Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Jan 16;69(Pt 2):o240. doi: 10.1107/S1600536813000718

3-Chloro-4-fluoro­anilinium picrate

Balladka K Sarojini a, Badiadka Narayana b, Hemmige S Yathirajan c, Thomas Gerber d, Benjamin van Brecht d, Richard Betz d,*
PMCID: PMC3569773  PMID: 23424519

Abstract

In the title picrate salt of a dihalogenated aniline derivative, C6H6ClF+·C6H2N3O7 , the intra­cyclic C—C—C angles in the picrate anion cover a broad range [111.95 (12)–125.38 (13)°], while those in the aromatic cation span a much narrower range [118.25 (14)–122.33 (13)°]. In the crystal, classical N—H⋯O hydrogen bonds, as well as C—H⋯O contacts, connect the ions into layers parallel to (001).

Related literature  

For related structures, see: Jin et al. (2011); Wang (2011); Betz et al. (2011); Dutkiewicz et al. (2011); Jasinski et al. (2010a ,b , 2011). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995).graphic file with name e-69-0o240-scheme1.jpg

Experimental  

Crystal data  

  • C6H6ClF+·C6H2N3O7

  • M r = 374.67

  • Triclinic, Inline graphic

  • a = 4.4054 (2) Å

  • b = 11.9881 (5) Å

  • c = 13.7010 (5) Å

  • α = 90.057 (1)°

  • β = 91.803 (1)°

  • γ = 97.743 (1)°

  • V = 716.62 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 200 K

  • 0.53 × 0.32 × 0.13 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008) T min = 0.907, T max = 1.000

  • 12360 measured reflections

  • 3525 independent reflections

  • 2947 reflections with I > 2σ(I)

  • R int = 0.014

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.097

  • S = 1.06

  • 3525 reflections

  • 238 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813000718/bg2490sup1.cif

e-69-0o240-sup1.cif (22.5KB, cif)

Supplementary material file. DOI: 10.1107/S1600536813000718/bg2490Isup2.cdx

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813000718/bg2490Isup3.hkl

e-69-0o240-Isup3.hkl (172.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813000718/bg2490Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H41⋯O1i 0.91 (2) 1.85 (2) 2.7324 (17) 165 (2)
N4—H42⋯O12ii 0.89 (2) 2.40 (2) 3.0599 (18) 131.2 (16)
N4—H42⋯O11ii 0.89 (2) 2.60 (2) 3.3425 (17) 141.8 (16)
N4—H43⋯O1 0.96 (2) 1.81 (2) 2.7579 (16) 172.7 (18)
C13—H13⋯O21iii 0.95 2.47 3.3152 (19) 148
C26—H26⋯O32 0.95 2.49 3.378 (2) 156

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

BN thanks the UGC for financial assistance through a BSR one-time grant for the purchase of chemicals.

supplementary crystallographic information

Comment

2,4,6-Trinitrophenol (picric acid) was and is primarily used to manufacture explosives. I has also found widespread use as an intermediate in the production of dyes. As a strong organic acid, picric acid forms salts with a large variety of N-containing organic bases. The crystal structures of some picrates have been reported (Jin et al., 2011; Wang, 2011; Betz et al., 2011; Dutkiewicz et al., 2011; Jasinski et al., 2011; Jasinski et al., 2010a; Jasinski et al., 2010b). In continuation of our studies of structural aspects of simple organic salts of amine bases, the title compound was synthesized.

Intracyclic C–C–C angles in the picrate anion markedly deviate from the ideal value by covering a range of 111.95 (12)–125.38 (13) ° where the smallest angle is found on the carbon atome bearing the deprotonated hydroxy group and the largest angle on one of the carbon atoms in ortho position to the former one. The cationic part demonstrates a relatively smaller distortion of its aromatic system in terms of intracyclic C–C–C angles, the latter ones found in between 118.25 (14) ° and 122.33 (13) °. The smallest angle in the cation appears on the unsubstituted carbon atom in between the protonated amine group and the chloro substituent while the largest angle is present on the carbon atom bearing the protonated amine group. The tilting of the nitro groups of the picrate anion with respect to the aromatic system they are bonded to varies significantly, the respective O–N–C–C dihedral angles being 13.5 (2) °, -25.4 (2) ° and 42.61 (19) °. The least-squares planes defined by the individual carbon atoms of both aromatic systems subtend an angle of 16.92 (7) ° (Fig. 1).

In the crystal, classical hydrogen bonds of the N–H···O type are observed, as well as C–H···O contacts whose range falls by more than 0.2 Å below the sum of van-der-Waals radii of the participating. atoms. The latter contacts are supported by carbon-bound hydrogen atoms on the cation as well as the anion and invariably have oxygen atoms on nitro groups as acceptors. Two of the nitrogen-bonded hydrogen atoms form hydrogen bonds to the oxygen atom of the deprotonated hydroxyl group while the third nitrogen-bonded hydrogen atom forms a hydrogen bond to a nitro group. The latter hydrogen bond shows bifurcation. Metrical parameters as well as information about the symmetry of these contacts are summarized in Table 1. In total, the N–H···O type hydrogen bonds connect the entities of the crystal structure to columnar arrays along the crystallographic a axis that are further connected to layers parallel ab by the C–H···O contacts. In terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995), the descriptor for the C–H···O contacts is DR22(10) on the unary level while the classical hydrogen bonds necessitate a DDDDD descriptor on the same level (Fig. 2).

The packing of the title compound in the crystal structure is shown in Figure 3.

Experimental

3-Chloro-4-fluoroaniline (1.45 g, 0.01 mol) and picric acid (2.29 g, 0.01 mol) were individually dissolved in water (60 mL). The solutions were mixed and HCl (5 M, 2 mL) was added under stirring in a few minutes. The product formed was filtered and dried. Yellow crystals of the title compound were obtained by slow evaporation of a solution of the compound in ethanol at room temperature.

Refinement

Carbon-bound H atoms were placed in calculated positions (C–H 0.95 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C). All nitrogen-bound H atoms were located on a difference Fourier map and refined freely.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level).

Fig. 2.

Fig. 2.

Intermolecular contacts, viewed along [-1 0 0]. For reasons of clarity, only a selection of intermolecular contacts is shown. Blue dashed lines depict classical hydrogen bonds of the N–H···O type, green dashed lines depict C–H···O contacts. Symmetry operator: i -x + 1, -y + 2, -z.

Fig. 3.

Fig. 3.

Molecular packing of the title compound, viewed along [-1 0 0] (anisotropic displacement ellipsoids drawn at 50% probability level).

Crystal data

C6H6ClF+·C6H2N3O7 Z = 2
Mr = 374.67 F(000) = 380
Triclinic, P1 Dx = 1.736 Mg m3
Hall symbol: -P 1 Melting point: 438 K
a = 4.4054 (2) Å Mo Kα radiation, λ = 0.71073 Å
b = 11.9881 (5) Å Cell parameters from 8065 reflections
c = 13.7010 (5) Å θ = 2.3–28.3°
α = 90.057 (1)° µ = 0.33 mm1
β = 91.803 (1)° T = 200 K
γ = 97.743 (1)° Needle, yellow
V = 716.62 (5) Å3 0.53 × 0.32 × 0.13 mm

Data collection

Bruker APEXII CCD diffractometer 3525 independent reflections
Radiation source: fine-focus sealed tube 2947 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.014
φ and ω scans θmax = 28.3°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −5→5
Tmin = 0.907, Tmax = 1.000 k = −16→15
12360 measured reflections l = −18→18

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097 H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0377P)2 + 0.4436P] where P = (Fo2 + 2Fc2)/3
3525 reflections (Δ/σ)max < 0.001
238 parameters Δρmax = 0.32 e Å3
0 restraints Δρmin = −0.27 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.6279 (2) 0.56237 (8) 0.18047 (8) 0.0272 (2)
O11 0.1858 (3) 0.60505 (11) 0.04084 (9) 0.0397 (3)
O12 0.4639 (3) 0.69531 (10) −0.06804 (8) 0.0430 (3)
O21 0.8395 (3) 1.07312 (9) 0.07332 (9) 0.0381 (3)
O22 1.2124 (3) 1.06697 (10) 0.17928 (10) 0.0439 (3)
O31 1.3048 (3) 0.72968 (13) 0.35325 (9) 0.0478 (3)
O32 0.9194 (3) 0.59811 (10) 0.35634 (9) 0.0426 (3)
N1 0.4035 (3) 0.67317 (10) 0.01741 (9) 0.0263 (3)
N2 0.9866 (3) 1.02249 (11) 0.13271 (9) 0.0298 (3)
N3 1.0560 (3) 0.68383 (11) 0.32143 (9) 0.0299 (3)
C11 0.7050 (3) 0.66785 (12) 0.17296 (10) 0.0228 (3)
C12 0.6014 (3) 0.73200 (12) 0.09313 (10) 0.0234 (3)
C13 0.6869 (3) 0.84526 (12) 0.07879 (10) 0.0249 (3)
H13 0.6095 0.8826 0.0242 0.030*
C14 0.8896 (3) 0.90317 (12) 0.14653 (10) 0.0255 (3)
C15 1.0104 (3) 0.84895 (12) 0.22500 (10) 0.0263 (3)
H15 1.1546 0.8894 0.2695 0.032*
C16 0.9185 (3) 0.73573 (12) 0.23741 (10) 0.0246 (3)
Cl1 −0.28986 (12) 0.06232 (4) 0.38057 (4) 0.04913 (14)
F1 0.1550 (3) 0.16950 (9) 0.52432 (7) 0.0473 (3)
N4 0.0749 (3) 0.42503 (11) 0.19073 (9) 0.0252 (2)
H41 −0.080 (5) 0.4671 (18) 0.1987 (15) 0.044 (6)*
H42 0.026 (5) 0.3832 (17) 0.1376 (15) 0.037 (5)*
H43 0.262 (5) 0.4739 (17) 0.1817 (14) 0.040 (5)*
C21 0.0979 (3) 0.35612 (12) 0.27822 (10) 0.0240 (3)
C22 −0.0891 (3) 0.25421 (12) 0.28441 (11) 0.0275 (3)
H22 −0.2287 0.2282 0.2325 0.033*
C23 −0.0676 (4) 0.19100 (12) 0.36846 (12) 0.0311 (3)
C24 0.1372 (4) 0.23142 (14) 0.44313 (11) 0.0331 (3)
C25 0.3238 (4) 0.33270 (14) 0.43629 (11) 0.0340 (3)
H25 0.4635 0.3586 0.4882 0.041*
C26 0.3048 (3) 0.39627 (13) 0.35244 (11) 0.0288 (3)
H26 0.4318 0.4663 0.3460 0.035*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0247 (5) 0.0239 (5) 0.0325 (5) 0.0021 (4) −0.0024 (4) 0.0049 (4)
O11 0.0309 (6) 0.0452 (7) 0.0386 (6) −0.0094 (5) −0.0049 (5) 0.0001 (5)
O12 0.0619 (8) 0.0383 (6) 0.0242 (5) −0.0074 (6) −0.0096 (5) 0.0047 (5)
O21 0.0448 (7) 0.0259 (5) 0.0441 (7) 0.0067 (5) −0.0002 (5) 0.0062 (5)
O22 0.0430 (7) 0.0330 (6) 0.0513 (8) −0.0089 (5) −0.0068 (6) −0.0017 (5)
O31 0.0333 (6) 0.0687 (9) 0.0396 (7) 0.0038 (6) −0.0145 (5) 0.0077 (6)
O32 0.0586 (8) 0.0348 (6) 0.0334 (6) 0.0051 (6) −0.0104 (5) 0.0090 (5)
N1 0.0279 (6) 0.0239 (6) 0.0266 (6) 0.0032 (5) −0.0062 (5) 0.0012 (5)
N2 0.0325 (7) 0.0246 (6) 0.0319 (7) 0.0016 (5) 0.0041 (5) −0.0013 (5)
N3 0.0312 (6) 0.0362 (7) 0.0238 (6) 0.0115 (5) −0.0037 (5) 0.0000 (5)
C11 0.0205 (6) 0.0256 (6) 0.0227 (6) 0.0048 (5) 0.0011 (5) 0.0017 (5)
C12 0.0225 (6) 0.0252 (7) 0.0222 (6) 0.0026 (5) −0.0018 (5) −0.0011 (5)
C13 0.0260 (7) 0.0247 (7) 0.0244 (6) 0.0049 (5) −0.0008 (5) 0.0020 (5)
C14 0.0264 (7) 0.0224 (6) 0.0276 (7) 0.0025 (5) 0.0015 (5) 0.0004 (5)
C15 0.0240 (7) 0.0304 (7) 0.0241 (7) 0.0028 (5) −0.0008 (5) −0.0031 (5)
C16 0.0228 (6) 0.0296 (7) 0.0217 (6) 0.0059 (5) −0.0019 (5) 0.0019 (5)
Cl1 0.0631 (3) 0.0281 (2) 0.0538 (3) −0.00226 (18) −0.0007 (2) 0.01280 (18)
F1 0.0680 (7) 0.0454 (6) 0.0299 (5) 0.0140 (5) −0.0025 (5) 0.0148 (4)
N4 0.0270 (6) 0.0236 (6) 0.0249 (6) 0.0038 (5) −0.0040 (5) 0.0029 (5)
C21 0.0260 (7) 0.0241 (6) 0.0234 (6) 0.0089 (5) −0.0004 (5) 0.0020 (5)
C22 0.0326 (7) 0.0225 (7) 0.0280 (7) 0.0071 (5) −0.0031 (5) 0.0002 (5)
C23 0.0386 (8) 0.0222 (7) 0.0335 (8) 0.0077 (6) 0.0024 (6) 0.0044 (6)
C24 0.0442 (9) 0.0338 (8) 0.0239 (7) 0.0149 (7) 0.0017 (6) 0.0074 (6)
C25 0.0385 (8) 0.0394 (9) 0.0244 (7) 0.0078 (7) −0.0057 (6) 0.0002 (6)
C26 0.0301 (7) 0.0291 (7) 0.0270 (7) 0.0037 (6) −0.0028 (5) 0.0005 (6)

Geometric parameters (Å, º)

O1—C11 1.2695 (17) C15—H15 0.9500
O11—N1 1.2244 (16) Cl1—C23 1.7234 (16)
O12—N1 1.2300 (17) F1—C24 1.3439 (17)
O21—N2 1.2345 (17) N4—C21 1.4651 (17)
O22—N2 1.2240 (18) N4—H41 0.91 (2)
O31—N3 1.2253 (18) N4—H42 0.89 (2)
O32—N3 1.2244 (18) N4—H43 0.96 (2)
N1—C12 1.4524 (17) C21—C22 1.383 (2)
N2—C14 1.4510 (18) C21—C26 1.385 (2)
N3—C16 1.4623 (17) C22—C23 1.387 (2)
C11—C12 1.4355 (19) C22—H22 0.9500
C11—C16 1.4375 (19) C23—C24 1.385 (2)
C12—C13 1.3754 (19) C24—C25 1.377 (2)
C13—C14 1.386 (2) C25—C26 1.386 (2)
C13—H13 0.9500 C25—H25 0.9500
C14—C15 1.386 (2) C26—H26 0.9500
C15—C16 1.376 (2)
O11—N1—O12 123.14 (12) C11—C16—N3 119.69 (12)
O11—N1—C12 119.24 (12) C21—N4—H41 108.0 (13)
O12—N1—C12 117.62 (12) C21—N4—H42 112.0 (13)
O22—N2—O21 123.61 (13) H41—N4—H42 106.5 (18)
O22—N2—C14 118.27 (13) C21—N4—H43 110.8 (12)
O21—N2—C14 118.10 (13) H41—N4—H43 109.2 (18)
O32—N3—O31 123.48 (13) H42—N4—H43 110.1 (17)
O32—N3—C16 119.18 (13) C22—C21—C26 122.33 (13)
O31—N3—C16 117.33 (13) C22—C21—N4 119.08 (12)
O1—C11—C12 122.68 (12) C26—C21—N4 118.59 (13)
O1—C11—C16 125.23 (12) C21—C22—C23 118.25 (14)
C12—C11—C16 111.95 (12) C21—C22—H22 120.9
C13—C12—C11 125.38 (13) C23—C22—H22 120.9
C13—C12—N1 116.10 (12) C24—C23—C22 119.53 (14)
C11—C12—N1 118.42 (12) C24—C23—Cl1 119.67 (12)
C12—C13—C14 117.90 (13) C22—C23—Cl1 120.80 (12)
C12—C13—H13 121.1 F1—C24—C25 119.18 (15)
C14—C13—H13 121.1 F1—C24—C23 118.91 (15)
C13—C14—C15 121.54 (13) C25—C24—C23 121.91 (14)
C13—C14—N2 119.12 (13) C24—C25—C26 118.99 (14)
C15—C14—N2 119.29 (13) C24—C25—H25 120.5
C16—C15—C14 118.98 (13) C26—C25—H25 120.5
C16—C15—H15 120.5 C21—C26—C25 118.99 (14)
C14—C15—H15 120.5 C21—C26—H26 120.5
C15—C16—C11 124.21 (12) C25—C26—H26 120.5
C15—C16—N3 116.09 (12)
O1—C11—C12—C13 −177.10 (13) C12—C11—C16—C15 0.7 (2)
C16—C11—C12—C13 −1.1 (2) O1—C11—C16—N3 −2.3 (2)
O1—C11—C12—N1 −0.8 (2) C12—C11—C16—N3 −178.15 (12)
C16—C11—C12—N1 175.13 (12) O32—N3—C16—C15 155.61 (14)
O11—N1—C12—C13 −137.00 (14) O31—N3—C16—C15 −24.3 (2)
O12—N1—C12—C13 42.61 (19) O32—N3—C16—C11 −25.4 (2)
O11—N1—C12—C11 46.39 (19) O31—N3—C16—C11 154.69 (14)
O12—N1—C12—C11 −134.00 (14) C26—C21—C22—C23 0.3 (2)
C11—C12—C13—C14 −0.1 (2) N4—C21—C22—C23 −178.97 (13)
N1—C12—C13—C14 −176.40 (13) C21—C22—C23—C24 0.3 (2)
C12—C13—C14—C15 1.8 (2) C21—C22—C23—Cl1 −179.12 (11)
C12—C13—C14—N2 179.32 (13) C22—C23—C24—F1 179.76 (14)
O22—N2—C14—C13 −164.06 (14) Cl1—C23—C24—F1 −0.8 (2)
O21—N2—C14—C13 14.7 (2) C22—C23—C24—C25 −0.6 (2)
O22—N2—C14—C15 13.5 (2) Cl1—C23—C24—C25 178.80 (13)
O21—N2—C14—C15 −167.71 (14) F1—C24—C25—C26 180.00 (15)
C13—C14—C15—C16 −2.2 (2) C23—C24—C25—C26 0.4 (3)
N2—C14—C15—C16 −179.71 (13) C22—C21—C26—C25 −0.5 (2)
C14—C15—C16—C11 0.9 (2) N4—C21—C26—C25 178.73 (14)
C14—C15—C16—N3 179.77 (13) C24—C25—C26—C21 0.2 (2)
O1—C11—C16—C15 176.55 (13)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N4—H41···O1i 0.91 (2) 1.85 (2) 2.7324 (17) 165 (2)
N4—H42···O12ii 0.89 (2) 2.40 (2) 3.0599 (18) 131.2 (16)
N4—H42···O11ii 0.89 (2) 2.60 (2) 3.3425 (17) 141.8 (16)
N4—H43···O1 0.96 (2) 1.81 (2) 2.7579 (16) 172.7 (18)
C13—H13···O21iii 0.95 2.47 3.3152 (19) 148
C26—H26···O32 0.95 2.49 3.378 (2) 156

Symmetry codes: (i) x−1, y, z; (ii) −x, −y+1, −z; (iii) −x+1, −y+2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2490).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  2. Betz, R., Gerber, T., Hosten, E., Dayananda, A. S., Yathirajan, H. S. & Narayana, B. (2011). Acta Cryst. E67, o2587–o2588. [DOI] [PMC free article] [PubMed]
  3. Bruker (2008). SADABS Bruker Inc., Madison, Wisconsin, USA.
  4. Bruker (2010). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Dutkiewicz, G., Samshuddin, S., Narayana, B., Yathirajan, H. S. & Kubicki, M. (2011). Acta Cryst. E67, o235. [DOI] [PMC free article] [PubMed]
  6. Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [DOI] [PubMed]
  7. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  8. Jasinski, J. P., Butcher, R. J., Hakim Al-arique, Q. N. M., Yathirajan, H. S. & Narayana, B. (2011). Acta Cryst. E67, o637–o638. [DOI] [PMC free article] [PubMed]
  9. Jasinski, J. P., Butcher, R. J., Yathirajan, H. S., Narayana, B. & Prakash Kamath, K. (2010a). Acta Cryst. E66, o1187–o1188. [DOI] [PMC free article] [PubMed]
  10. Jasinski, J. P., Butcher, R. J., Yathirajan, H. S., Narayana, B. & Prakash Kamath, K. (2010b). Acta Cryst. E66, o1189–o1190. [DOI] [PMC free article] [PubMed]
  11. Jin, S.-W., Chen, B.-X., Ge, Y.-S., Yin, H.-B. & Fang, Y.-P. (2011). Acta Cryst. E67, o1694.
  12. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  15. Wang, W.-Q. (2011). Acta Cryst. E67, o860. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813000718/bg2490sup1.cif

e-69-0o240-sup1.cif (22.5KB, cif)

Supplementary material file. DOI: 10.1107/S1600536813000718/bg2490Isup2.cdx

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813000718/bg2490Isup3.hkl

e-69-0o240-Isup3.hkl (172.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813000718/bg2490Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES