Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Jan 16;69(Pt 2):o242. doi: 10.1107/S1600536813000913

[8-(4-Phen­oxy­benzo­yl)-2,7-bis­(propan-2-yl­oxy)naphthalen-1-yl](4-phen­oxy­phen­yl)methanone

Sayaka Yoshiwaka a, Daichi Hijikata a, Kosuke Sasagawa a, Akiko Okamoto a,*, Noriyuki Yonezawa a
PMCID: PMC3569775  PMID: 23424521

Abstract

The entire title mol­ecule, C42H36O6, is completed by the application of a twofold axis. The 4-phen­oxy­benzoyl groups at the 1- and 8-positions of the naphthalene ring system are aligned almost anti­parallel. The dihedral angle between the best planes of the benzene rings of the benzoyl moieties and the naphthalene ring system is 70.52 (5)° and that between the best planes of the benzene rings of the phen­oxy groups and the naphthalene ring system is 27.80 (6)°. In the crystal, mol­ecules are linked into a three-dimensional architecture by C—H⋯O and C—H⋯π inter­actions.

Related literature  

For electrophilic aromatic aroylation of the naphthalene core, see; Okamoto & Yonezawa (2009); Okamoto et al. (2011). For the structures of closely related compounds, see: Hijikata et al. (2010); Sasagawa et al. (2012); Muto et al. (2010); Nakaema et al. (2008).graphic file with name e-69-0o242-scheme1.jpg

Experimental  

Crystal data  

  • C42H36O6

  • M r = 636.71

  • Monoclinic, Inline graphic

  • a = 22.7084 (4) Å

  • b = 10.3582 (2) Å

  • c = 14.7152 (3) Å

  • β = 100.106 (1)°

  • V = 3407.58 (11) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.66 mm−1

  • T = 193 K

  • 0.60 × 0.60 × 0.50 mm

Data collection  

  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999) T min = 0.693, T max = 0.734

  • 28911 measured reflections

  • 3101 independent reflections

  • 2749 reflections with I > 2σ(I)

  • R int = 0.029

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.036

  • wR(F 2) = 0.096

  • S = 1.04

  • 3101 reflections

  • 221 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.16 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: Il Milione (Burla et al., 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813000913/pk2459sup1.cif

e-69-0o242-sup1.cif (20.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813000913/pk2459Isup2.hkl

e-69-0o242-Isup2.hkl (152.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813000913/pk2459Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg is the centroid of the C8–C13 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯O1i 0.95 2.44 3.3398 (15) 158
C16—H16⋯Cg ii 0.95 2.97 3.8383 (19) 152

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors express their gratitude to Professor Keiichi Noguchi, Instrumentation Analysis Center, Tokyo University of Agriculture & Technology, for technical advice. This work was partially supported by the Shorai Foundation for Science and Technology.

supplementary crystallographic information

Comment

In the course of our study on electrophilic aromatic aroylation of the naphthalene ring core, 1,8-diaroylnaphthalene compounds have proved to be formed regioselectively by the choice of suitable acidic mediators (Okamoto & Yonezawa, 2009 Okamoto et al., 2011). Recently, we have reported the crystal structures of several 1,8-diaroylated naphthalene analogues exemplified by 1,8-dibenzoyl-2,7-dimethoxynaphtalene (Nakaema et al., 2008), [2,7-dimethoxy-8-(4-propylbenzoyl)naphthalene-1-yl]-(4-propylphenyl)methanone (Sasagawa et al., 2012) and [2,7-dimethoxy-8-(4-methylbenzoyl)-1-naphthyl](4-methylphenyl)methanone (Muto et al. 2010). In the crystals of these compounds, two aroyl groups tend to attach to the naphthalene ring in nearly perpendicular manners and oriented in the opposite direction (anti-orientation). Recently, the crystal structure of 2,7-dimethoxy-1,8-bis(4-phenoxybenzoyl)naphthalene has been clarified to take syn-orientation, where two phenoxybenzoyl groups are positioned on the same side against the naphthalene ring plane (Hijikata et al. 2010). As a part of our continuing studies on the molecular structures of these kinds of homologous molecules, the X-ray crystal structure of the title compound peri-aroylnaphthalene bearing isopropoxy groups at the 2,7-positions is discussed in this article.

The molecular structure of the title compounds is displayed in Fig 1. Two 4-phenoxybenzoyl groups are situated in anti-orientation and are twisted away from the attached naphthalene ring. This molecule lies on a crystallographic 2-fold axis so that the asymmetric unit consists of one-half of the molecule. The dihedral angle between the best plane of the inner benzene ring of the 4-phenoxybenzoyl groups and the naphthalene system is 70.52 (5)°.

Centrosymmetrically related molecules are linked into dimeric unit by pairs of C—H···π interactions between the hydrogen atom (H16) on the terminal phenoxy group and the π-system of the benzene ring in the benzoyl moiety (C8–C13) (C16—H16···Cgiii, Fig. 2). The molecules of the title compound are aligned in an antiparallel fashion with the adjacent molecule. The terminal benzene ring of the phenoxybenzoyl group interacts with the inner benzene ring of the phenoxybenzoyl group of the adjacent molecule. Both of the pairs of the facing benzene rings in the couple of the phenoxybenzoyl groups are situated almost perpendicularly to the benzene ring in the benzoyl moiety (C8–C13). Then two identical interactions are formed to give cyclic structure between the two phenoxybenzoyl groups.

Furthermore, an oxygen atom of the carbonyl group forms intermolecular C—H···O interaction with the m-hydrogen of the benzoyl benzene ring of the other adjacent molecule (C12—H12···O1 = 2.44 Å, Fig. 3).

Experimental

1,8-(4-phenoxybenzoyl)-2,7-dihydroxynaphtalene (0.3 mmol, 157 mg), tetrabutylammonium iodide (0.03 mmol, 113 mg), potassium carbonate (0.9 mmol, 127 mg) and DMF (0.75 ml) were placed into a 10 ml flask, followed by stirring at room temperature under nitrogen for 1 h. 2-Bromopropane (1.8 mmol, 224 mg) was to the solution and heated at 70 °C for 5 h. After cooling to room temperature, the reaction mixture was poured into ice-cold water (20 ml). The aqueous layer was extracted with ethyl acetate (20 ml × 2). The combined extracts were washed with 2 M aqueous NaOH followed by washing the brine. The extracts thus obtained were dried over anhydrous MgSO4. The solvent was removed under reduced pressure to give a cake (yield 22%). Colourless single crystals suitable for X-ray diffraction were obtained by repeated crystallization from methanol.

1H NMR δ (300 MHz, CDCl3): 1.04 (12H, d, J = 6.0 Hz), 4.51 (2H, sep, J = 6.0 Hz), 6.89 (4H, d, J = 8.1 Hz), 7.09 (4H, d, J = 8.1 Hz), 7.13 (2H, d, J = 9.0 Hz), 7.17 (2H, d, J = 8.1 Hz), 7.37 (4H, t, J = 8.1 Hz), 7.70 (4H, d, J = 8.1 Hz), 7.86 (2H, d, J = 9.0 Hz),

13C NMR δ (125 MHz, CDCl3): 21.6, 71.5, 113.1, 116.7, 120.0, 122.6, 124.1, 125.2, 129.8, 130.4, 131.3, 131.6, 134.3, 154.6, 155.8, 161.1, 196.0 p.p.m.

IR (KBr): 1656 (C=O), 1601, 1505, 1452 (Ar), 1267 (C—O—C) cm-1

HRMS (m/z): [M+H]+ called. for C42H37O6, 637.2581, found, 637.2590.

m.p. = 450.2–451.4 K

Refinement

All H atoms were found in a difference map and were subsequently refined as riding atoms, with C–H = 0.95 (aromatic), 0.98 (methyl) and 1.00 (methine) Å and with Uiso(H) = 1.2 Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of compound (I). Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

A partial packing diagram of compound (I), showing the intermolecular C—H···π interactions (dashed lines). Cg is the centroid of the C8—C13 ring. Symmetry code: (iii) 1 - x, -y, - z +2.

Fig. 3.

Fig. 3.

A partial packing diagram of compound (I), showing the C12–H12···O1 hydrogen interactions (dashed lines). Symmetry code: x, 1 - y, 1/2 + z.

Crystal data

C42H36O6 F(000) = 1344
Mr = 636.71 Dx = 1.241 Mg m3
Monoclinic, C2/c Cu Kα radiation, λ = 1.54187 Å
Hall symbol: -C 2yc Cell parameters from 26902 reflections
a = 22.7084 (4) Å θ = 3.1–68.3°
b = 10.3582 (2) Å µ = 0.66 mm1
c = 14.7152 (3) Å T = 193 K
β = 100.106 (1)° Block, colorless
V = 3407.58 (11) Å3 0.60 × 0.60 × 0.50 mm
Z = 4

Data collection

Rigaku R-AXIS RAPID diffractometer 3101 independent reflections
Radiation source: rotaing anode 2749 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.029
Detector resolution: 10.000 pixels mm-1 θmax = 68.3°, θmin = 4.0°
ω scans h = −27→27
Absorption correction: numerical (NUMABS; Higashi, 1999) k = −12→12
Tmin = 0.693, Tmax = 0.734 l = −17→17
28911 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036 H-atom parameters constrained
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.0477P)2 + 1.7648P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max = 0.001
3101 reflections Δρmax = 0.21 e Å3
221 parameters Δρmin = −0.16 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.00263 (12)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.43879 (4) 0.44016 (8) 0.67336 (6) 0.0378 (2)
O2 0.34771 (4) 0.63044 (8) 0.78791 (7) 0.0418 (3)
O3 0.40230 (5) 0.16418 (9) 1.04457 (6) 0.0475 (3)
C3 0.5000 0.83092 (15) 0.7500 0.0279 (4)
C8 0.42720 (5) 0.40189 (11) 0.82730 (8) 0.0288 (3)
C7 0.43753 (5) 0.48524 (11) 0.74958 (8) 0.0290 (3)
C2 0.5000 0.69308 (15) 0.7500 0.0263 (3)
C5 0.39876 (6) 0.83609 (12) 0.78052 (9) 0.0341 (3)
H5 0.3651 0.8834 0.7926 0.041*
C1 0.44642 (5) 0.62900 (11) 0.76338 (8) 0.0281 (3)
C6 0.39740 (5) 0.70012 (11) 0.77734 (8) 0.0317 (3)
C9 0.41352 (6) 0.27221 (11) 0.81026 (8) 0.0312 (3)
H9 0.4104 0.2394 0.7493 0.037*
C13 0.43221 (6) 0.44792 (11) 0.91753 (8) 0.0340 (3)
H13 0.4417 0.5362 0.9301 0.041*
C10 0.40443 (6) 0.19034 (11) 0.88074 (8) 0.0326 (3)
H10 0.3947 0.1022 0.8683 0.039*
C11 0.40974 (6) 0.23839 (12) 0.96986 (8) 0.0330 (3)
C12 0.42366 (6) 0.36733 (12) 0.98865 (9) 0.0369 (3)
H12 0.4272 0.3996 1.0498 0.044*
C14 0.38932 (6) 0.03327 (12) 1.03096 (8) 0.0374 (3)
C15 0.43487 (7) −0.05536 (14) 1.05092 (9) 0.0429 (3)
H15 0.4750 −0.0273 1.0699 0.052*
C20 0.28915 (6) 0.68545 (14) 0.75933 (11) 0.0458 (4)
H20 0.2858 0.7664 0.7951 0.055*
C16 0.42179 (8) −0.18549 (14) 1.04313 (10) 0.0509 (4)
H16 0.4530 −0.2472 1.0576 0.061*
C19 0.33118 (7) −0.00546 (14) 1.00293 (11) 0.0475 (4)
H19 0.2999 0.0563 0.9898 0.057*
C17 0.36410 (8) −0.22609 (14) 1.01469 (11) 0.0554 (4)
H17 0.3553 −0.3157 1.0092 0.066*
C18 0.31893 (8) −0.13676 (16) 0.99415 (12) 0.0568 (4)
H18 0.2790 −0.1650 0.9738 0.068*
C21 0.24694 (7) 0.58531 (18) 0.78572 (15) 0.0677 (5)
H21A 0.2491 0.5069 0.7492 0.102*
H21B 0.2060 0.6190 0.7736 0.102*
H21C 0.2583 0.5650 0.8515 0.102*
C22 0.27768 (9) 0.7160 (2) 0.65854 (14) 0.0779 (6)
H22B 0.3046 0.7852 0.6462 0.117*
H22C 0.2361 0.7439 0.6398 0.117*
H22A 0.2848 0.6388 0.6235 0.117*
C4 0.44890 (5) 0.89855 (11) 0.76600 (8) 0.0310 (3)
H4 0.4496 0.9903 0.7667 0.037*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0591 (6) 0.0264 (4) 0.0288 (5) −0.0060 (4) 0.0102 (4) −0.0024 (3)
O2 0.0344 (5) 0.0291 (5) 0.0639 (6) −0.0017 (4) 0.0141 (4) 0.0045 (4)
O3 0.0838 (7) 0.0299 (5) 0.0307 (5) −0.0094 (5) 0.0151 (5) 0.0025 (4)
C3 0.0356 (9) 0.0225 (8) 0.0252 (8) 0.000 0.0040 (7) 0.000
C8 0.0332 (6) 0.0226 (6) 0.0307 (6) −0.0009 (5) 0.0062 (5) −0.0004 (5)
C7 0.0330 (6) 0.0238 (6) 0.0300 (6) −0.0019 (5) 0.0047 (5) −0.0010 (5)
C2 0.0356 (9) 0.0211 (8) 0.0217 (8) 0.000 0.0041 (6) 0.000
C5 0.0372 (7) 0.0263 (6) 0.0402 (7) 0.0041 (5) 0.0102 (5) −0.0019 (5)
C1 0.0368 (6) 0.0215 (6) 0.0260 (6) −0.0007 (5) 0.0053 (5) 0.0009 (4)
C6 0.0351 (6) 0.0264 (6) 0.0342 (6) −0.0033 (5) 0.0079 (5) 0.0005 (5)
C9 0.0414 (7) 0.0249 (6) 0.0282 (6) −0.0028 (5) 0.0082 (5) −0.0030 (5)
C13 0.0459 (7) 0.0220 (6) 0.0339 (7) −0.0032 (5) 0.0071 (5) −0.0037 (5)
C10 0.0445 (7) 0.0203 (6) 0.0336 (7) −0.0039 (5) 0.0091 (5) −0.0015 (5)
C11 0.0424 (7) 0.0276 (6) 0.0299 (6) −0.0008 (5) 0.0090 (5) 0.0036 (5)
C12 0.0528 (8) 0.0301 (6) 0.0280 (6) −0.0022 (6) 0.0079 (5) −0.0035 (5)
C14 0.0569 (8) 0.0298 (6) 0.0274 (6) −0.0047 (6) 0.0120 (6) 0.0054 (5)
C15 0.0485 (8) 0.0450 (8) 0.0350 (7) −0.0007 (6) 0.0067 (6) 0.0031 (6)
C20 0.0350 (7) 0.0392 (7) 0.0631 (9) −0.0008 (6) 0.0086 (6) 0.0002 (7)
C16 0.0712 (10) 0.0380 (8) 0.0445 (8) 0.0107 (7) 0.0131 (7) 0.0081 (6)
C19 0.0496 (8) 0.0442 (8) 0.0497 (8) 0.0024 (6) 0.0114 (7) 0.0080 (6)
C17 0.0856 (12) 0.0317 (7) 0.0525 (9) −0.0101 (8) 0.0222 (8) 0.0046 (6)
C18 0.0566 (9) 0.0569 (10) 0.0590 (10) −0.0201 (8) 0.0159 (8) 0.0014 (8)
C21 0.0414 (8) 0.0627 (11) 0.1020 (15) −0.0074 (8) 0.0205 (9) 0.0098 (10)
C22 0.0671 (12) 0.0893 (14) 0.0687 (12) −0.0250 (10) −0.0120 (9) 0.0140 (11)
C4 0.0408 (7) 0.0190 (5) 0.0332 (6) 0.0015 (5) 0.0064 (5) −0.0017 (5)

Geometric parameters (Å, º)

O1—C7 1.2198 (14) C11—C12 1.3891 (17)
O2—C6 1.3711 (14) C12—H12 0.9500
O2—C20 1.4401 (16) C14—C19 1.372 (2)
O3—C11 1.3760 (14) C14—C15 1.376 (2)
O3—C14 1.3947 (15) C15—C16 1.381 (2)
C3—C4 1.4101 (14) C15—H15 0.9500
C3—C4i 1.4102 (14) C20—C22 1.494 (2)
C3—C2 1.428 (2) C20—C21 1.509 (2)
C8—C9 1.3916 (16) C20—H20 1.0000
C8—C13 1.3966 (17) C16—C17 1.370 (2)
C8—C7 1.4841 (16) C16—H16 0.9500
C7—C1 1.5116 (16) C19—C18 1.390 (2)
C2—C1i 1.4295 (13) C19—H19 0.9500
C2—C1 1.4295 (13) C17—C18 1.375 (2)
C5—C4 1.3586 (17) C17—H17 0.9500
C5—C6 1.4094 (17) C18—H18 0.9500
C5—H5 0.9500 C21—H21A 0.9800
C1—C6 1.3800 (17) C21—H21B 0.9800
C9—C10 1.3829 (17) C21—H21C 0.9800
C9—H9 0.9500 C22—H22B 0.9800
C13—C12 1.3788 (18) C22—H22C 0.9800
C13—H13 0.9500 C22—H22A 0.9800
C10—C11 1.3881 (17) C4—H4 0.9500
C10—H10 0.9500
C6—O2—C20 119.65 (10) C19—C14—O3 119.69 (13)
C11—O3—C14 118.75 (10) C15—C14—O3 119.09 (13)
C4—C3—C4i 120.42 (15) C14—C15—C16 119.40 (14)
C4—C3—C2 119.79 (7) C14—C15—H15 120.3
C4i—C3—C2 119.79 (7) C16—C15—H15 120.3
C9—C8—C13 118.63 (11) O2—C20—C22 111.41 (14)
C9—C8—C7 118.90 (10) O2—C20—C21 104.39 (12)
C13—C8—C7 122.45 (10) C22—C20—C21 113.15 (15)
O1—C7—C8 121.21 (10) O2—C20—H20 109.3
O1—C7—C1 118.46 (10) C22—C20—H20 109.3
C8—C7—C1 120.33 (10) C21—C20—H20 109.3
C3—C2—C1i 117.67 (7) C17—C16—C15 120.36 (15)
C3—C2—C1 117.67 (7) C17—C16—H16 119.8
C1i—C2—C1 124.67 (14) C15—C16—H16 119.8
C4—C5—C6 119.00 (11) C14—C19—C18 118.71 (14)
C4—C5—H5 120.5 C14—C19—H19 120.6
C6—C5—H5 120.5 C18—C19—H19 120.6
C6—C1—C2 120.06 (11) C16—C17—C18 119.81 (14)
C6—C1—C7 116.97 (10) C16—C17—H17 120.1
C2—C1—C7 122.40 (11) C18—C17—H17 120.1
O2—C6—C1 115.93 (10) C17—C18—C19 120.58 (15)
O2—C6—C5 122.41 (11) C17—C18—H18 119.7
C1—C6—C5 121.65 (11) C19—C18—H18 119.7
C10—C9—C8 120.99 (11) C20—C21—H21A 109.5
C10—C9—H9 119.5 C20—C21—H21B 109.5
C8—C9—H9 119.5 H21A—C21—H21B 109.5
C12—C13—C8 121.08 (11) C20—C21—H21C 109.5
C12—C13—H13 119.5 H21A—C21—H21C 109.5
C8—C13—H13 119.5 H21B—C21—H21C 109.5
C9—C10—C11 119.28 (11) C20—C22—H22B 109.5
C9—C10—H10 120.4 C20—C22—H22C 109.5
C11—C10—H10 120.4 H22B—C22—H22C 109.5
O3—C11—C10 123.51 (11) C20—C22—H22A 109.5
O3—C11—C12 115.70 (11) H22B—C22—H22A 109.5
C10—C11—C12 120.79 (11) H22C—C22—H22A 109.5
C13—C12—C11 119.24 (11) C5—C4—C3 121.77 (11)
C13—C12—H12 120.4 C5—C4—H4 119.1
C11—C12—H12 120.4 C3—C4—H4 119.1
C19—C14—C15 121.12 (13)
C9—C8—C7—O1 −5.73 (18) C9—C8—C13—C12 −0.21 (19)
C13—C8—C7—O1 172.58 (12) C7—C8—C13—C12 −178.51 (12)
C9—C8—C7—C1 173.94 (11) C8—C9—C10—C11 −0.71 (19)
C13—C8—C7—C1 −7.76 (17) C14—O3—C11—C10 0.68 (19)
C4—C3—C2—C1i −177.89 (7) C14—O3—C11—C12 −178.86 (12)
C4i—C3—C2—C1i 2.11 (7) C9—C10—C11—O3 −179.14 (12)
C4—C3—C2—C1 2.11 (7) C9—C10—C11—C12 0.38 (19)
C4i—C3—C2—C1 −177.89 (7) C8—C13—C12—C11 −0.1 (2)
C3—C2—C1—C6 −1.15 (12) O3—C11—C12—C13 179.58 (12)
C1i—C2—C1—C6 178.85 (12) C10—C11—C12—C13 0.0 (2)
C3—C2—C1—C7 169.94 (8) C11—O3—C14—C19 −84.84 (16)
C1i—C2—C1—C7 −10.06 (8) C11—O3—C14—C15 98.74 (15)
O1—C7—C1—C6 110.54 (13) C19—C14—C15—C16 −0.4 (2)
C8—C7—C1—C6 −69.13 (14) O3—C14—C15—C16 175.98 (12)
O1—C7—C1—C2 −60.81 (15) C6—O2—C20—C22 60.29 (17)
C8—C7—C1—C2 119.52 (11) C6—O2—C20—C21 −177.26 (13)
C20—O2—C6—C1 −150.33 (12) C14—C15—C16—C17 0.8 (2)
C20—O2—C6—C5 29.72 (18) C15—C14—C19—C18 −0.5 (2)
C2—C1—C6—O2 178.90 (9) O3—C14—C19—C18 −176.89 (13)
C7—C1—C6—O2 7.34 (16) C15—C16—C17—C18 −0.3 (2)
C2—C1—C6—C5 −1.14 (17) C16—C17—C18—C19 −0.7 (2)
C7—C1—C6—C5 −172.70 (11) C14—C19—C18—C17 1.1 (2)
C4—C5—C6—O2 −177.55 (11) C6—C5—C4—C3 −1.49 (18)
C4—C5—C6—C1 2.49 (19) C4i—C3—C4—C5 179.19 (13)
C13—C8—C9—C10 0.62 (18) C2—C3—C4—C5 −0.81 (13)
C7—C8—C9—C10 178.99 (11)

Symmetry code: (i) −x+1, y, −z+3/2.

Hydrogen-bond geometry (Å, º)

Cg is the centroid of the C8–C13 ring.

D—H···A D—H H···A D···A D—H···A
C12—H12···O1ii 0.95 2.44 3.3398 (15) 158
C16—H16···Cgiii 0.95 2.97 3.8383 (19) 152

Symmetry codes: (ii) x, −y+1, z+1/2; (iii) −x+1, −y, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2459).

References

  1. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.
  2. Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.
  3. Higashi, T. (1999). NUMABS Rigaku Corporation, Tokyo, Japan.
  4. Hijikata, D., Takada, T., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2902–o2903. [DOI] [PMC free article] [PubMed]
  5. Muto, T., Kato, Y., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2752. [DOI] [PMC free article] [PubMed]
  6. Nakaema, K., Watanabe, S., Okamoto, A., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o807. [DOI] [PMC free article] [PubMed]
  7. Okamoto, A., Mitsui, R., Oike, H. & Yonezawa, N. (2011). Chem. Lett. 40, 1283–1284.
  8. Okamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914–915.
  9. Rigaku (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  10. Sasagawa, K., Hijikata, D., Sakamoto, R., Okamoto, A. & Yonezawa, N. (2012). Acta Cryst. E68, o2596. [DOI] [PMC free article] [PubMed]
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813000913/pk2459sup1.cif

e-69-0o242-sup1.cif (20.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813000913/pk2459Isup2.hkl

e-69-0o242-Isup2.hkl (152.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813000913/pk2459Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES