Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Jan 16;69(Pt 2):o237. doi: 10.1107/S1600536813000809

1-tert-Butyl 2-ethyl 5-bromo-3-(thio­phen-2-ylcarbon­yl)-1H-indole-1,2-dicarboxyl­ate

Mohammad Hassam a,*, Vincent J Smith a
PMCID: PMC3569770  PMID: 23424516

Abstract

In the title compound, C21H20BrNO5S, the thio­phene group is located above the mean plane of the indole ring and displays rotational disorder (i.e. rotation through 180°). The site occupancy of the major component is 0.902 (2), while that of the minor component is 0.098 (2). In the crystal, pairs of weak C—H⋯O inter­actions link the mol­ecules into centrosymmetric dimers.

Related literature  

For background to the use of indoles as scaffolds in the synthesis of HIV-agents, see: Hassam et al. (2012) and for a recent review on stages of non-nucleoside reverse trans­criptase inhibitors, see: Reynolds et al. (2012). For the crystal structures of closely related compounds, see: Beddoes et al. (1986), Hassam & Smith (2012).graphic file with name e-69-0o237-scheme1.jpg

Experimental  

Crystal data  

  • C21H20BrNO5S

  • M r = 478.35

  • Monoclinic, Inline graphic

  • a = 16.220 (3) Å

  • b = 15.361 (3) Å

  • c = 18.224 (4) Å

  • β = 113.792 (2)°

  • V = 4154.7 (15) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.11 mm−1

  • T = 100 K

  • 0.34 × 0.21 × 0.17 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan [symmetry-related measurements (SADABS; Bruker, 2009)] T min = 0.537, T max = 0.721

  • 23562 measured reflections

  • 4855 independent reflections

  • 4101 reflections with I > 2σ(I)

  • R int = 0.039

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.029

  • wR(F 2) = 0.066

  • S = 1.05

  • 4855 reflections

  • 279 parameters

  • 13 restraints

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.38 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001; Atwood & Barbour, 2003); software used to prepare material for publication: X-SEED.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813000809/jj2160sup1.cif

e-69-0o237-sup1.cif (31.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813000809/jj2160Isup2.hkl

e-69-0o237-Isup2.hkl (237.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813000809/jj2160Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C12A—H12A⋯O3i 0.95 2.48 3.418 (5) 169

Symmetry code: (i) Inline graphic.

Acknowledgments

MH thanks Professor Willem A. L. van Otterlo and Dr S. C. Pelly for their valuable input and research oversight. Stellenbosch University’s Science Faculty is also acknowledged for providing laboratory space and financial research support (Subcommittee B). The South African National Research Foundation (NRF), Pretoria, is also acknowledged for providing research funds.

supplementary crystallographic information

Comment

Ethyl-5-bromo-1H-indole-2-carboxylate has been employed as a building block in the synthesis of various anti-HIV active molecules, particularly in the search for novel non-nucleoside reverse transcriptase inhibitors (Hassam et al. 2012). Protection on the indole NH of ethyl 5-bromo-3-(2- thiophenoyl)-1H-indole-2-carboxylate was carried out with di-tert -butyl-dicarbonate using 4-dimethylaminopyridine as a catalytic base.

The title compound, C21H20BrNO5S, crystallizes with one molecule in the asymmetric unit (Fig. 1). The thiophene moiety is disordered over two positions with major (A) and minor (B) components in a 0.9021 (19):0.0979 (19)(2) ratio. The dihedral angles between the mean planes of the 5-bromo indole ring (Br1/N1/C1-C8) and the disordered thiophene rings (S1A/C10/C11A/C13A and S1B/C10/C11B/C13B) are 59.67 (9)° and 60.20 (76)°, respectively. The angles between the mean planes of the indole ring and the N-tert- butyloxy, ethyl ester and the ketone groups are 31.72 (7)°, 45.08 (6)° and 47.88 (7)°, respectively. The torsion angles of O5/C9/C10/S1A and O5/C9/C10/S1B are -20.67 (24)° and 159.92 (34)°, respectively, thereby describing the major component in a cis conformation and the minor component in a trans conformation. Molecular packing shows the molecules forming centrosymmetric dimers linked via weak C12A—H12A···O3 intermolecular interactions (Fig. 2, Table 1).

Experimental

4-dimethylaminopyridine (0.0100 g, 0.0818 mmol) was added to a solution of ethyl 5-bromo-3-(2-thiophenoyl)-1H-indole-2-carboxylate (1.10 g, 2.91 mmol) in THF (20 ml), followed by the addition of di-tert-butyl dicarbonate (1.16 g, 5.32 mmol). The reaction mixture was stirred at 298.15 K for 2 h. Colourless crystals were obtained from a hexane/dichloromethane solvent mixture (4:1) (1.15 g, 83%).

Refinement

All non-hydrogen atoms were refined anisotropically. H atoms were placed geometrically [C—H = 0.95 - 0.99 Å; with Uiso(H) = 1.2 - 1.5Ueq(C)] and constrained to ride on their parent atoms. The site-occupancy factors of the disordered thiophene moieties were initially set to 0.5 and then refined, leading to an occupancy of 0.9021 (19) and 0.0979 (19)(2) for the major and minor components, respectively. Bond lengths for the thiophene and phenyl moieties were restrained using the SHELXL SADI command (s.u. = 0.002 Å). Atom displacement parameters for overlaping atoms of the disordered models were constrained using EADP.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound with atom displacement ellipsoidsdrawn at the 50% probability level. Disordered components (0.9021 (19) = blue) and (0.0979 (19) = purple).

Fig. 2.

Fig. 2.

Molecular Packing of the title compound viewed along the b axis. Centrosymmetric dimers are linked via weak C—H···O intermolecular interactions (dashed lines).

Crystal data

C21H20BrNO5S F(000) = 1952
Mr = 478.35 Dx = 1.530 Mg m3
Monoclinic, C2/c Melting point: 370.13 K
Hall symbol: -C 2yc Mo Kα radiation, λ = 0.71073 Å
a = 16.220 (3) Å Cell parameters from 6586 reflections
b = 15.361 (3) Å θ = 2.4–27.6°
c = 18.224 (4) Å µ = 2.11 mm1
β = 113.792 (2)° T = 100 K
V = 4154.7 (15) Å3 Rectangular prisms, colourless
Z = 8 0.34 × 0.21 × 0.17 mm

Data collection

Bruker APEXII CCD diffractometer 4855 independent reflections
Radiation source: fine-focus sealed tube, Bruker SMART Apex 4101 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.039
φ and ω scans θmax = 28.2°, θmin = 1.9°
Absorption correction: multi-scan [symmetry-related measurements (SADABS; Bruker, 2009)] h = −20→20
Tmin = 0.537, Tmax = 0.721 k = −19→19
23562 measured reflections l = −24→24

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.066 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0296P)2 + 2.6317P] where P = (Fo2 + 2Fc2)/3
4855 reflections (Δ/σ)max = 0.001
279 parameters Δρmax = 0.38 e Å3
13 restraints Δρmin = −0.38 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Br1 −0.187401 (12) −0.022969 (12) −0.284234 (11) 0.02154 (6)
O1 0.21832 (9) 0.04217 (8) 0.06003 (8) 0.0220 (3)
N1 0.09114 (9) 0.12572 (9) 0.02039 (8) 0.0140 (3)
C1 0.04334 (12) 0.19832 (11) 0.02894 (10) 0.0143 (4)
O2 0.22623 (8) 0.18743 (8) 0.08505 (7) 0.0168 (3)
C2 0.03540 (10) 0.08118 (9) −0.04949 (10) 0.0143 (3)
O3 0.11295 (9) 0.22588 (8) 0.16936 (7) 0.0223 (3)
C3 0.05264 (11) 0.00587 (10) −0.08360 (9) 0.0165 (4)
H3 0.1083 −0.0243 −0.0598 0.020*
O4 0.06607 (8) 0.33759 (8) 0.08185 (7) 0.0167 (3)
C4 −0.01584 (11) −0.02275 (11) −0.15432 (10) 0.0173 (4)
H4 −0.0072 −0.0740 −0.1795 0.021*
O5 −0.14693 (9) 0.30149 (9) −0.11372 (7) 0.0229 (3)
C5 −0.09682 (11) 0.02238 (10) −0.18879 (10) 0.0167 (4)
C6 −0.11345 (11) 0.09814 (10) −0.15555 (9) 0.0159 (4)
H6 −0.1687 0.1289 −0.1802 0.019*
C7 −0.04550 (10) 0.12713 (11) −0.08437 (9) 0.0143 (3)
C8 −0.03952 (12) 0.20088 (11) −0.03284 (10) 0.0147 (4)
C9 −0.11022 (12) 0.26847 (12) −0.04742 (11) 0.0165 (4)
C10 −0.13346 (11) 0.29232 (11) 0.01992 (10) 0.0147 (4)
C14 0.07984 (11) 0.25376 (11) 0.10226 (11) 0.0158 (4)
C15 0.08485 (13) 0.39806 (12) 0.14842 (11) 0.0217 (4)
H15A 0.1485 0.3932 0.1869 0.026*
H15B 0.0457 0.3853 0.1771 0.026*
C16 0.06589 (15) 0.48791 (13) 0.11250 (13) 0.0294 (5)
H16C 0.0026 0.4918 0.0748 0.044*
H16A 0.1047 0.4994 0.0840 0.044*
H16B 0.0780 0.5310 0.1553 0.044*
C17 0.18541 (12) 0.11267 (11) 0.05822 (10) 0.0159 (4)
C18 0.32643 (12) 0.19106 (12) 0.13180 (11) 0.0190 (4)
C19 0.37308 (13) 0.16063 (14) 0.07930 (12) 0.0249 (4)
H19C 0.3471 0.1907 0.0275 0.037*
H19A 0.3648 0.0977 0.0708 0.037*
H19B 0.4376 0.1738 0.1056 0.037*
C20 0.34088 (14) 0.28765 (13) 0.14976 (13) 0.0293 (5)
H20A 0.3061 0.3063 0.1802 0.044*
H20B 0.3209 0.3202 0.0993 0.044*
H20C 0.4050 0.2988 0.1814 0.044*
C21 0.35137 (14) 0.13828 (14) 0.20765 (11) 0.0278 (5)
H21A 0.3417 0.0763 0.1940 0.042*
H21C 0.3137 0.1561 0.2357 0.042*
H21B 0.4149 0.1481 0.2425 0.042*
S1A −0.18632 (4) 0.39061 (3) 0.01797 (3) 0.01650 (16) 0.9021 (19)
C11A −0.12031 (18) 0.24830 (18) 0.08752 (18) 0.0212 (5) 0.902 (2)
H11A −0.0924 0.1927 0.0987 0.025* 0.9021 (19)
C12A −0.1506 (2) 0.2902 (3) 0.1402 (3) 0.0196 (4) 0.9021 (19)
H12A −0.1462 0.2667 0.1899 0.024* 0.9021 (19)
C13A −0.1874 (3) 0.3695 (3) 0.11084 (15) 0.0161 (6) 0.9021 (19)
H13A −0.2108 0.4084 0.1382 0.019* 0.9021 (19)
S1B −0.1088 (5) 0.2256 (4) 0.1026 (3) 0.01650 (16) 0.0979 (19)
C11B −0.1782 (13) 0.3643 (9) 0.0245 (15) 0.0212 (5) 0.0979 (19)
H11B −0.1971 0.4082 −0.0157 0.025* 0.0979 (19)
C12B −0.194 (3) 0.368 (3) 0.0944 (18) 0.0161 (6) 0.0979 (19)
H12B −0.2251 0.4149 0.1065 0.019* 0.0979 (19)
C13B −0.161 (2) 0.298 (2) 0.143 (3) 0.0196 (4) 0.0979 (19)
H13B −0.1655 0.2895 0.1930 0.024* 0.0979 (19)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.01920 (10) 0.02324 (11) 0.01899 (10) −0.00231 (8) 0.00438 (7) −0.00483 (7)
O1 0.0186 (7) 0.0174 (7) 0.0266 (7) 0.0045 (5) 0.0056 (6) −0.0011 (5)
N1 0.0133 (7) 0.0144 (7) 0.0138 (7) 0.0008 (6) 0.0051 (6) −0.0017 (6)
C1 0.0166 (9) 0.0130 (8) 0.0164 (9) 0.0025 (7) 0.0099 (7) 0.0014 (7)
O2 0.0136 (6) 0.0167 (6) 0.0178 (6) −0.0006 (5) 0.0040 (5) −0.0017 (5)
C2 0.0147 (8) 0.0139 (8) 0.0145 (8) −0.0028 (7) 0.0061 (7) 0.0000 (7)
O3 0.0296 (7) 0.0216 (7) 0.0148 (7) 0.0044 (6) 0.0078 (6) 0.0005 (5)
C3 0.0165 (9) 0.0145 (9) 0.0199 (9) 0.0022 (7) 0.0087 (7) 0.0006 (7)
O4 0.0196 (6) 0.0139 (6) 0.0158 (6) −0.0004 (5) 0.0062 (5) −0.0028 (5)
C4 0.0213 (9) 0.0141 (8) 0.0189 (9) −0.0002 (7) 0.0106 (8) −0.0022 (7)
O5 0.0266 (7) 0.0251 (7) 0.0167 (7) 0.0076 (6) 0.0084 (6) 0.0043 (5)
C5 0.0176 (9) 0.0186 (9) 0.0138 (8) −0.0040 (7) 0.0065 (7) −0.0013 (7)
C6 0.0152 (9) 0.0179 (9) 0.0158 (9) 0.0003 (7) 0.0075 (7) 0.0019 (7)
C7 0.0158 (9) 0.0143 (8) 0.0158 (9) 0.0009 (7) 0.0093 (7) 0.0016 (7)
C8 0.0185 (9) 0.0143 (8) 0.0146 (9) 0.0008 (7) 0.0103 (7) 0.0010 (7)
C9 0.0154 (9) 0.0165 (9) 0.0183 (9) −0.0005 (7) 0.0074 (7) −0.0011 (7)
C10 0.0116 (8) 0.0154 (8) 0.0172 (9) 0.0019 (7) 0.0059 (7) −0.0003 (7)
C14 0.0131 (8) 0.0175 (9) 0.0193 (9) 0.0013 (7) 0.0091 (7) −0.0015 (7)
C15 0.0258 (10) 0.0202 (10) 0.0167 (9) −0.0030 (8) 0.0060 (8) −0.0082 (7)
C16 0.0334 (12) 0.0202 (10) 0.0264 (11) 0.0014 (9) 0.0034 (9) −0.0064 (8)
C17 0.0172 (9) 0.0186 (9) 0.0124 (8) 0.0006 (7) 0.0068 (7) 0.0005 (7)
C18 0.0128 (8) 0.0260 (10) 0.0161 (9) −0.0030 (7) 0.0036 (7) −0.0009 (7)
C19 0.0187 (10) 0.0322 (11) 0.0250 (10) 0.0017 (8) 0.0100 (8) 0.0047 (9)
C20 0.0249 (11) 0.0277 (11) 0.0309 (11) −0.0083 (9) 0.0068 (9) −0.0066 (9)
C21 0.0235 (10) 0.0381 (12) 0.0178 (10) −0.0044 (9) 0.0043 (8) 0.0046 (9)
S1A 0.0180 (3) 0.0143 (3) 0.0192 (3) 0.0051 (2) 0.0095 (2) 0.0010 (2)
C11A 0.0184 (13) 0.0143 (13) 0.0291 (14) 0.0058 (10) 0.0080 (11) 0.0014 (10)
C12A 0.0206 (13) 0.0209 (13) 0.0189 (10) 0.0016 (10) 0.0096 (10) 0.0000 (8)
C13A 0.0188 (12) 0.0188 (9) 0.0142 (15) 0.0031 (9) 0.0102 (14) −0.0018 (14)
S1B 0.0180 (3) 0.0143 (3) 0.0192 (3) 0.0051 (2) 0.0095 (2) 0.0010 (2)
C11B 0.0184 (13) 0.0143 (13) 0.0291 (14) 0.0058 (10) 0.0080 (11) 0.0014 (10)
C12B 0.0188 (12) 0.0188 (9) 0.0142 (15) 0.0031 (9) 0.0102 (14) −0.0018 (14)
C13B 0.0206 (13) 0.0209 (13) 0.0189 (10) 0.0016 (10) 0.0096 (10) 0.0000 (8)

Geometric parameters (Å, º)

Br1—C5 1.8993 (17) C15—H15A 0.9900
O1—C17 1.202 (2) C15—H15B 0.9900
N1—C1 1.402 (2) C16—H16C 0.9800
N1—C2 1.406 (2) C16—H16A 0.9800
N1—C17 1.415 (2) C16—H16B 0.9800
C1—C8 1.362 (2) C18—C21 1.510 (3)
C1—C14 1.491 (2) C18—C19 1.514 (3)
O2—C17 1.317 (2) C18—C20 1.517 (3)
O2—C18 1.501 (2) C19—H19C 0.9800
C2—C3 1.3940 (15) C19—H19A 0.9800
C2—C7 1.3968 (15) C19—H19B 0.9800
O3—C14 1.199 (2) C20—H20A 0.9800
C3—C4 1.3903 (16) C20—H20B 0.9800
C3—H3 0.9500 C20—H20C 0.9800
O4—C14 1.334 (2) C21—H21A 0.9800
O4—C15 1.459 (2) C21—H21C 0.9800
C4—C5 1.3909 (16) C21—H21B 0.9800
C4—H4 0.9500 S1A—C13A 1.730 (3)
O5—C9 1.221 (2) C11A—C12A 1.400 (3)
C5—C6 1.3878 (15) C11A—H11A 0.9500
C6—C7 1.3935 (16) C12A—C13A 1.367 (3)
C6—H6 0.9500 C12A—H12A 0.9500
C7—C8 1.450 (2) C13A—H13A 0.9500
C8—C9 1.489 (2) S1B—C13B 1.730 (3)
C9—C10 1.468 (2) C11B—C12B 1.400 (4)
C10—C11B 1.344 (4) C11B—H11B 0.9500
C10—C11A 1.345 (3) C12B—C13B 1.367 (3)
C10—S1A 1.7297 (17) C12B—H12B 0.9500
C10—S1B 1.730 (2) C13B—H13B 0.9500
C15—C16 1.505 (3)
C1—N1—C2 107.77 (13) H16C—C16—H16A 109.5
C1—N1—C17 126.56 (15) C15—C16—H16B 109.5
C2—N1—C17 123.07 (13) H16C—C16—H16B 109.5
C8—C1—N1 109.67 (15) H16A—C16—H16B 109.5
C8—C1—C14 128.83 (16) O1—C17—O2 128.62 (17)
N1—C1—C14 121.09 (15) O1—C17—N1 121.44 (16)
C17—O2—C18 120.67 (14) O2—C17—N1 109.86 (15)
C3—C2—C7 122.48 (14) O2—C18—C21 109.18 (15)
C3—C2—N1 129.51 (13) O2—C18—C19 109.43 (14)
C7—C2—N1 108.00 (12) C21—C18—C19 113.28 (17)
C4—C3—C2 116.55 (15) O2—C18—C20 101.33 (14)
C4—C3—H3 121.7 C21—C18—C20 111.51 (16)
C2—C3—H3 121.7 C19—C18—C20 111.42 (16)
C14—O4—C15 115.31 (14) C18—C19—H19C 109.5
C3—C4—C5 121.11 (15) C18—C19—H19A 109.5
C3—C4—H4 119.4 H19C—C19—H19A 109.5
C5—C4—H4 119.4 C18—C19—H19B 109.5
C6—C5—C4 122.36 (15) H19C—C19—H19B 109.5
C6—C5—Br1 119.51 (11) H19A—C19—H19B 109.5
C4—C5—Br1 118.13 (11) C18—C20—H20A 109.5
C5—C6—C7 117.02 (15) C18—C20—H20B 109.5
C5—C6—H6 121.5 H20A—C20—H20B 109.5
C7—C6—H6 121.5 C18—C20—H20C 109.5
C6—C7—C2 120.47 (14) H20A—C20—H20C 109.5
C6—C7—C8 132.37 (15) H20B—C20—H20C 109.5
C2—C7—C8 107.16 (14) C18—C21—H21A 109.5
C1—C8—C7 107.38 (15) C18—C21—H21C 109.5
C1—C8—C9 126.85 (16) H21A—C21—H21C 109.5
C7—C8—C9 125.72 (15) C18—C21—H21B 109.5
O5—C9—C10 122.43 (16) H21A—C21—H21B 109.5
O5—C9—C8 119.94 (16) H21C—C21—H21B 109.5
C10—C9—C8 117.62 (15) C10—S1A—C13A 90.96 (18)
C11B—C10—C11A 104.3 (12) C10—C11A—C12A 115.3 (3)
C11B—C10—C9 125.8 (12) C10—C11A—H11A 122.3
C11A—C10—C9 129.86 (16) C12A—C11A—H11A 122.3
C11A—C10—S1A 110.60 (15) C13A—C12A—C11A 111.1 (4)
C9—C10—S1A 119.53 (12) C13A—C12A—H12A 124.5
C11B—C10—S1B 112.0 (12) C11A—C12A—H12A 124.5
C9—C10—S1B 122.2 (3) C12A—C13A—S1A 112.1 (4)
S1A—C10—S1B 118.3 (3) C12A—C13A—H13A 124.0
O3—C14—O4 125.80 (16) S1A—C13A—H13A 124.0
O3—C14—C1 124.23 (16) C13B—S1B—C10 90.7 (19)
O4—C14—C1 109.90 (15) C10—C11B—C12B 113 (3)
O4—C15—C16 106.54 (15) C10—C11B—H11B 123.4
O4—C15—H15A 110.4 C12B—C11B—H11B 123.4
C16—C15—H15A 110.4 C13B—C12B—C11B 113 (4)
O4—C15—H15B 110.4 C13B—C12B—H12B 123.6
C16—C15—H15B 110.4 C11B—C12B—H12B 123.6
H15A—C15—H15B 108.6 C12B—C13B—S1B 111 (4)
C15—C16—H16C 109.5 C12B—C13B—H13B 124.4
C15—C16—H16A 109.5 S1B—C13B—H13B 124.4
C2—N1—C1—C8 −0.25 (19) C8—C9—C10—S1B −19.6 (4)
C17—N1—C1—C8 161.74 (16) C15—O4—C14—O3 −6.9 (2)
C2—N1—C1—C14 173.05 (15) C15—O4—C14—C1 170.13 (14)
C17—N1—C1—C14 −25.0 (3) C8—C1—C14—O3 127.0 (2)
C1—N1—C2—C3 179.52 (17) N1—C1—C14—O3 −44.9 (3)
C17—N1—C2—C3 16.8 (3) C8—C1—C14—O4 −50.1 (2)
C1—N1—C2—C7 1.06 (19) N1—C1—C14—O4 138.06 (16)
C17—N1—C2—C7 −161.70 (15) C14—O4—C15—C16 179.51 (15)
C7—C2—C3—C4 −1.0 (3) C18—O2—C17—O1 −6.5 (3)
N1—C2—C3—C4 −179.25 (17) C18—O2—C17—N1 176.60 (14)
C2—C3—C4—C5 0.3 (3) C1—N1—C17—O1 165.06 (17)
C3—C4—C5—C6 0.7 (3) C2—N1—C17—O1 −35.5 (3)
C3—C4—C5—Br1 −178.72 (14) C1—N1—C17—O2 −17.8 (2)
C4—C5—C6—C7 −1.1 (3) C2—N1—C17—O2 141.64 (15)
Br1—C5—C6—C7 178.34 (12) C17—O2—C18—C21 −61.6 (2)
C5—C6—C7—C2 0.4 (2) C17—O2—C18—C19 62.9 (2)
C5—C6—C7—C8 −178.75 (17) C17—O2—C18—C20 −179.30 (15)
C3—C2—C7—C6 0.6 (3) C11B—C10—S1A—C13A 24 (8)
N1—C2—C7—C6 179.21 (15) C11A—C10—S1A—C13A 0.89 (19)
C3—C2—C7—C8 179.98 (16) C9—C10—S1A—C13A −179.27 (18)
N1—C2—C7—C8 −1.43 (19) S1B—C10—S1A—C13A 0.2 (3)
N1—C1—C8—C7 −0.63 (19) C11B—C10—C11A—C12A −3.2 (11)
C14—C1—C8—C7 −173.26 (16) C9—C10—C11A—C12A 179.8 (2)
N1—C1—C8—C9 −178.36 (16) S1A—C10—C11A—C12A −0.4 (3)
C14—C1—C8—C9 9.0 (3) S1B—C10—C11A—C12A 175 (3)
C6—C7—C8—C1 −179.46 (18) C10—C11A—C12A—C13A −0.5 (3)
C2—C7—C8—C1 1.28 (19) C11A—C12A—C13A—S1A 1.2 (2)
C6—C7—C8—C9 −1.7 (3) C10—S1A—C13A—C12A −1.20 (17)
C2—C7—C8—C9 179.04 (16) C11B—C10—S1B—C13B 0.0 (4)
C1—C8—C9—O5 131.0 (2) C11A—C10—S1B—C13B −2 (3)
C7—C8—C9—O5 −46.3 (3) C9—C10—S1B—C13B −177.5 (11)
C1—C8—C9—C10 −49.4 (3) S1A—C10—S1B—C13B 3.1 (10)
C7—C8—C9—C10 133.27 (18) C11A—C10—C11B—C12B 0.3 (6)
O5—C9—C10—C11B −17.3 (12) C9—C10—C11B—C12B 177.4 (11)
C8—C9—C10—C11B 163.2 (11) S1A—C10—C11B—C12B −157 (8)
O5—C9—C10—C11A 159.1 (2) S1B—C10—C11B—C12B 0.0 (5)
C8—C9—C10—C11A −20.4 (3) C10—C11B—C12B—C13B 0.0 (3)
O5—C9—C10—S1A −20.7 (2) C11B—C12B—C13B—S1B 0.0 (2)
C8—C9—C10—S1A 159.78 (13) C10—S1B—C13B—C12B 0.0 (3)
O5—C9—C10—S1B 159.9 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C12A—H12A···O3i 0.95 2.48 3.418 (5) 169

Symmetry code: (i) −x, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JJ2160).

References

  1. Atwood, J. L. & Barbour, L. J. (2003). Cryst. Growth Des. 3, 3–8.
  2. Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.
  3. Beddoes, R. L., Dalton, L., Joule, J. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787–797.
  4. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Hassam, M., Basson, A. E., Liotta, D. C., Morris, L., van Otterlo, W. A. L. & Pelly, S. C. (2012). ACS Med. Chem. Lett. 3, 470–475. [DOI] [PMC free article] [PubMed]
  6. Hassam, M. & Smith, V. J. (2012). Acta Cryst. E68, o3357. [DOI] [PMC free article] [PubMed]
  7. Reynolds, C., Koning, C. B., Pelly, S. C., van Otterlo, W. A. L. & Bode, M. L. (2012). Chem. Soc. Rev. 41, 4657–4670. [DOI] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813000809/jj2160sup1.cif

e-69-0o237-sup1.cif (31.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813000809/jj2160Isup2.hkl

e-69-0o237-Isup2.hkl (237.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813000809/jj2160Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES