Abstract
The entire title molecule, C42H36O6, is completed by the application of a twofold axis. The 4-phenoxybenzoyl groups at the 1- and 8-positions of the naphthalene ring system are aligned almost antiparallel. The dihedral angle between the best planes of the benzene rings of the benzoyl moieties and the naphthalene ring system is 70.52 (5)° and that between the best planes of the benzene rings of the phenoxy groups and the naphthalene ring system is 27.80 (6)°. In the crystal, molecules are linked into a three-dimensional architecture by C—H⋯O and C—H⋯π interactions.
Related literature
For electrophilic aromatic aroylation of the naphthalene core, see; Okamoto & Yonezawa (2009 ▶); Okamoto et al. (2011 ▶). For the structures of closely related compounds, see: Hijikata et al. (2010 ▶); Sasagawa et al. (2012 ▶); Muto et al. (2010 ▶); Nakaema et al. (2008 ▶).
Experimental
Crystal data
C42H36O6
M r = 636.71
Monoclinic,
a = 22.7084 (4) Å
b = 10.3582 (2) Å
c = 14.7152 (3) Å
β = 100.106 (1)°
V = 3407.58 (11) Å3
Z = 4
Cu Kα radiation
μ = 0.66 mm−1
T = 193 K
0.60 × 0.60 × 0.50 mm
Data collection
Rigaku R-AXIS RAPID diffractometer
Absorption correction: numerical (NUMABS; Higashi, 1999 ▶) T min = 0.693, T max = 0.734
28911 measured reflections
3101 independent reflections
2749 reflections with I > 2σ(I)
R int = 0.029
Refinement
R[F 2 > 2σ(F 2)] = 0.036
wR(F 2) = 0.096
S = 1.04
3101 reflections
221 parameters
H-atom parameters constrained
Δρmax = 0.21 e Å−3
Δρmin = −0.16 e Å−3
Data collection: PROCESS-AUTO (Rigaku, 1998 ▶); cell refinement: PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: Il Milione (Burla et al., 2007 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: ORTEPIII (Burnett & Johnson, 1996 ▶); software used to prepare material for publication: SHELXL97.
Supplementary Material
Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813000913/pk2459sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813000913/pk2459Isup2.hkl
Supplementary material file. DOI: 10.1107/S1600536813000913/pk2459Isup3.cml
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
Cg is the centroid of the C8–C13 ring.
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| C12—H12⋯O1i | 0.95 | 2.44 | 3.3398 (15) | 158 |
| C16—H16⋯Cg ii | 0.95 | 2.97 | 3.8383 (19) | 152 |
Symmetry codes: (i)
; (ii)
.
Acknowledgments
The authors express their gratitude to Professor Keiichi Noguchi, Instrumentation Analysis Center, Tokyo University of Agriculture & Technology, for technical advice. This work was partially supported by the Shorai Foundation for Science and Technology.
supplementary crystallographic information
Comment
In the course of our study on electrophilic aromatic aroylation of the naphthalene ring core, 1,8-diaroylnaphthalene compounds have proved to be formed regioselectively by the choice of suitable acidic mediators (Okamoto & Yonezawa, 2009 Okamoto et al., 2011). Recently, we have reported the crystal structures of several 1,8-diaroylated naphthalene analogues exemplified by 1,8-dibenzoyl-2,7-dimethoxynaphtalene (Nakaema et al., 2008), [2,7-dimethoxy-8-(4-propylbenzoyl)naphthalene-1-yl]-(4-propylphenyl)methanone (Sasagawa et al., 2012) and [2,7-dimethoxy-8-(4-methylbenzoyl)-1-naphthyl](4-methylphenyl)methanone (Muto et al. 2010). In the crystals of these compounds, two aroyl groups tend to attach to the naphthalene ring in nearly perpendicular manners and oriented in the opposite direction (anti-orientation). Recently, the crystal structure of 2,7-dimethoxy-1,8-bis(4-phenoxybenzoyl)naphthalene has been clarified to take syn-orientation, where two phenoxybenzoyl groups are positioned on the same side against the naphthalene ring plane (Hijikata et al. 2010). As a part of our continuing studies on the molecular structures of these kinds of homologous molecules, the X-ray crystal structure of the title compound peri-aroylnaphthalene bearing isopropoxy groups at the 2,7-positions is discussed in this article.
The molecular structure of the title compounds is displayed in Fig 1. Two 4-phenoxybenzoyl groups are situated in anti-orientation and are twisted away from the attached naphthalene ring. This molecule lies on a crystallographic 2-fold axis so that the asymmetric unit consists of one-half of the molecule. The dihedral angle between the best plane of the inner benzene ring of the 4-phenoxybenzoyl groups and the naphthalene system is 70.52 (5)°.
Centrosymmetrically related molecules are linked into dimeric unit by pairs of C—H···π interactions between the hydrogen atom (H16) on the terminal phenoxy group and the π-system of the benzene ring in the benzoyl moiety (C8–C13) (C16—H16···Cgiii, Fig. 2). The molecules of the title compound are aligned in an antiparallel fashion with the adjacent molecule. The terminal benzene ring of the phenoxybenzoyl group interacts with the inner benzene ring of the phenoxybenzoyl group of the adjacent molecule. Both of the pairs of the facing benzene rings in the couple of the phenoxybenzoyl groups are situated almost perpendicularly to the benzene ring in the benzoyl moiety (C8–C13). Then two identical interactions are formed to give cyclic structure between the two phenoxybenzoyl groups.
Furthermore, an oxygen atom of the carbonyl group forms intermolecular C—H···O interaction with the m-hydrogen of the benzoyl benzene ring of the other adjacent molecule (C12—H12···O1 = 2.44 Å, Fig. 3).
Experimental
1,8-(4-phenoxybenzoyl)-2,7-dihydroxynaphtalene (0.3 mmol, 157 mg), tetrabutylammonium iodide (0.03 mmol, 113 mg), potassium carbonate (0.9 mmol, 127 mg) and DMF (0.75 ml) were placed into a 10 ml flask, followed by stirring at room temperature under nitrogen for 1 h. 2-Bromopropane (1.8 mmol, 224 mg) was to the solution and heated at 70 °C for 5 h. After cooling to room temperature, the reaction mixture was poured into ice-cold water (20 ml). The aqueous layer was extracted with ethyl acetate (20 ml × 2). The combined extracts were washed with 2 M aqueous NaOH followed by washing the brine. The extracts thus obtained were dried over anhydrous MgSO4. The solvent was removed under reduced pressure to give a cake (yield 22%). Colourless single crystals suitable for X-ray diffraction were obtained by repeated crystallization from methanol.
1H NMR δ (300 MHz, CDCl3): 1.04 (12H, d, J = 6.0 Hz), 4.51 (2H, sep, J = 6.0 Hz), 6.89 (4H, d, J = 8.1 Hz), 7.09 (4H, d, J = 8.1 Hz), 7.13 (2H, d, J = 9.0 Hz), 7.17 (2H, d, J = 8.1 Hz), 7.37 (4H, t, J = 8.1 Hz), 7.70 (4H, d, J = 8.1 Hz), 7.86 (2H, d, J = 9.0 Hz),
13C NMR δ (125 MHz, CDCl3): 21.6, 71.5, 113.1, 116.7, 120.0, 122.6, 124.1, 125.2, 129.8, 130.4, 131.3, 131.6, 134.3, 154.6, 155.8, 161.1, 196.0 p.p.m.
IR (KBr): 1656 (C=O), 1601, 1505, 1452 (Ar), 1267 (C—O—C) cm-1
HRMS (m/z): [M+H]+ called. for C42H37O6, 637.2581, found, 637.2590.
m.p. = 450.2–451.4 K
Refinement
All H atoms were found in a difference map and were subsequently refined as riding atoms, with C–H = 0.95 (aromatic), 0.98 (methyl) and 1.00 (methine) Å and with Uiso(H) = 1.2 Ueq(C).
Figures
Fig. 1.
The molecular structure of compound (I). Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
A partial packing diagram of compound (I), showing the intermolecular C—H···π interactions (dashed lines). Cg is the centroid of the C8—C13 ring. Symmetry code: (iii) 1 - x, -y, - z +2.
Fig. 3.
A partial packing diagram of compound (I), showing the C12–H12···O1 hydrogen interactions (dashed lines). Symmetry code: x, 1 - y, 1/2 + z.
Crystal data
| C42H36O6 | F(000) = 1344 |
| Mr = 636.71 | Dx = 1.241 Mg m−3 |
| Monoclinic, C2/c | Cu Kα radiation, λ = 1.54187 Å |
| Hall symbol: -C 2yc | Cell parameters from 26902 reflections |
| a = 22.7084 (4) Å | θ = 3.1–68.3° |
| b = 10.3582 (2) Å | µ = 0.66 mm−1 |
| c = 14.7152 (3) Å | T = 193 K |
| β = 100.106 (1)° | Block, colorless |
| V = 3407.58 (11) Å3 | 0.60 × 0.60 × 0.50 mm |
| Z = 4 |
Data collection
| Rigaku R-AXIS RAPID diffractometer | 3101 independent reflections |
| Radiation source: rotaing anode | 2749 reflections with I > 2σ(I) |
| Graphite monochromator | Rint = 0.029 |
| Detector resolution: 10.000 pixels mm-1 | θmax = 68.3°, θmin = 4.0° |
| ω scans | h = −27→27 |
| Absorption correction: numerical (NUMABS; Higashi, 1999) | k = −12→12 |
| Tmin = 0.693, Tmax = 0.734 | l = −17→17 |
| 28911 measured reflections |
Refinement
| Refinement on F2 | Secondary atom site location: difference Fourier map |
| Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
| R[F2 > 2σ(F2)] = 0.036 | H-atom parameters constrained |
| wR(F2) = 0.096 | w = 1/[σ2(Fo2) + (0.0477P)2 + 1.7648P] where P = (Fo2 + 2Fc2)/3 |
| S = 1.04 | (Δ/σ)max = 0.001 |
| 3101 reflections | Δρmax = 0.21 e Å−3 |
| 221 parameters | Δρmin = −0.16 e Å−3 |
| 0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
| Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.00263 (12) |
Special details
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| O1 | 0.43879 (4) | 0.44016 (8) | 0.67336 (6) | 0.0378 (2) | |
| O2 | 0.34771 (4) | 0.63044 (8) | 0.78791 (7) | 0.0418 (3) | |
| O3 | 0.40230 (5) | 0.16418 (9) | 1.04457 (6) | 0.0475 (3) | |
| C3 | 0.5000 | 0.83092 (15) | 0.7500 | 0.0279 (4) | |
| C8 | 0.42720 (5) | 0.40189 (11) | 0.82730 (8) | 0.0288 (3) | |
| C7 | 0.43753 (5) | 0.48524 (11) | 0.74958 (8) | 0.0290 (3) | |
| C2 | 0.5000 | 0.69308 (15) | 0.7500 | 0.0263 (3) | |
| C5 | 0.39876 (6) | 0.83609 (12) | 0.78052 (9) | 0.0341 (3) | |
| H5 | 0.3651 | 0.8834 | 0.7926 | 0.041* | |
| C1 | 0.44642 (5) | 0.62900 (11) | 0.76338 (8) | 0.0281 (3) | |
| C6 | 0.39740 (5) | 0.70012 (11) | 0.77734 (8) | 0.0317 (3) | |
| C9 | 0.41352 (6) | 0.27221 (11) | 0.81026 (8) | 0.0312 (3) | |
| H9 | 0.4104 | 0.2394 | 0.7493 | 0.037* | |
| C13 | 0.43221 (6) | 0.44792 (11) | 0.91753 (8) | 0.0340 (3) | |
| H13 | 0.4417 | 0.5362 | 0.9301 | 0.041* | |
| C10 | 0.40443 (6) | 0.19034 (11) | 0.88074 (8) | 0.0326 (3) | |
| H10 | 0.3947 | 0.1022 | 0.8683 | 0.039* | |
| C11 | 0.40974 (6) | 0.23839 (12) | 0.96986 (8) | 0.0330 (3) | |
| C12 | 0.42366 (6) | 0.36733 (12) | 0.98865 (9) | 0.0369 (3) | |
| H12 | 0.4272 | 0.3996 | 1.0498 | 0.044* | |
| C14 | 0.38932 (6) | 0.03327 (12) | 1.03096 (8) | 0.0374 (3) | |
| C15 | 0.43487 (7) | −0.05536 (14) | 1.05092 (9) | 0.0429 (3) | |
| H15 | 0.4750 | −0.0273 | 1.0699 | 0.052* | |
| C20 | 0.28915 (6) | 0.68545 (14) | 0.75933 (11) | 0.0458 (4) | |
| H20 | 0.2858 | 0.7664 | 0.7951 | 0.055* | |
| C16 | 0.42179 (8) | −0.18549 (14) | 1.04313 (10) | 0.0509 (4) | |
| H16 | 0.4530 | −0.2472 | 1.0576 | 0.061* | |
| C19 | 0.33118 (7) | −0.00546 (14) | 1.00293 (11) | 0.0475 (4) | |
| H19 | 0.2999 | 0.0563 | 0.9898 | 0.057* | |
| C17 | 0.36410 (8) | −0.22609 (14) | 1.01469 (11) | 0.0554 (4) | |
| H17 | 0.3553 | −0.3157 | 1.0092 | 0.066* | |
| C18 | 0.31893 (8) | −0.13676 (16) | 0.99415 (12) | 0.0568 (4) | |
| H18 | 0.2790 | −0.1650 | 0.9738 | 0.068* | |
| C21 | 0.24694 (7) | 0.58531 (18) | 0.78572 (15) | 0.0677 (5) | |
| H21A | 0.2491 | 0.5069 | 0.7492 | 0.102* | |
| H21B | 0.2060 | 0.6190 | 0.7736 | 0.102* | |
| H21C | 0.2583 | 0.5650 | 0.8515 | 0.102* | |
| C22 | 0.27768 (9) | 0.7160 (2) | 0.65854 (14) | 0.0779 (6) | |
| H22B | 0.3046 | 0.7852 | 0.6462 | 0.117* | |
| H22C | 0.2361 | 0.7439 | 0.6398 | 0.117* | |
| H22A | 0.2848 | 0.6388 | 0.6235 | 0.117* | |
| C4 | 0.44890 (5) | 0.89855 (11) | 0.76600 (8) | 0.0310 (3) | |
| H4 | 0.4496 | 0.9903 | 0.7667 | 0.037* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| O1 | 0.0591 (6) | 0.0264 (4) | 0.0288 (5) | −0.0060 (4) | 0.0102 (4) | −0.0024 (3) |
| O2 | 0.0344 (5) | 0.0291 (5) | 0.0639 (6) | −0.0017 (4) | 0.0141 (4) | 0.0045 (4) |
| O3 | 0.0838 (7) | 0.0299 (5) | 0.0307 (5) | −0.0094 (5) | 0.0151 (5) | 0.0025 (4) |
| C3 | 0.0356 (9) | 0.0225 (8) | 0.0252 (8) | 0.000 | 0.0040 (7) | 0.000 |
| C8 | 0.0332 (6) | 0.0226 (6) | 0.0307 (6) | −0.0009 (5) | 0.0062 (5) | −0.0004 (5) |
| C7 | 0.0330 (6) | 0.0238 (6) | 0.0300 (6) | −0.0019 (5) | 0.0047 (5) | −0.0010 (5) |
| C2 | 0.0356 (9) | 0.0211 (8) | 0.0217 (8) | 0.000 | 0.0041 (6) | 0.000 |
| C5 | 0.0372 (7) | 0.0263 (6) | 0.0402 (7) | 0.0041 (5) | 0.0102 (5) | −0.0019 (5) |
| C1 | 0.0368 (6) | 0.0215 (6) | 0.0260 (6) | −0.0007 (5) | 0.0053 (5) | 0.0009 (4) |
| C6 | 0.0351 (6) | 0.0264 (6) | 0.0342 (6) | −0.0033 (5) | 0.0079 (5) | 0.0005 (5) |
| C9 | 0.0414 (7) | 0.0249 (6) | 0.0282 (6) | −0.0028 (5) | 0.0082 (5) | −0.0030 (5) |
| C13 | 0.0459 (7) | 0.0220 (6) | 0.0339 (7) | −0.0032 (5) | 0.0071 (5) | −0.0037 (5) |
| C10 | 0.0445 (7) | 0.0203 (6) | 0.0336 (7) | −0.0039 (5) | 0.0091 (5) | −0.0015 (5) |
| C11 | 0.0424 (7) | 0.0276 (6) | 0.0299 (6) | −0.0008 (5) | 0.0090 (5) | 0.0036 (5) |
| C12 | 0.0528 (8) | 0.0301 (6) | 0.0280 (6) | −0.0022 (6) | 0.0079 (5) | −0.0035 (5) |
| C14 | 0.0569 (8) | 0.0298 (6) | 0.0274 (6) | −0.0047 (6) | 0.0120 (6) | 0.0054 (5) |
| C15 | 0.0485 (8) | 0.0450 (8) | 0.0350 (7) | −0.0007 (6) | 0.0067 (6) | 0.0031 (6) |
| C20 | 0.0350 (7) | 0.0392 (7) | 0.0631 (9) | −0.0008 (6) | 0.0086 (6) | 0.0002 (7) |
| C16 | 0.0712 (10) | 0.0380 (8) | 0.0445 (8) | 0.0107 (7) | 0.0131 (7) | 0.0081 (6) |
| C19 | 0.0496 (8) | 0.0442 (8) | 0.0497 (8) | 0.0024 (6) | 0.0114 (7) | 0.0080 (6) |
| C17 | 0.0856 (12) | 0.0317 (7) | 0.0525 (9) | −0.0101 (8) | 0.0222 (8) | 0.0046 (6) |
| C18 | 0.0566 (9) | 0.0569 (10) | 0.0590 (10) | −0.0201 (8) | 0.0159 (8) | 0.0014 (8) |
| C21 | 0.0414 (8) | 0.0627 (11) | 0.1020 (15) | −0.0074 (8) | 0.0205 (9) | 0.0098 (10) |
| C22 | 0.0671 (12) | 0.0893 (14) | 0.0687 (12) | −0.0250 (10) | −0.0120 (9) | 0.0140 (11) |
| C4 | 0.0408 (7) | 0.0190 (5) | 0.0332 (6) | 0.0015 (5) | 0.0064 (5) | −0.0017 (5) |
Geometric parameters (Å, º)
| O1—C7 | 1.2198 (14) | C11—C12 | 1.3891 (17) |
| O2—C6 | 1.3711 (14) | C12—H12 | 0.9500 |
| O2—C20 | 1.4401 (16) | C14—C19 | 1.372 (2) |
| O3—C11 | 1.3760 (14) | C14—C15 | 1.376 (2) |
| O3—C14 | 1.3947 (15) | C15—C16 | 1.381 (2) |
| C3—C4 | 1.4101 (14) | C15—H15 | 0.9500 |
| C3—C4i | 1.4102 (14) | C20—C22 | 1.494 (2) |
| C3—C2 | 1.428 (2) | C20—C21 | 1.509 (2) |
| C8—C9 | 1.3916 (16) | C20—H20 | 1.0000 |
| C8—C13 | 1.3966 (17) | C16—C17 | 1.370 (2) |
| C8—C7 | 1.4841 (16) | C16—H16 | 0.9500 |
| C7—C1 | 1.5116 (16) | C19—C18 | 1.390 (2) |
| C2—C1i | 1.4295 (13) | C19—H19 | 0.9500 |
| C2—C1 | 1.4295 (13) | C17—C18 | 1.375 (2) |
| C5—C4 | 1.3586 (17) | C17—H17 | 0.9500 |
| C5—C6 | 1.4094 (17) | C18—H18 | 0.9500 |
| C5—H5 | 0.9500 | C21—H21A | 0.9800 |
| C1—C6 | 1.3800 (17) | C21—H21B | 0.9800 |
| C9—C10 | 1.3829 (17) | C21—H21C | 0.9800 |
| C9—H9 | 0.9500 | C22—H22B | 0.9800 |
| C13—C12 | 1.3788 (18) | C22—H22C | 0.9800 |
| C13—H13 | 0.9500 | C22—H22A | 0.9800 |
| C10—C11 | 1.3881 (17) | C4—H4 | 0.9500 |
| C10—H10 | 0.9500 | ||
| C6—O2—C20 | 119.65 (10) | C19—C14—O3 | 119.69 (13) |
| C11—O3—C14 | 118.75 (10) | C15—C14—O3 | 119.09 (13) |
| C4—C3—C4i | 120.42 (15) | C14—C15—C16 | 119.40 (14) |
| C4—C3—C2 | 119.79 (7) | C14—C15—H15 | 120.3 |
| C4i—C3—C2 | 119.79 (7) | C16—C15—H15 | 120.3 |
| C9—C8—C13 | 118.63 (11) | O2—C20—C22 | 111.41 (14) |
| C9—C8—C7 | 118.90 (10) | O2—C20—C21 | 104.39 (12) |
| C13—C8—C7 | 122.45 (10) | C22—C20—C21 | 113.15 (15) |
| O1—C7—C8 | 121.21 (10) | O2—C20—H20 | 109.3 |
| O1—C7—C1 | 118.46 (10) | C22—C20—H20 | 109.3 |
| C8—C7—C1 | 120.33 (10) | C21—C20—H20 | 109.3 |
| C3—C2—C1i | 117.67 (7) | C17—C16—C15 | 120.36 (15) |
| C3—C2—C1 | 117.67 (7) | C17—C16—H16 | 119.8 |
| C1i—C2—C1 | 124.67 (14) | C15—C16—H16 | 119.8 |
| C4—C5—C6 | 119.00 (11) | C14—C19—C18 | 118.71 (14) |
| C4—C5—H5 | 120.5 | C14—C19—H19 | 120.6 |
| C6—C5—H5 | 120.5 | C18—C19—H19 | 120.6 |
| C6—C1—C2 | 120.06 (11) | C16—C17—C18 | 119.81 (14) |
| C6—C1—C7 | 116.97 (10) | C16—C17—H17 | 120.1 |
| C2—C1—C7 | 122.40 (11) | C18—C17—H17 | 120.1 |
| O2—C6—C1 | 115.93 (10) | C17—C18—C19 | 120.58 (15) |
| O2—C6—C5 | 122.41 (11) | C17—C18—H18 | 119.7 |
| C1—C6—C5 | 121.65 (11) | C19—C18—H18 | 119.7 |
| C10—C9—C8 | 120.99 (11) | C20—C21—H21A | 109.5 |
| C10—C9—H9 | 119.5 | C20—C21—H21B | 109.5 |
| C8—C9—H9 | 119.5 | H21A—C21—H21B | 109.5 |
| C12—C13—C8 | 121.08 (11) | C20—C21—H21C | 109.5 |
| C12—C13—H13 | 119.5 | H21A—C21—H21C | 109.5 |
| C8—C13—H13 | 119.5 | H21B—C21—H21C | 109.5 |
| C9—C10—C11 | 119.28 (11) | C20—C22—H22B | 109.5 |
| C9—C10—H10 | 120.4 | C20—C22—H22C | 109.5 |
| C11—C10—H10 | 120.4 | H22B—C22—H22C | 109.5 |
| O3—C11—C10 | 123.51 (11) | C20—C22—H22A | 109.5 |
| O3—C11—C12 | 115.70 (11) | H22B—C22—H22A | 109.5 |
| C10—C11—C12 | 120.79 (11) | H22C—C22—H22A | 109.5 |
| C13—C12—C11 | 119.24 (11) | C5—C4—C3 | 121.77 (11) |
| C13—C12—H12 | 120.4 | C5—C4—H4 | 119.1 |
| C11—C12—H12 | 120.4 | C3—C4—H4 | 119.1 |
| C19—C14—C15 | 121.12 (13) | ||
| C9—C8—C7—O1 | −5.73 (18) | C9—C8—C13—C12 | −0.21 (19) |
| C13—C8—C7—O1 | 172.58 (12) | C7—C8—C13—C12 | −178.51 (12) |
| C9—C8—C7—C1 | 173.94 (11) | C8—C9—C10—C11 | −0.71 (19) |
| C13—C8—C7—C1 | −7.76 (17) | C14—O3—C11—C10 | 0.68 (19) |
| C4—C3—C2—C1i | −177.89 (7) | C14—O3—C11—C12 | −178.86 (12) |
| C4i—C3—C2—C1i | 2.11 (7) | C9—C10—C11—O3 | −179.14 (12) |
| C4—C3—C2—C1 | 2.11 (7) | C9—C10—C11—C12 | 0.38 (19) |
| C4i—C3—C2—C1 | −177.89 (7) | C8—C13—C12—C11 | −0.1 (2) |
| C3—C2—C1—C6 | −1.15 (12) | O3—C11—C12—C13 | 179.58 (12) |
| C1i—C2—C1—C6 | 178.85 (12) | C10—C11—C12—C13 | 0.0 (2) |
| C3—C2—C1—C7 | 169.94 (8) | C11—O3—C14—C19 | −84.84 (16) |
| C1i—C2—C1—C7 | −10.06 (8) | C11—O3—C14—C15 | 98.74 (15) |
| O1—C7—C1—C6 | 110.54 (13) | C19—C14—C15—C16 | −0.4 (2) |
| C8—C7—C1—C6 | −69.13 (14) | O3—C14—C15—C16 | 175.98 (12) |
| O1—C7—C1—C2 | −60.81 (15) | C6—O2—C20—C22 | 60.29 (17) |
| C8—C7—C1—C2 | 119.52 (11) | C6—O2—C20—C21 | −177.26 (13) |
| C20—O2—C6—C1 | −150.33 (12) | C14—C15—C16—C17 | 0.8 (2) |
| C20—O2—C6—C5 | 29.72 (18) | C15—C14—C19—C18 | −0.5 (2) |
| C2—C1—C6—O2 | 178.90 (9) | O3—C14—C19—C18 | −176.89 (13) |
| C7—C1—C6—O2 | 7.34 (16) | C15—C16—C17—C18 | −0.3 (2) |
| C2—C1—C6—C5 | −1.14 (17) | C16—C17—C18—C19 | −0.7 (2) |
| C7—C1—C6—C5 | −172.70 (11) | C14—C19—C18—C17 | 1.1 (2) |
| C4—C5—C6—O2 | −177.55 (11) | C6—C5—C4—C3 | −1.49 (18) |
| C4—C5—C6—C1 | 2.49 (19) | C4i—C3—C4—C5 | 179.19 (13) |
| C13—C8—C9—C10 | 0.62 (18) | C2—C3—C4—C5 | −0.81 (13) |
| C7—C8—C9—C10 | 178.99 (11) |
Symmetry code: (i) −x+1, y, −z+3/2.
Hydrogen-bond geometry (Å, º)
Cg is the centroid of the C8–C13 ring.
| D—H···A | D—H | H···A | D···A | D—H···A |
| C12—H12···O1ii | 0.95 | 2.44 | 3.3398 (15) | 158 |
| C16—H16···Cgiii | 0.95 | 2.97 | 3.8383 (19) | 152 |
Symmetry codes: (ii) x, −y+1, z+1/2; (iii) −x+1, −y, −z+2.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2459).
References
- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.
- Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.
- Higashi, T. (1999). NUMABS Rigaku Corporation, Tokyo, Japan.
- Hijikata, D., Takada, T., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2902–o2903. [DOI] [PMC free article] [PubMed]
- Muto, T., Kato, Y., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2752. [DOI] [PMC free article] [PubMed]
- Nakaema, K., Watanabe, S., Okamoto, A., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o807. [DOI] [PMC free article] [PubMed]
- Okamoto, A., Mitsui, R., Oike, H. & Yonezawa, N. (2011). Chem. Lett. 40, 1283–1284.
- Okamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914–915.
- Rigaku (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
- Sasagawa, K., Hijikata, D., Sakamoto, R., Okamoto, A. & Yonezawa, N. (2012). Acta Cryst. E68, o2596. [DOI] [PMC free article] [PubMed]
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813000913/pk2459sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813000913/pk2459Isup2.hkl
Supplementary material file. DOI: 10.1107/S1600536813000913/pk2459Isup3.cml
Additional supplementary materials: crystallographic information; 3D view; checkCIF report



