Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Jan 16;69(Pt 2):o238. doi: 10.1107/S1600536813000615

2-(1H-Imidazol-1-yl)-4-[3-(trifluoro­meth­yl)phen­yl]-1,3-thia­zole

Konstantin V Kudryavtsev a,b,*, Andrei V Churakov c, Jih-Hwa Guh d
PMCID: PMC3569771  PMID: 23424517

Abstract

The title compound, C13H8F3N3S, consists of three linked aromatic rings. The whole mol­ecule (except for the three F atoms) is planar to within 0.225 (2) Å. In the crystal, adjacent mol­ecules are linked into chains along the ac diagonal by weak C—H⋯N inter­actions.

Related literature  

For general background to the synthesis of imidazolo­thia­zoles by copper-catalysed coupling, see: Zhu et al. (2007).graphic file with name e-69-0o238-scheme1.jpg

Experimental  

Crystal data  

  • C13H8F3N3S

  • M r = 295.28

  • Monoclinic, Inline graphic

  • a = 8.4152 (7) Å

  • b = 19.2403 (15) Å

  • c = 8.4105 (7) Å

  • β = 114.210 (1)°

  • V = 1241.98 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 150 K

  • 0.40 × 0.20 × 0.10 mm

Data collection  

  • Bruker SMART APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008) T min = 0.893, T max = 0.972

  • 9797 measured reflections

  • 2716 independent reflections

  • 2164 reflections with I > 2σ(I)

  • R int = 0.049

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.103

  • S = 1.07

  • 2716 reflections

  • 213 parameters

  • All H-atom parameters refined

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813000615/ff2095sup1.cif

e-69-0o238-sup1.cif (21.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813000615/ff2095Isup2.hkl

e-69-0o238-Isup2.hkl (133.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813000615/ff2095Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯N3i 0.95 (2) 2.34 (2) 3.278 (2) 169.4 (18)

Symmetry code: (i) Inline graphic.

Acknowledgments

This study was partially supported by the Russian Foundation for Basic Research (project Nos. 11–03-00630_a and 12–03-92005-NSC_a) and by the National Science Council of the Republic of China (NSC101–2923-B-002–008-MY3).

supplementary crystallographic information

Comment

The title compound, C13H8F3N3S, which is a potential anticancer agent, consists of the three linked aromatic and heteroaromatic cycles, which were condensed by copper-catalyzed method (Fig. 1). The whole molecule (except three fluorine atoms) is planar within 0.225 (2) Å (Fig. 2).

In the crystal, the adjacent molecules are combined in chains along ac-diagonal by weak C—H···N interactions (Fig. 3). The C···N separation is equal to 3.278 (2) Å and C—H···N angle is close to linear (169 (2) °).

Experimental

2-Bromo-4-(3-(trifluoromethyl)phenyl)thiazole (0.800 g, 2.60 mmol) was added to a stirred suspension of imidazole (0.345 g, 5.07 mmol), CuI (0.209 g, 1.10 mmol) and Cs2CO3 (1.830 g, 5.62 mmol) in 30 ml of DMF under argon atmosphere. The reaction mixture was stirred for 8 h at rt and then for 7 h at 115 °C. After cooling to the ambient temperature the reaction mixture was filtered and precipitate was washed with 30 ml of DMF. The solution was concentrated under vacuum and residue was diluted with 80 ml of ethyl acetate. Organic phase was washed with water (2 x 10 ml) and saturated solution of NH4Cl (1 x 10 ml), dried over Na2SO4, concentrated and purified by column chromatography on silica gel 60 (particle size 0.040–0.063 mm) using CHCl3—MeOH (gradient from 1:0 to 50:1) as eluent. 2-(1H-Imidazol-1-yl)-4-(3-(trifluoromethyl)phenyl)thiazole, yield 368 mg (48%), yellowish crystals, mp 99–100°C. 1H NMR (400 MHz, CDCl3/DMSO-d6 5:1): δ 7.16 (s, 1H), 7.52–7.56 (m, 2H), 7.67 (s, 1H), 7.75 (s, 1H), 8.09–8.11 (m, 1H), 8.15 (s, 1H), 8.40 (s, 1H). 13C NMR (100 MHz, CDCl3/DMSO-d6 5:1): δ 111.88, 118.24, 122.95, 122.98, 125.00, 125.03, 129.59, 129.66, 130.17, 130.62, 134.35, 135.63, 150.89, 157.05. Found, %: C, 52.95; H, 2.69; N, 14.20. C13H8F3N3S. Calculated, %: C, 52.88; H, 2.73; N, 14.23. The crystals were obtained by slow evaporation of the CDCl3/DMSO-d6 (5:1) solution.

Refinement

All hydrogen atoms were located in a difference Fourier map and refined with isotropic thermal parameters.

Figures

Fig. 1.

Fig. 1.

Reaction scheme.

Fig. 2.

Fig. 2.

The molecular structure of the title compound, showing the numbering scheme adopted. Displacement ellipsoids are shown at the 50% probability level.

Fig. 3.

Fig. 3.

Chains along ac-diagonal in the structure of the title compound. C—H···N interactions are shown as dashed lines. [Symmetry codes: (i) 1 + x, y, 1 + z; (ii) -1 + x, y, -1 + z.]

Crystal data

C13H8F3N3S F(000) = 600
Mr = 295.28 Dx = 1.579 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 1717 reflections
a = 8.4152 (7) Å θ = 3.1–24.5°
b = 19.2403 (15) Å µ = 0.29 mm1
c = 8.4105 (7) Å T = 150 K
β = 114.210 (1)° Block, colourless
V = 1241.98 (18) Å3 0.40 × 0.20 × 0.10 mm
Z = 4

Data collection

Bruker SMART APEXII diffractometer 2716 independent reflections
Radiation source: fine-focus sealed tube 2164 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.049
ω scans θmax = 27.0°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −10→9
Tmin = 0.893, Tmax = 0.972 k = −24→24
9797 measured reflections l = −10→10

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: difference Fourier map
wR(F2) = 0.103 All H-atom parameters refined
S = 1.07 w = 1/[σ2(Fo2) + (0.0429P)2 + 0.2754P] where P = (Fo2 + 2Fc2)/3
2716 reflections (Δ/σ)max < 0.001
213 parameters Δρmax = 0.27 e Å3
0 restraints Δρmin = −0.27 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.22949 (6) 0.55985 (2) 0.40649 (6) 0.02492 (15)
N1 0.0577 (2) 0.44567 (7) 0.36963 (19) 0.0214 (3)
N2 −0.0844 (2) 0.52744 (7) 0.14612 (18) 0.0207 (3)
N3 −0.3431 (2) 0.52646 (9) −0.0761 (2) 0.0306 (4)
F1 0.62622 (19) 0.32402 (8) 1.15343 (17) 0.0571 (4)
F2 0.64762 (19) 0.22590 (6) 1.0452 (2) 0.0571 (4)
F3 0.74065 (16) 0.31841 (7) 0.97113 (19) 0.0530 (4)
C1 0.2432 (2) 0.37530 (9) 0.6250 (2) 0.0215 (4)
C2 0.4056 (3) 0.36375 (10) 0.7611 (2) 0.0234 (4)
C3 0.4358 (3) 0.30371 (9) 0.8600 (2) 0.0250 (4)
C4 0.3055 (3) 0.25486 (10) 0.8277 (3) 0.0277 (4)
C5 0.1440 (3) 0.26582 (10) 0.6924 (3) 0.0288 (5)
C6 0.1129 (3) 0.32528 (10) 0.5908 (3) 0.0256 (4)
C7 0.6105 (3) 0.29265 (10) 1.0058 (3) 0.0331 (5)
C8 0.2102 (2) 0.43953 (9) 0.5201 (2) 0.0204 (4)
C9 0.3176 (3) 0.49573 (9) 0.5588 (2) 0.0240 (4)
C10 0.0540 (2) 0.50577 (9) 0.2999 (2) 0.0205 (4)
C11 −0.2399 (3) 0.49374 (10) 0.0647 (2) 0.0285 (5)
C12 −0.2503 (3) 0.58436 (11) −0.0854 (3) 0.0286 (4)
C13 −0.0922 (3) 0.58620 (10) 0.0485 (2) 0.0266 (4)
H9 0.425 (3) 0.5042 (10) 0.656 (3) 0.028 (5)*
H6 0.004 (3) 0.3331 (10) 0.496 (3) 0.028 (5)*
H2 0.489 (3) 0.3964 (11) 0.783 (3) 0.031 (6)*
H11 −0.263 (3) 0.4517 (11) 0.113 (3) 0.035 (6)*
H5 0.053 (3) 0.2292 (11) 0.670 (3) 0.040 (6)*
H4 0.328 (3) 0.2144 (11) 0.900 (3) 0.037 (6)*
H12 −0.298 (3) 0.6159 (12) −0.176 (3) 0.043 (7)*
H13 0.002 (3) 0.6192 (12) 0.080 (3) 0.044 (7)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0198 (3) 0.0248 (2) 0.0255 (3) −0.00220 (19) 0.00454 (19) 0.00161 (18)
N1 0.0189 (8) 0.0255 (8) 0.0196 (8) 0.0012 (6) 0.0077 (6) −0.0024 (6)
N2 0.0192 (8) 0.0238 (7) 0.0172 (7) 0.0011 (6) 0.0055 (6) −0.0012 (6)
N3 0.0268 (9) 0.0364 (9) 0.0214 (8) −0.0014 (7) 0.0028 (7) 0.0014 (7)
F1 0.0494 (9) 0.0731 (10) 0.0318 (7) 0.0124 (8) −0.0007 (6) −0.0037 (7)
F2 0.0446 (9) 0.0321 (7) 0.0713 (10) 0.0094 (6) 0.0003 (7) 0.0201 (6)
F3 0.0223 (7) 0.0689 (10) 0.0589 (9) 0.0053 (6) 0.0076 (6) 0.0279 (7)
C1 0.0230 (10) 0.0223 (9) 0.0209 (9) 0.0020 (7) 0.0107 (8) −0.0022 (7)
C2 0.0210 (10) 0.0251 (9) 0.0244 (10) 0.0001 (8) 0.0096 (8) −0.0013 (7)
C3 0.0256 (11) 0.0233 (9) 0.0250 (10) 0.0028 (8) 0.0094 (8) 0.0007 (7)
C4 0.0315 (11) 0.0222 (9) 0.0319 (11) 0.0007 (8) 0.0155 (9) 0.0025 (8)
C5 0.0257 (11) 0.0260 (10) 0.0361 (11) −0.0043 (8) 0.0142 (9) −0.0040 (8)
C6 0.0214 (10) 0.0273 (10) 0.0270 (10) −0.0003 (8) 0.0088 (8) −0.0046 (8)
C7 0.0315 (12) 0.0276 (10) 0.0357 (12) 0.0029 (9) 0.0092 (9) 0.0084 (8)
C8 0.0176 (9) 0.0250 (9) 0.0186 (9) 0.0028 (7) 0.0074 (7) −0.0018 (7)
C9 0.0198 (10) 0.0267 (10) 0.0229 (9) 0.0014 (8) 0.0059 (8) 0.0008 (7)
C10 0.0179 (9) 0.0257 (9) 0.0176 (9) 0.0005 (7) 0.0068 (7) −0.0029 (7)
C11 0.0274 (11) 0.0297 (10) 0.0220 (10) −0.0044 (8) 0.0037 (8) −0.0012 (8)
C12 0.0307 (11) 0.0316 (10) 0.0224 (10) 0.0043 (9) 0.0099 (8) 0.0034 (8)
C13 0.0259 (11) 0.0282 (10) 0.0255 (10) −0.0005 (8) 0.0104 (8) 0.0036 (8)

Geometric parameters (Å, º)

S1—C9 1.7128 (19) C2—C3 1.385 (3)
S1—C10 1.7266 (18) C2—H2 0.90 (2)
N1—C10 1.291 (2) C3—C4 1.384 (3)
N1—C8 1.390 (2) C3—C7 1.494 (3)
N2—C11 1.367 (2) C4—C5 1.385 (3)
N2—C13 1.383 (2) C4—H4 0.96 (2)
N2—C10 1.403 (2) C5—C6 1.387 (3)
N3—C11 1.307 (2) C5—H5 1.00 (2)
N3—C12 1.381 (3) C6—H6 0.95 (2)
F1—C7 1.337 (3) C8—C9 1.360 (3)
F2—C7 1.331 (2) C9—H9 0.95 (2)
F3—C7 1.339 (3) C11—H11 0.96 (2)
C1—C2 1.394 (3) C12—C13 1.346 (3)
C1—C6 1.397 (3) C12—H12 0.93 (2)
C1—C8 1.477 (2) C13—H13 0.96 (2)
C9—S1—C10 88.27 (9) F2—C7—F1 106.30 (17)
C10—N1—C8 109.34 (15) F2—C7—F3 106.36 (18)
C11—N2—C13 106.72 (15) F1—C7—F3 104.87 (18)
C11—N2—C10 125.71 (16) F2—C7—C3 113.16 (17)
C13—N2—C10 127.57 (16) F1—C7—C3 112.79 (18)
C11—N3—C12 105.01 (17) F3—C7—C3 112.71 (17)
C2—C1—C6 118.77 (17) C9—C8—N1 115.14 (16)
C2—C1—C8 120.30 (17) C9—C8—C1 125.36 (16)
C6—C1—C8 120.93 (17) N1—C8—C1 119.50 (16)
C3—C2—C1 120.20 (18) C8—C9—S1 110.65 (14)
C3—C2—H2 121.4 (13) C8—C9—H9 130.2 (12)
C1—C2—H2 118.4 (13) S1—C9—H9 119.0 (12)
C4—C3—C2 120.85 (18) N1—C10—N2 122.77 (16)
C4—C3—C7 119.88 (17) N1—C10—S1 116.59 (13)
C2—C3—C7 119.25 (17) N2—C10—S1 120.64 (13)
C3—C4—C5 119.30 (18) N3—C11—N2 111.68 (18)
C3—C4—H4 119.6 (14) N3—C11—H11 128.1 (13)
C5—C4—H4 121.1 (14) N2—C11—H11 120.2 (13)
C4—C5—C6 120.36 (19) C13—C12—N3 111.19 (17)
C4—C5—H5 117.8 (13) C13—C12—H12 128.0 (14)
C6—C5—H5 121.8 (13) N3—C12—H12 120.8 (14)
C5—C6—C1 120.50 (18) C12—C13—N2 105.38 (17)
C5—C6—H6 121.5 (12) C12—C13—H13 131.8 (14)
C1—C6—H6 118.0 (12) N2—C13—H13 122.8 (14)
C6—C1—C2—C3 −0.1 (3) C2—C1—C8—N1 170.46 (17)
C8—C1—C2—C3 179.52 (17) C6—C1—C8—N1 −9.9 (3)
C1—C2—C3—C4 −1.0 (3) N1—C8—C9—S1 0.5 (2)
C1—C2—C3—C7 −179.66 (18) C1—C8—C9—S1 −178.79 (15)
C2—C3—C4—C5 1.2 (3) C10—S1—C9—C8 −0.46 (15)
C7—C3—C4—C5 179.87 (19) C8—N1—C10—N2 −179.81 (16)
C3—C4—C5—C6 −0.3 (3) C8—N1—C10—S1 −0.2 (2)
C4—C5—C6—C1 −0.8 (3) C11—N2—C10—N1 9.5 (3)
C2—C1—C6—C5 1.0 (3) C13—N2—C10—N1 −171.01 (18)
C8—C1—C6—C5 −178.61 (18) C11—N2—C10—S1 −170.05 (15)
C4—C3—C7—F2 26.1 (3) C13—N2—C10—S1 9.4 (3)
C2—C3—C7—F2 −155.26 (19) C9—S1—C10—N1 0.41 (16)
C4—C3—C7—F1 −94.6 (2) C9—S1—C10—N2 180.00 (16)
C2—C3—C7—F1 84.0 (2) C12—N3—C11—N2 −0.4 (2)
C4—C3—C7—F3 146.84 (19) C13—N2—C11—N3 0.4 (2)
C2—C3—C7—F3 −34.5 (3) C10—N2—C11—N3 180.00 (17)
C10—N1—C8—C9 −0.2 (2) C11—N3—C12—C13 0.2 (2)
C10—N1—C8—C1 179.13 (16) N3—C12—C13—N2 0.0 (2)
C2—C1—C8—C9 −10.3 (3) C11—N2—C13—C12 −0.3 (2)
C6—C1—C8—C9 169.30 (18) C10—N2—C13—C12 −179.81 (18)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C9—H9···N3i 0.95 (2) 2.34 (2) 3.278 (2) 169.4 (18)

Symmetry code: (i) x+1, y, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FF2095).

References

  1. Bruker (2008). APEX2, SADABS and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  3. Zhu, L., Guo, P., Li, G., Lan, J., Xie, R. & You, J. (2007). J. Org. Chem. 72, 8535–8538. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813000615/ff2095sup1.cif

e-69-0o238-sup1.cif (21.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813000615/ff2095Isup2.hkl

e-69-0o238-Isup2.hkl (133.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813000615/ff2095Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES