (3) 157
O1B—H1B···O2C 0.82 1.94 2.716 (3) 157
O1C—H1C···O2A 0.82 1.99 2.757 (3) 156

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2462).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  2. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  3. Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  4. Hou, C.-Q., Li, Z.-N. & Liu, C.-L. (2002). Pesticides, 41, 41–43.
  5. Mercader, J. V., Agullo, C., Abad-Somovilla, A. & Abad-Fuentes, A. (2011). Org. Biomol. Chem. 9, 1443–1453. [DOI] [PubMed]
  6. Rigaku (2006). PROCESS_AUTO. Rigaku Corporation, Tokyo, Japan.
  7. Rigaku (2007). CrystalStructure. Rigaku Americas, The Woodlands, Texas, USA.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Tao, X.-J., Luo, L.-M., Huang, C.-Q. & Xiong, L.-L. (2009). Agrochem. Res. Appl. 41, 41–43.
  10. Yang, L.-J. & Bai, Y.-L. (2012). Mod. Agrochem. 11, 46–50.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813000421/pk2462sup1.cif

e-69-0o230-sup1.cif (33.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813000421/pk2462Isup2.hkl

e-69-0o230-Isup2.hkl (270.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813000421/pk2462Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES