Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Jan 12;69(Pt 2):o234. doi: 10.1107/S1600536813000779

4-Amino-N-(4,6-dimethyl­pyrimidin-2-yl)benzene­sulfonamide–2-nitro­benzoic acid (1/1)

Graham Smith a,*, Urs D Wermuth a
PMCID: PMC3569767  PMID: 23424513

Abstract

In the asymmetric unit of the title co-crystal, C12H14N4O2S·C7H5NO4, the sulfamethazine and 2-nitro­benzoic acid mol­ecules form a heterodimer through inter­molecular amide–carb­oxy­lic acid N—H⋯O and carb­oxy­lic acid–pyrimidine O—H⋯N hydrogen-bond pairs, giving a cyclic motif [graph set R 2 2(8)]. The dihedral angle between the two aromatic ring systems in the sulfamethazine mol­ecule is 88.96 (18)° and the nitro group of the acid is 50% rotationally disordered. Secondary aniline N—H⋯Osulfone hydrogen-bonding associations give a two-dimensional structure lying parallel to the ab plane.

Related literature  

For background to sulfamethazole as a model for co-crystal formation, see: Caira (2007); Ghosh et al. (2011). For structures of 1:1 adducts of sulfamethazine with nitro­benzoic acid analogues, see: Lynch et al. (2000); Smith & Wermuth (2012). For graph-set analysis, see: Etter et al. (1990).graphic file with name e-69-0o234-scheme1.jpg

Experimental  

Crystal data  

  • C12H14N4O2S·C7H5NO4

  • M r = 445.46

  • Orthorhombic, Inline graphic

  • a = 14.2945 (4) Å

  • b = 8.0115 (3) Å

  • c = 19.0962 (5) Å

  • V = 2186.91 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 200 K

  • 0.30 × 0.21 × 0.12 mm

Data collection  

  • Oxford Diffraction Gemini-S CCD-detector diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) T min = 0.964, T max = 0.980

  • 5541 measured reflections

  • 2777 independent reflections

  • 2587 reflections with I > 2σ(I)

  • R int = 0.023

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.099

  • S = 1.04

  • 2777 reflections

  • 286 parameters

  • 29 restraints

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.21 e Å−3

  • Absolute structure: Flack (1983), 565 Friedel pairs

  • Flack parameter: 0.08 (9)

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 2012); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813000779/gg2106sup1.cif

e-69-0o234-sup1.cif (29.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813000779/gg2106Isup2.hkl

e-69-0o234-Isup2.hkl (136.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813000779/gg2106Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O12—H12⋯N1A 0.90 1.77 2.671 (4) 180
N2A—H2A⋯O11 0.90 2.01 2.862 (4) 158
N41A—H41A⋯O11A i 0.92 2.18 2.990 (3) 147
N41A—H42A⋯O12A ii 0.83 2.24 2.973 (3) 146

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors acknowledge financial support from the Australian Reseach Council and the Science and Engineering Faculty and the University Library, Queensland University of Technology.

supplementary crystallographic information

Comment

The drug sulfamethazine [4-amino-N-(4,6-dimethylpyrimidin-2-yl)benzenesulfonamide] has been used as a model for co-crystal formation (Caira, 2007; Ghosh et al., 2011)), commonly forming 1:1 adducts with carboxylic acids and amides, particularly the benzoic acid analogues. The structures of a number of these are known, including those with 4-nitrobenzoic acid (Smith & Wermuth, 2012) and 2,4-dinitrobenzoic acid (Lynch et al., 2000). In these co-crystals, and in sulfamethazine adducts generally a common structural feature is the cyclic heterodimeric hydrogen-bonding association involving amide N—H···Ocarboxyl–carboxylic acid O—H···Npyrimidine pairs [graph set R22(8) (Etter et al., 1990)].

Our 1:1 stoichiometric interaction of sulfamethazine with 2-nitrobenzoic acid gave the co-crystalline adduct C12H14N4O2S. C7H5NO4, the title compound and the structure is reported herein. In the sulfamethazine component (Fig. 1) the dihedral angle between the pyrimidine ring and the phenyl ring is 89.98 (18)° which compares with 82.33 (9)° and 78.77 (8)° for the two independent molecules in the 4-nitrobenzoic acid analogue (Smith & Wermuth, 2012). The angles between these two rings and the phenyl ring of the 2-nitrobenzoic acid molecule are 9.65 (19) and 88.22 (19)°, respectively. In the crystal the sulfamethazine and 2-nitrobenzoic acid molecules interact as previously described, giving cyclic R22(8) hydrogen-bonded heterodimers (Table 1, Fig. 1).

Intermolecular amine N—H···Osulfone hydrogen-bonding interactions link the heterodimer units along a (Fig. 2) as well as down b, forming two-dimensional sheet structures which extend along [110]. Unlike the isomeric 4-nitrobenzoic acid adduct there are no π–π interactions present in the structure but there are 52.2 Å3 potential solvent accessible voids present. The oxygen atoms of the nitro group of the adduct acid molecule are rotationally disordered over four 50% occupancy sites [O21, O22 and O23, O24]. In the absence of chirality in the molecules, the Flack absolute structure parameter [0.08 (9)] is of no structural significance.

Experimental

The title compound was formed in the interaction of 1 mmol quantities of 4-amino-N-(4,6-dimethylpyrimidin-2-yl)benzenesulfonamide (sulfamethazine) and 2-nitrobenzoic acid in 50 ml of 50% ethanol–water with 10 min refluxing. Partial evaporation of the solvent gave a pale yellow solid which gave crystal plates suitable for the X-ray analysis after recrystallization from ethanol.

Refinement

Hydrogen atoms potentially involved in hydrogen-bonding interactions were located by difference methods but were subsequently allowed to ride in the refinement with Uiso(H) = 1.2Ueq(N) or 1.5Ueq(O). Other H atoms were included at calculated positions [C—H (aromatic) = 0.93 Å or C—H (methyl) = 0.96 Å] and also treated as riding, with Uiso(H) = 1.2Ueq(C) (aromatic) or 1.5Ueq(C) (methyl). The nitro group was found to be rotationally disordered giving occupancies for the oxygen atoms O21, O22 [S.O.F. = 0.51 (1)] and O23, O24 [0.49 (1)] respectively and these were fixed at 0.50 in the final refinement cycles.

Figures

Fig. 1.

Fig. 1.

Molecular conformation and atom-numbering scheme for the title co-crystal, with inter-species hydrogen bonds shown as a dashed lines. The nitro group of the adduct molecule is 50% rotationally disordered and non-H atoms are shown as 30% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

A perspective view of the two-dimensional structure which extends along [110], showing hydrogen-bonding associations as dashed lines, with the nitro group disorder not shown.

Fig. 3.

Fig. 3.

A view of the sheet structure along the b axis.

Crystal data

C12H14N4O2S·C7H5NO4 F(000) = 928
Mr = 445.46 Dx = 1.353 Mg m3
Orthorhombic, Pna21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2n Cell parameters from 3011 reflections
a = 14.2945 (4) Å θ = 3.1–28.8°
b = 8.0115 (3) Å µ = 0.19 mm1
c = 19.0962 (5) Å T = 200 K
V = 2186.91 (12) Å3 Plate, yellow
Z = 4 0.30 × 0.21 × 0.12 mm

Data collection

Oxford Diffraction Gemini-S CCD-detector diffractometer 2777 independent reflections
Radiation source: Enhance (Mo) X-ray source 2587 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.023
Detector resolution: 16.077 pixels mm-1 θmax = 26.0°, θmin = 3.1°
ω scans h = −17→9
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) k = −8→9
Tmin = 0.964, Tmax = 0.980 l = −23→8
5541 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040 H-atom parameters constrained
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.0555P)2 + 0.5356P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max = 0.001
2777 reflections Δρmax = 0.29 e Å3
286 parameters Δρmin = −0.21 e Å3
29 restraints Absolute structure: Flack (1983), 565 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.08 (9)

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
S1A 0.44672 (4) 1.02307 (8) 0.75273 (5) 0.0249 (2)
O11A 0.35295 (13) 0.9968 (3) 0.72869 (13) 0.0342 (7)
O12A 0.50151 (14) 1.1513 (3) 0.72083 (12) 0.0326 (7)
N1A 0.47662 (18) 1.1033 (3) 0.95152 (15) 0.0352 (8)
N2A 0.43078 (16) 1.0714 (3) 0.83654 (14) 0.0288 (8)
N3A 0.59047 (17) 1.0898 (3) 0.86027 (15) 0.0334 (8)
N41A 0.65507 (17) 0.3924 (3) 0.7489 (2) 0.0538 (12)
C2A 0.5032 (2) 1.0887 (4) 0.88442 (16) 0.0273 (9)
C4A 0.6585 (2) 1.1028 (4) 0.9085 (2) 0.0392 (11)
C5A 0.6372 (3) 1.1216 (5) 0.9787 (2) 0.0497 (14)
C6A 0.5446 (3) 1.1221 (5) 0.99900 (19) 0.0429 (11)
C11A 0.50792 (17) 0.8370 (3) 0.75032 (18) 0.0262 (8)
C21A 0.60295 (19) 0.8371 (4) 0.73347 (16) 0.0286 (9)
C31A 0.6509 (2) 0.6892 (4) 0.73148 (18) 0.0312 (9)
C41A 0.60616 (19) 0.5374 (3) 0.7475 (2) 0.0324 (9)
C42A 0.7565 (2) 1.0928 (6) 0.8819 (3) 0.0592 (15)
C51A 0.5098 (2) 0.5407 (4) 0.76412 (18) 0.0323 (9)
C61A 0.46169 (19) 0.6885 (4) 0.76475 (17) 0.0289 (9)
C62A 0.5143 (3) 1.1416 (7) 1.0737 (2) 0.0663 (16)
O11 0.28633 (18) 0.8862 (4) 0.90536 (17) 0.0639 (10)
O12 0.30259 (17) 1.0522 (4) 0.99775 (15) 0.0505 (9)
O21 0.2682 (14) 0.800 (3) 1.1121 (18) 0.083 (5) 0.500
O22 0.1915 (11) 1.0471 (16) 1.1479 (5) 0.095 (4) 0.500
O23 0.1968 (11) 0.9621 (18) 1.1692 (5) 0.095 (4) 0.500
O24 0.2837 (14) 0.842 (3) 1.1026 (18) 0.083 (5) 0.500
N2 0.2084 (2) 0.9099 (6) 1.1124 (2) 0.0668 (14)
C1 0.1619 (2) 0.9013 (4) 0.98691 (19) 0.0378 (10)
C2 0.1370 (2) 0.8973 (5) 1.05718 (19) 0.0408 (11)
C3 0.0460 (2) 0.8689 (5) 1.0792 (2) 0.0503 (14)
C4 −0.0216 (3) 0.8434 (6) 1.0290 (3) 0.0613 (16)
C5 0.0011 (3) 0.8421 (7) 0.9596 (3) 0.0680 (18)
C6 0.0926 (3) 0.8725 (6) 0.9385 (2) 0.0580 (14)
C11 0.2569 (2) 0.9455 (5) 0.95931 (19) 0.0387 (11)
H2A 0.37560 1.03330 0.85240 0.0350*
H5A 0.68450 1.13390 1.01170 0.0600*
H21A 0.63350 0.93690 0.72370 0.0340*
H31A 0.71390 0.68900 0.71940 0.0380*
H41A 0.71650 0.38280 0.73590 0.0650*
H42A 0.62490 0.30460 0.75470 0.0650*
H43A 0.78730 0.99840 0.90250 0.0890*
H44A 0.78950 1.19300 0.89420 0.0890*
H45A 0.75570 1.08070 0.83190 0.0890*
H51A 0.47880 0.44180 0.77470 0.0390*
H61A 0.39800 0.68950 0.77480 0.0350*
H62A 0.44730 1.13730 1.07620 0.0990*
H63A 0.53580 1.24710 1.09130 0.0990*
H64A 0.54040 1.05310 1.10130 0.0990*
H3 0.03110 0.86720 1.12660 0.0600*
H4 −0.08350 0.82690 1.04260 0.0740*
H5 −0.04480 0.82070 0.92630 0.0820*
H6 0.10710 0.87350 0.89100 0.0690*
H12 0.36150 1.06900 0.98230 0.0760*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1A 0.0215 (3) 0.0274 (3) 0.0259 (3) 0.0012 (2) −0.0003 (3) −0.0001 (4)
O11A 0.0246 (10) 0.0395 (11) 0.0385 (13) 0.0037 (8) −0.0055 (10) −0.0031 (10)
O12A 0.0320 (11) 0.0301 (11) 0.0357 (12) −0.0002 (8) 0.0019 (10) 0.0056 (11)
N1A 0.0352 (14) 0.0415 (16) 0.0289 (14) −0.0063 (12) 0.0044 (12) −0.0024 (13)
N2A 0.0196 (12) 0.0357 (13) 0.0312 (14) −0.0001 (10) 0.0047 (11) −0.0042 (12)
N3A 0.0287 (13) 0.0381 (15) 0.0334 (15) −0.0045 (11) 0.0021 (12) −0.0023 (13)
N41A 0.0292 (12) 0.0281 (13) 0.104 (3) 0.0001 (10) 0.0144 (19) 0.000 (2)
C2A 0.0290 (15) 0.0261 (15) 0.0267 (16) −0.0033 (12) 0.0013 (13) −0.0014 (13)
C4A 0.0333 (17) 0.0414 (18) 0.043 (2) −0.0065 (14) −0.0031 (17) −0.0012 (17)
C5A 0.047 (2) 0.063 (3) 0.039 (2) −0.0157 (18) −0.0120 (18) 0.003 (2)
C6A 0.048 (2) 0.050 (2) 0.0306 (18) −0.0159 (17) 0.0001 (16) −0.0002 (17)
C11A 0.0234 (12) 0.0310 (14) 0.0242 (13) 0.0008 (10) −0.0014 (14) −0.0014 (15)
C21A 0.0236 (13) 0.0308 (14) 0.0314 (17) −0.0061 (11) 0.0053 (12) 0.0009 (13)
C31A 0.0209 (13) 0.0333 (15) 0.0395 (19) 0.0001 (11) 0.0049 (13) −0.0029 (14)
C41A 0.0264 (13) 0.0318 (14) 0.0391 (17) −0.0005 (11) 0.0013 (17) 0.0005 (17)
C42A 0.0316 (19) 0.079 (3) 0.067 (3) −0.007 (2) −0.006 (2) −0.008 (3)
C51A 0.0278 (14) 0.0282 (14) 0.041 (2) −0.0072 (11) 0.0010 (15) −0.0015 (15)
C61A 0.0190 (12) 0.0346 (15) 0.033 (2) −0.0056 (10) 0.0014 (13) −0.0021 (14)
C62A 0.080 (3) 0.090 (3) 0.029 (2) −0.017 (3) 0.001 (2) −0.004 (2)
O11 0.0497 (15) 0.092 (2) 0.0499 (18) −0.0238 (14) 0.0210 (14) −0.0240 (17)
O12 0.0360 (13) 0.0713 (17) 0.0443 (16) −0.0111 (12) 0.0148 (12) −0.0126 (15)
O21 0.054 (6) 0.123 (10) 0.073 (8) 0.001 (7) −0.004 (4) 0.065 (6)
O22 0.060 (3) 0.186 (12) 0.039 (5) −0.011 (7) 0.000 (5) −0.033 (6)
O23 0.060 (3) 0.186 (12) 0.039 (5) −0.011 (7) 0.000 (5) −0.033 (6)
O24 0.054 (6) 0.123 (10) 0.073 (8) 0.001 (7) −0.004 (4) 0.065 (6)
N2 0.0385 (19) 0.125 (3) 0.037 (2) −0.011 (2) 0.0077 (17) 0.001 (2)
C1 0.0342 (16) 0.046 (2) 0.0333 (18) −0.0038 (14) 0.0065 (16) 0.0044 (17)
C2 0.0335 (17) 0.052 (2) 0.037 (2) −0.0019 (15) 0.0062 (16) 0.0041 (17)
C3 0.043 (2) 0.070 (3) 0.038 (2) −0.0094 (18) 0.0142 (18) 0.003 (2)
C4 0.036 (2) 0.088 (3) 0.060 (3) −0.020 (2) 0.010 (2) −0.001 (3)
C5 0.042 (2) 0.113 (4) 0.049 (3) −0.023 (2) −0.008 (2) 0.006 (3)
C6 0.043 (2) 0.096 (3) 0.035 (2) −0.015 (2) 0.0038 (17) 0.005 (2)
C11 0.0347 (18) 0.048 (2) 0.0335 (19) −0.0029 (15) 0.0057 (16) −0.0002 (17)

Geometric parameters (Å, º)

S1A—O11A 1.432 (2) C21A—C31A 1.369 (4)
S1A—O12A 1.428 (2) C31A—C41A 1.408 (4)
S1A—N2A 1.662 (3) C41A—C51A 1.414 (4)
S1A—C11A 1.729 (2) C51A—C61A 1.369 (4)
O11—C11 1.210 (5) C5A—H5A 0.9300
O12—C11 1.302 (5) C21A—H21A 0.9300
O21—N2 1.23 (2) C31A—H31A 0.9300
O22—N2 1.314 (13) C42A—H45A 0.9600
O23—N2 1.174 (11) C42A—H43A 0.9600
O24—N2 1.22 (2) C42A—H44A 0.9600
O12—H12 0.9000 C51A—H51A 0.9300
N1A—C6A 1.338 (5) C61A—H61A 0.9300
N1A—C2A 1.342 (4) C62A—H62A 0.9600
N2A—C2A 1.388 (4) C62A—H63A 0.9600
N3A—C2A 1.330 (4) C62A—H64A 0.9600
N3A—C4A 1.343 (4) C1—C6 1.375 (5)
N41A—C41A 1.356 (3) C1—C11 1.499 (4)
N2A—H2A 0.9000 C1—C2 1.389 (5)
N41A—H41A 0.9200 C2—C3 1.386 (4)
N41A—H42A 0.8300 C3—C4 1.376 (6)
N2—C2 1.471 (5) C4—C5 1.365 (8)
C4A—C42A 1.492 (4) C5—C6 1.390 (6)
C4A—C5A 1.383 (5) C3—H3 0.9300
C5A—C6A 1.379 (6) C4—H4 0.9300
C6A—C62A 1.499 (5) C5—H5 0.9300
C11A—C21A 1.396 (4) C6—H6 0.9300
C11A—C61A 1.389 (4)
O11A—S1A—O12A 118.83 (14) C11A—C21A—H21A 120.00
O11A—S1A—N2A 102.39 (13) C31A—C21A—H21A 120.00
O11A—S1A—C11A 109.77 (13) C21A—C31A—H31A 120.00
O12A—S1A—N2A 108.56 (13) C41A—C31A—H31A 120.00
O12A—S1A—C11A 109.35 (13) H43A—C42A—H44A 109.00
N2A—S1A—C11A 107.21 (15) C4A—C42A—H44A 109.00
C2A—N1A—C6A 116.8 (3) C4A—C42A—H43A 109.00
S1A—N2A—C2A 123.7 (2) H44A—C42A—H45A 109.00
C2A—N3A—C4A 116.2 (3) H43A—C42A—H45A 109.00
C2A—N2A—H2A 118.00 C4A—C42A—H45A 109.00
S1A—N2A—H2A 111.00 C61A—C51A—H51A 120.00
C41A—N41A—H41A 124.00 C41A—C51A—H51A 120.00
H41A—N41A—H42A 118.00 C11A—C61A—H61A 120.00
C41A—N41A—H42A 117.00 C51A—C61A—H61A 120.00
O24—N2—C2 118.1 (16) H63A—C62A—H64A 110.00
O23—N2—C2 126.1 (8) C6A—C62A—H62A 109.00
O21—N2—O22 137.0 (16) C6A—C62A—H63A 109.00
O21—N2—C2 115.5 (15) H62A—C62A—H63A 109.00
O22—N2—C2 107.4 (7) H62A—C62A—H64A 110.00
N1A—C2A—N3A 126.6 (3) C6A—C62A—H64A 109.00
N1A—C2A—N2A 115.3 (3) C2—C1—C11 125.3 (3)
N2A—C2A—N3A 118.2 (3) C6—C1—C11 117.1 (3)
N3A—C4A—C5A 120.9 (3) C2—C1—C6 117.5 (3)
C5A—C4A—C42A 122.9 (4) N2—C2—C3 116.4 (3)
N3A—C4A—C42A 116.2 (4) C1—C2—C3 122.5 (3)
C4A—C5A—C6A 119.0 (4) N2—C2—C1 120.9 (3)
N1A—C6A—C5A 120.4 (3) C2—C3—C4 118.2 (4)
N1A—C6A—C62A 116.6 (4) C3—C4—C5 120.7 (4)
C5A—C6A—C62A 123.0 (4) C4—C5—C6 120.3 (4)
C21A—C11A—C61A 120.6 (2) C1—C6—C5 120.8 (4)
S1A—C11A—C61A 119.5 (2) O11—C11—C1 121.4 (3)
S1A—C11A—C21A 119.9 (2) O12—C11—C1 114.3 (3)
C11A—C21A—C31A 119.5 (3) O11—C11—O12 124.3 (3)
C21A—C31A—C41A 120.9 (3) C2—C3—H3 121.00
C31A—C41A—C51A 118.4 (2) C4—C3—H3 121.00
N41A—C41A—C31A 120.7 (3) C3—C4—H4 120.00
N41A—C41A—C51A 120.9 (3) C5—C4—H4 120.00
C41A—C51A—C61A 120.5 (3) C4—C5—H5 120.00
C11A—C61A—C51A 120.0 (3) C6—C5—H5 120.00
C4A—C5A—H5A 121.00 C1—C6—H6 120.00
C6A—C5A—H5A 120.00 C5—C6—H6 120.00
O11A—S1A—N2A—C2A 172.1 (2) O23—N2—C2—C3 −31.7 (11)
O12A—S1A—N2A—C2A −61.5 (3) O24—N2—C2—C1 −36.8 (15)
C11A—S1A—N2A—C2A 56.6 (3) O24—N2—C2—C3 138.5 (14)
O11A—S1A—C11A—C21A 145.0 (3) O22—N2—C2—C3 −67.6 (7)
O11A—S1A—C11A—C61A −34.6 (3) O23—N2—C2—C1 153.1 (9)
O12A—S1A—C11A—C21A 13.0 (3) C42A—C4A—C5A—C6A −177.1 (4)
O12A—S1A—C11A—C61A −166.6 (3) N3A—C4A—C5A—C6A 1.8 (5)
N2A—S1A—C11A—C21A −104.5 (3) C4A—C5A—C6A—N1A 0.5 (6)
N2A—S1A—C11A—C61A 75.9 (3) C4A—C5A—C6A—C62A 180.0 (4)
O24—O21—N2—O23 −106 (6) C61A—C11A—C21A—C31A −0.3 (5)
O24—O21—N2—C2 102 (6) S1A—C11A—C61A—C51A −178.9 (3)
O24—O21—N2—O22 −74 (7) S1A—C11A—C21A—C31A −179.8 (3)
O23—O22—N2—C2 127.6 (15) C21A—C11A—C61A—C51A 1.5 (5)
O23—O22—N2—O21 −56 (3) C11A—C21A—C31A—C41A −1.2 (5)
O23—O22—N2—O24 −82 (3) C21A—C31A—C41A—N41A −176.6 (3)
O22—O23—N2—C2 −69.3 (18) C21A—C31A—C41A—C51A 1.5 (5)
O22—O23—N2—O24 120 (2) C31A—C41A—C51A—C61A −0.2 (5)
O22—O23—N2—O21 142.5 (18) N41A—C41A—C51A—C61A 177.9 (3)
O21—O24—N2—O22 124 (5) C41A—C51A—C61A—C11A −1.3 (5)
O21—O24—N2—O23 83 (6) C6—C1—C2—N2 173.8 (4)
O21—O24—N2—C2 −88 (6) C6—C1—C2—C3 −1.2 (6)
C2A—N1A—C6A—C62A 178.9 (4) C11—C1—C2—N2 −10.5 (6)
C6A—N1A—C2A—N2A −179.3 (3) C11—C1—C2—C3 174.5 (4)
C6A—N1A—C2A—N3A 0.5 (5) C2—C1—C6—C5 0.6 (6)
C2A—N1A—C6A—C5A −1.7 (5) C11—C1—C6—C5 −175.6 (4)
S1A—N2A—C2A—N1A −170.5 (2) C2—C1—C11—O11 149.7 (4)
S1A—N2A—C2A—N3A 9.7 (4) C2—C1—C11—O12 −30.9 (5)
C4A—N3A—C2A—N2A −178.5 (3) C6—C1—C11—O11 −34.5 (5)
C2A—N3A—C4A—C5A −2.9 (5) C6—C1—C11—O12 144.8 (4)
C4A—N3A—C2A—N1A 1.8 (5) N2—C2—C3—C4 −175.0 (4)
C2A—N3A—C4A—C42A 176.1 (3) C1—C2—C3—C4 0.2 (6)
O21—N2—C2—C3 115.3 (15) C2—C3—C4—C5 1.6 (7)
O22—N2—C2—C1 117.1 (7) C3—C4—C5—C6 −2.3 (8)
O21—N2—C2—C1 −60.0 (15) C4—C5—C6—C1 1.2 (8)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O12—H12···N1A 0.90 1.77 2.671 (4) 180
N2A—H2A···O11 0.90 2.01 2.862 (4) 158
N41A—H41A···O11Ai 0.92 2.18 2.990 (3) 147
N41A—H42A···O12Aii 0.83 2.24 2.973 (3) 146
C3—H3···O12Aiii 0.93 2.54 3.289 (4) 138
C21A—H21A···O12A 0.93 2.55 2.915 (4) 104
C31A—H31A···O11Ai 0.93 2.49 3.250 (4) 139
C51A—H51A···O12Aii 0.93 2.57 3.230 (4) 129

Symmetry codes: (i) x+1/2, −y+3/2, z; (ii) x, y−1, z; (iii) −x+1/2, y−1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GG2106).

References

  1. Agilent (2012). CrysAlis PRO Agilent Technologies Ltd, Yarnton, England.
  2. Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
  3. Caira, M. R. (2007). Mol. Pharm. 4, 310–316. [DOI] [PubMed]
  4. Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [DOI] [PubMed]
  5. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  6. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  7. Ghosh, S., Bag, P. P. & Reddy, C. M. (2011). Cryst. Growth Des. 11, 3489–3503.
  8. Lynch, D. E., Sandhu, P. & Parsons, S. (2000). Aust. J. Chem. 53, 383–387.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Smith, G. & Wermuth, U. D. (2012). Acta Cryst. E68, o1649–o1650. [DOI] [PMC free article] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813000779/gg2106sup1.cif

e-69-0o234-sup1.cif (29.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813000779/gg2106Isup2.hkl

e-69-0o234-Isup2.hkl (136.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813000779/gg2106Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES