Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Jan 19;69(Pt 2):o247. doi: 10.1107/S1600536813000755

4-(1-Methyl­eth­yl)-N-((E)-4-{[1-(prop-2-en-1-yl)-1H-1,2,3-triazol-4-yl]meth­oxy}benzyl­idene)aniline

Mehmet Akkurt a,*, Aliasghar Jarrahpour b, Mehdi Mohammadi Chermahini b, Pezhman Shiri b, Muhammad Nawaz Tahir c,*
PMCID: PMC3569780  PMID: 23424526

Abstract

In the title compound, C22H24N4O, the terminal and central benzene rings make dihedral angles of 52.7 (3) and 43.8 (2)°, respectively, with the triazole ring. The dihedral angle between the benzene rings is 8.9 (2)°. The crystal structure features C—H⋯π inter­actions. The atoms of the terminal propenyl group are disordered over two sets of sites, with a refined occupancy ratio of 0.714 (14):0.286 (14).

Related literature  

For bond-length data, see: Allen et al. (1987). For general background to the properties of Schiff bases, see: Ajello & Cusmanos (1940); Dhar & Taploo (1982); Holla et al. (2005); Singh et al. (2012); Supuran et al. (1996).graphic file with name e-69-0o247-scheme1.jpg

Experimental  

Crystal data  

  • C22H24N4O

  • M r = 360.45

  • Monoclinic, Inline graphic

  • a = 5.5885 (11) Å

  • b = 8.3929 (18) Å

  • c = 42.069 (9) Å

  • β = 92.149 (10)°

  • V = 1971.8 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.30 × 0.20 × 0.18 mm

Data collection  

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.982, T max = 0.986

  • 13866 measured reflections

  • 3451 independent reflections

  • 1259 reflections with I > 2σ(I)

  • R int = 0.082

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.068

  • wR(F 2) = 0.217

  • S = 0.96

  • 3451 reflections

  • 256 parameters

  • 7 restraints

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813000755/bq2382sup1.cif

e-69-0o247-sup1.cif (30.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813000755/bq2382Isup2.hkl

e-69-0o247-Isup2.hkl (165.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813000755/bq2382Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 and Cg3 are the centroids of the N2–N4/C18/C19 1H-1,2,3-triazole and C11–C16 benzene rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯Cg3i 0.93 2.96 3.752 (5) 144
C8—H8ACg1ii 0.96 2.80 3.678 (6) 153

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors acknowledge the provision of funds for the purchase of a diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

supplementary crystallographic information

Comment

Compounds containing an azomethine group (–CH=N–), known as Schiff bases are formed by the condensation of a primary amine with a carbonyl compound. Schiff bases are some of the most widely used organic compounds. They are used as pigments and dyes, catalysts, intermediates in organic synthesis, and as polymer stabilisers (Dhar & Taploo, 1982). In azomethine derivatives, the C=N linkage is essential for biological activity, several azomethines were reported to possess remarkable antibacterial, antifungal, anticancer and diuretic activities (Supuran et al., 1996). Triazoles are also important class of heterocycles because of their varied biological activities (Singh et al., 2012). 1,2,3-triazoles, are five-membered, doubly unsaturated heterocycles, the ring consisting of three sequentially linked nitrogen atoms and two carbon atoms (Ajello & Cusmanos, 1940). The 1,2,3-triazole moiety has several good properties: high chemical stability (hydrolytic, oxidant, and reducing conditions), aromatic character, good hydrogen-bond-accepting ability and this moiety is relatively resistant to metabolic degradation (Holla et al., 2005). Therefore, compound (I), was synthesized and its X-ray studies is reported here.

The C1–C6 and C11–C16 benzene rings of the title compound (I), (Fig. 1), make a dihedral angle of 8.9 (2)° with each other. They form dihedral angles of 52.7 (3) and 43.8 (2) ° with the N2–N4/C18/C19 propenyl ring. The C1—N1—C10—C11, C14—O1—C17—C18 and N4—C20A—C21A—C22A torsion angles are 179.7 (4), -174.2 (3) and 151.9 (14)°, respectively. The values of the bond lengths and bond angles in (I) are normal (Allen et al., 1987).

In the crystal, the molecular packing of (I) is stabilized by C—H···π interactions (Table 1).

Experimental

Reaction of 4-((1-allyl-1H-1,2,3-triazol-4-yl)methoxy)benzaldehyde (1.00 mmol) with 4-isopropylbenzenamine (1.00 mmol) in refluxing ethanol gave the title compound. Recrystallization from ethanol gave colourless crystals in 70% yield. Mp: 119–121 0 C. IR (KBr, cm-1):1620 (C=N). 1H-NMR(250 MHz, CDCl3) δ (p.p.m.): 1.11 (2CH3, d, 6H, J=7.5), 2.75 (CH, m, 1H), 4.87 (d, 2H, J=5), 5.05 (s, 2H), 5.25 (d, 2H, J=10), 5.92 (m, 1H), 6.71–7.07 (aromatic protons, m, 8H), 7.50 (H triazole, s, 1H), 8.13 (HC═N, s, 1H). 13CNMR δ (p.p.m): 23.9 (2CH3), 33.6 (CH), 52.8 (CH2—N), 61.6 (CH2—O), 114.6–145.3 (aromatic carbons and C=C triazole), 158.5 (C=N).

Refinement

H atoms were placed in calculated positions with C—H = 0.93 - 0.98 Å and refined by using a riding model, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). The atoms of the terminal propenyl group, C20, C21 and C22, are disordered over two sites with refined occupancies of 0.714 (14) and 0.286 (14).

Figures

Fig. 1.

Fig. 1.

ORTEP drawing of the title compound with atomic numbering scheme and thermal ellipsoids at 30% probability level. The minor disorder component is not shown.

Crystal data

C22H24N4O F(000) = 768
Mr = 360.45 Dx = 1.214 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 219 reflections
a = 5.5885 (11) Å θ = 3.5–21.5°
b = 8.3929 (18) Å µ = 0.08 mm1
c = 42.069 (9) Å T = 296 K
β = 92.149 (10)° Prism, colorless
V = 1971.8 (7) Å3 0.30 × 0.20 × 0.18 mm
Z = 4

Data collection

Bruker Kappa APEXII CCD diffractometer 3451 independent reflections
Radiation source: fine-focus sealed tube 1259 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.082
ω scans θmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −6→4
Tmin = 0.982, Tmax = 0.986 k = −9→9
13866 measured reflections l = −49→49

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.217 H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.0893P)2] where P = (Fo2 + 2Fc2)/3
3451 reflections (Δ/σ)max < 0.001
256 parameters Δρmax = 0.20 e Å3
7 restraints Δρmin = −0.20 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O1 0.6921 (5) 0.1556 (4) 0.35472 (7) 0.0741 (14)
N1 0.0796 (6) 0.1766 (4) 0.22415 (8) 0.0634 (14)
N2 0.7693 (6) 0.0586 (5) 0.41985 (9) 0.0879 (18)
N3 0.8731 (6) 0.0688 (6) 0.44832 (9) 0.0939 (18)
N4 1.1055 (6) 0.0885 (5) 0.44413 (9) 0.0762 (16)
C1 −0.0186 (7) 0.1560 (5) 0.19307 (10) 0.0581 (17)
C2 −0.2092 (7) 0.2503 (6) 0.18440 (11) 0.0708 (19)
C3 −0.3158 (8) 0.2422 (6) 0.15464 (12) 0.084 (2)
C4 −0.2360 (8) 0.1385 (6) 0.13217 (11) 0.0717 (19)
C5 −0.0502 (9) 0.0411 (6) 0.14117 (11) 0.0805 (19)
C6 0.0617 (7) 0.0478 (6) 0.17103 (11) 0.0763 (19)
C7 −0.3528 (10) 0.1319 (8) 0.09917 (12) 0.106 (3)
C8 −0.1850 (11) 0.1621 (7) 0.07339 (12) 0.137 (3)
C9 −0.4985 (10) −0.0154 (8) 0.09435 (12) 0.132 (3)
C10 0.2749 (8) 0.1146 (5) 0.23238 (10) 0.0681 (19)
C11 0.3876 (7) 0.1292 (5) 0.26388 (10) 0.0577 (17)
C12 0.2894 (7) 0.2200 (5) 0.28752 (10) 0.0633 (17)
C13 0.3977 (7) 0.2279 (5) 0.31714 (10) 0.0653 (19)
C14 0.6026 (7) 0.1427 (5) 0.32409 (10) 0.0578 (17)
C15 0.7072 (7) 0.0562 (5) 0.30096 (10) 0.0638 (17)
C16 0.5967 (8) 0.0500 (5) 0.27125 (10) 0.0683 (19)
C17 0.8850 (7) 0.0529 (6) 0.36388 (9) 0.0683 (19)
C18 0.9390 (7) 0.0723 (5) 0.39809 (10) 0.0618 (18)
C19 1.1516 (7) 0.0906 (5) 0.41344 (10) 0.0684 (19)
C20A 1.2557 (18) 0.0919 (15) 0.4733 (2) 0.083 (3) 0.714 (14)
C21A 1.251 (2) 0.254 (2) 0.4850 (4) 0.138 (7) 0.714 (14)
C22A 1.272 (2) 0.3163 (18) 0.5105 (3) 0.203 (8) 0.714 (14)
C21B 1.341 (6) 0.263 (6) 0.4899 (12) 0.138 (7) 0.286 (14)
C22B 1.120 (5) 0.342 (4) 0.4916 (8) 0.203 (8) 0.286 (14)
C20B 1.318 (4) 0.118 (5) 0.4674 (6) 0.083 (3) 0.286 (14)
H2 −0.26800 0.32180 0.19910 0.0850*
H3 −0.44500 0.30850 0.14950 0.1010*
H8A −0.08690 0.25270 0.07880 0.2060*
H8B −0.27430 0.18290 0.05390 0.2060*
H8C −0.08510 0.07040 0.07080 0.2060*
H9A −0.39530 −0.10690 0.09540 0.1980*
H5 0.00360 −0.03290 0.12660 0.0970*
H6 0.18930 −0.01960 0.17620 0.0910*
H7 −0.46740 0.22030 0.09820 0.1270*
H12 0.14840 0.27620 0.28320 0.0760*
H13 0.33210 0.29140 0.33270 0.0790*
H15 0.85030 0.00240 0.30520 0.0760*
H16 0.66660 −0.01020 0.25550 0.0820*
H17A 1.02500 0.07910 0.35200 0.0820*
H17B 0.84150 −0.05690 0.35930 0.0820*
H19 1.30020 0.10220 0.40450 0.0820*
H20A 1.19370 0.01930 0.48890 0.1000* 0.714 (14)
H20B 1.41820 0.06050 0.46890 0.1000* 0.714 (14)
H21A 1.22690 0.32730 0.46860 0.1660* 0.714 (14)
H22A 1.29690 0.25460 0.52870 0.2430* 0.714 (14)
H22B 1.26220 0.42660 0.51220 0.2430* 0.714 (14)
H9B −0.58050 −0.01150 0.07390 0.1980*
H9C −0.61350 −0.02290 0.11070 0.1980*
H10 0.35350 0.05510 0.21730 0.0820*
H20C 1.45990 0.11910 0.45480 0.1000* 0.286 (14)
H20D 1.33110 0.02440 0.48090 0.1000* 0.286 (14)
H21B 1.48080 0.29430 0.50080 0.1660* 0.286 (14)
H22C 0.98690 0.30480 0.48000 0.2430* 0.286 (14)
H22D 1.10720 0.43250 0.50430 0.2430* 0.286 (14)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.077 (2) 0.081 (3) 0.063 (2) 0.0161 (18) −0.0145 (16) −0.0069 (16)
N1 0.057 (2) 0.072 (3) 0.061 (2) 0.001 (2) −0.0013 (19) 0.0060 (19)
N2 0.047 (2) 0.146 (4) 0.070 (3) 0.000 (2) −0.005 (2) 0.016 (3)
N3 0.052 (2) 0.159 (4) 0.071 (3) 0.003 (3) 0.005 (2) 0.020 (3)
N4 0.049 (2) 0.111 (3) 0.068 (3) 0.002 (2) −0.007 (2) 0.001 (2)
C1 0.054 (3) 0.066 (3) 0.054 (3) −0.010 (3) −0.001 (2) 0.004 (2)
C2 0.056 (3) 0.081 (4) 0.075 (3) 0.009 (3) −0.004 (2) −0.013 (3)
C3 0.071 (3) 0.096 (4) 0.084 (4) 0.023 (3) −0.014 (3) −0.009 (3)
C4 0.068 (3) 0.080 (4) 0.066 (3) −0.004 (3) −0.011 (3) 0.008 (3)
C5 0.078 (3) 0.092 (4) 0.071 (3) 0.008 (3) −0.002 (3) −0.014 (3)
C6 0.073 (3) 0.085 (4) 0.070 (3) 0.015 (3) −0.009 (3) −0.006 (3)
C7 0.112 (4) 0.122 (6) 0.082 (4) −0.003 (4) −0.022 (4) −0.004 (3)
C8 0.184 (6) 0.154 (6) 0.073 (4) −0.071 (5) −0.010 (4) 0.010 (4)
C9 0.112 (4) 0.187 (7) 0.096 (4) −0.044 (5) −0.020 (3) −0.008 (4)
C10 0.069 (3) 0.076 (4) 0.059 (3) 0.001 (3) 0.000 (2) −0.003 (2)
C11 0.052 (3) 0.067 (3) 0.054 (3) −0.002 (2) −0.001 (2) 0.006 (2)
C12 0.059 (3) 0.072 (3) 0.059 (3) 0.010 (2) 0.002 (2) 0.008 (3)
C13 0.066 (3) 0.070 (4) 0.060 (3) 0.008 (3) 0.002 (2) 0.002 (2)
C14 0.056 (3) 0.061 (3) 0.056 (3) −0.003 (2) −0.004 (2) 0.005 (2)
C15 0.054 (3) 0.069 (3) 0.068 (3) 0.009 (2) −0.002 (2) −0.005 (3)
C16 0.068 (3) 0.075 (4) 0.062 (3) 0.004 (3) 0.003 (2) −0.011 (3)
C17 0.053 (3) 0.077 (4) 0.074 (3) 0.001 (3) −0.011 (2) −0.002 (3)
C18 0.045 (2) 0.080 (4) 0.060 (3) 0.001 (2) −0.005 (2) 0.005 (3)
C19 0.051 (3) 0.091 (4) 0.063 (3) −0.009 (3) −0.001 (2) 0.000 (3)
C20A 0.044 (5) 0.140 (7) 0.065 (5) −0.006 (5) 0.002 (4) 0.014 (5)
C21A 0.142 (16) 0.172 (9) 0.094 (10) 0.010 (11) −0.082 (8) −0.019 (7)
C22A 0.227 (14) 0.216 (13) 0.158 (13) 0.046 (10) −0.088 (10) −0.053 (10)
C21B 0.142 (16) 0.172 (9) 0.094 (10) 0.010 (11) −0.082 (8) −0.019 (7)
C22B 0.227 (14) 0.216 (13) 0.158 (13) 0.046 (10) −0.088 (10) −0.053 (10)
C20B 0.044 (5) 0.140 (7) 0.065 (5) −0.006 (5) 0.002 (4) 0.014 (5)

Geometric parameters (Å, º)

O1—C14 1.369 (5) C21B—C22B 1.41 (5)
O1—C17 1.422 (5) C2—H2 0.9300
N1—C1 1.410 (5) C3—H3 0.9300
N1—C10 1.246 (6) C5—H5 0.9300
N2—N3 1.314 (5) C6—H6 0.9300
N2—C18 1.348 (5) C7—H7 0.9800
N3—N4 1.328 (5) C8—H8A 0.9600
N4—C19 1.326 (6) C8—H8B 0.9600
N4—C20A 1.461 (10) C8—H8C 0.9600
N4—C20B 1.53 (2) C9—H9A 0.9600
C1—C2 1.366 (6) C9—H9B 0.9600
C1—C6 1.385 (6) C9—H9C 0.9600
C2—C3 1.368 (7) C10—H10 0.9300
C3—C4 1.372 (7) C12—H12 0.9300
C4—C5 1.364 (7) C13—H13 0.9300
C4—C7 1.513 (7) C15—H15 0.9300
C5—C6 1.383 (7) C16—H16 0.9300
C7—C8 1.482 (8) C17—H17A 0.9700
C7—C9 1.490 (9) C17—H17B 0.9700
C10—C11 1.451 (6) C19—H19 0.9300
C11—C12 1.383 (6) C20A—H20A 0.9700
C11—C16 1.370 (6) C20A—H20B 0.9700
C12—C13 1.366 (6) C20B—H20C 0.9700
C13—C14 1.372 (6) C20B—H20D 0.9700
C14—C15 1.363 (6) C21A—H21A 0.9300
C15—C16 1.374 (6) C21B—H21B 0.9300
C17—C18 1.468 (6) C22A—H22A 0.9300
C18—C19 1.340 (6) C22A—H22B 0.9300
C20A—C21A 1.45 (2) C22B—H22C 0.9300
C20B—C21B 1.54 (6) C22B—H22D 0.9300
C21A—C22A 1.20 (2)
C14—O1—C17 117.0 (3) C8—C7—H7 106.00
C1—N1—C10 120.9 (4) C9—C7—H7 106.00
N3—N2—C18 108.4 (3) C7—C8—H8A 109.00
N2—N3—N4 106.7 (3) C7—C8—H8B 109.00
N3—N4—C19 111.0 (3) C7—C8—H8C 109.00
N3—N4—C20A 115.2 (5) H8A—C8—H8B 109.00
N3—N4—C20B 132.4 (9) H8A—C8—H8C 109.00
C19—N4—C20A 133.7 (5) H8B—C8—H8C 110.00
C19—N4—C20B 116.5 (9) C7—C9—H9A 109.00
N1—C1—C2 116.7 (4) C7—C9—H9B 109.00
N1—C1—C6 125.2 (4) C7—C9—H9C 109.00
C2—C1—C6 118.1 (4) H9A—C9—H9B 110.00
C1—C2—C3 121.6 (4) H9A—C9—H9C 109.00
C2—C3—C4 121.4 (4) H9B—C9—H9C 110.00
C3—C4—C5 116.9 (4) N1—C10—H10 118.00
C3—C4—C7 121.0 (4) C11—C10—H10 118.00
C5—C4—C7 122.1 (5) C11—C12—H12 120.00
C4—C5—C6 122.8 (4) C13—C12—H12 120.00
C1—C6—C5 119.2 (4) C12—C13—H13 120.00
C4—C7—C8 113.7 (5) C14—C13—H13 120.00
C4—C7—C9 111.7 (5) C14—C15—H15 121.00
C8—C7—C9 113.6 (5) C16—C15—H15 121.00
N1—C10—C11 124.3 (4) C11—C16—H16 119.00
C10—C11—C12 122.2 (4) C15—C16—H16 119.00
C10—C11—C16 120.2 (4) O1—C17—H17A 110.00
C12—C11—C16 117.6 (4) O1—C17—H17B 110.00
C11—C12—C13 120.6 (4) C18—C17—H17A 110.00
C12—C13—C14 120.4 (4) C18—C17—H17B 110.00
O1—C14—C13 115.6 (4) H17A—C17—H17B 108.00
O1—C14—C15 124.2 (4) N4—C19—H19 127.00
C13—C14—C15 120.2 (4) C18—C19—H19 127.00
C14—C15—C16 118.6 (4) N4—C20A—H20A 110.00
C11—C16—C15 122.5 (4) N4—C20A—H20B 110.00
O1—C17—C18 108.9 (3) C21A—C20A—H20A 110.00
N2—C18—C17 122.2 (4) C21A—C20A—H20B 110.00
N2—C18—C19 108.4 (4) H20A—C20A—H20B 109.00
C17—C18—C19 129.1 (4) C21B—C20B—H20C 106.00
N4—C19—C18 105.5 (4) C21B—C20B—H20D 106.00
N4—C20A—C21A 106.7 (10) H20C—C20B—H20D 106.00
N4—C20B—C21B 124 (3) N4—C20B—H20D 106.00
C20A—C21A—C22A 135.6 (16) N4—C20B—H20C 106.00
C20B—C21B—C22B 111 (3) C20A—C21A—H21A 112.00
C1—C2—H2 119.00 C22A—C21A—H21A 113.00
C3—C2—H2 119.00 C20B—C21B—H21B 125.00
C2—C3—H3 119.00 C22B—C21B—H21B 124.00
C4—C3—H3 119.00 C21A—C22A—H22A 120.00
C4—C5—H5 119.00 C21A—C22A—H22B 120.00
C6—C5—H5 119.00 H22A—C22A—H22B 120.00
C1—C6—H6 120.00 C21B—C22B—H22C 120.00
C5—C6—H6 120.00 C21B—C22B—H22D 120.00
C4—C7—H7 106.00 H22C—C22B—H22D 120.00
C17—O1—C14—C15 −10.0 (6) C5—C4—C7—C9 71.5 (6)
C17—O1—C14—C13 171.9 (4) C3—C4—C7—C9 −107.5 (6)
C14—O1—C17—C18 −174.2 (3) C7—C4—C5—C6 178.7 (5)
C1—N1—C10—C11 −179.7 (4) C5—C4—C7—C8 −58.6 (7)
C10—N1—C1—C6 11.9 (6) C3—C4—C7—C8 122.3 (6)
C10—N1—C1—C2 −168.6 (4) C4—C5—C6—C1 0.9 (7)
N3—N2—C18—C19 0.3 (5) N1—C10—C11—C16 176.6 (4)
C18—N2—N3—N4 −0.1 (5) N1—C10—C11—C12 −2.5 (7)
N3—N2—C18—C17 174.9 (4) C10—C11—C16—C15 −178.2 (4)
N2—N3—N4—C20A −176.1 (6) C10—C11—C12—C13 178.4 (4)
N2—N3—N4—C19 −0.2 (6) C12—C11—C16—C15 1.0 (6)
N3—N4—C20A—C21A −84.7 (9) C16—C11—C12—C13 −0.7 (6)
N3—N4—C19—C18 0.3 (5) C11—C12—C13—C14 −1.6 (6)
C20A—N4—C19—C18 175.2 (8) C12—C13—C14—C15 3.6 (6)
C19—N4—C20A—C21A 100.6 (9) C12—C13—C14—O1 −178.1 (4)
N1—C1—C6—C5 −179.4 (4) C13—C14—C15—C16 −3.3 (6)
C2—C1—C6—C5 1.1 (7) O1—C14—C15—C16 178.6 (4)
N1—C1—C2—C3 178.9 (4) C14—C15—C16—C11 1.0 (6)
C6—C1—C2—C3 −1.6 (7) O1—C17—C18—N2 53.0 (6)
C1—C2—C3—C4 0.1 (7) O1—C17—C18—C19 −133.6 (5)
C2—C3—C4—C7 −179.2 (5) N2—C18—C19—N4 −0.4 (5)
C2—C3—C4—C5 1.8 (7) C17—C18—C19—N4 −174.5 (4)
C3—C4—C5—C6 −2.3 (7) N4—C20A—C21A—C22A 151.9 (14)

Hydrogen-bond geometry (Å, º)

Cg1 and Cg3 are the centroids of the N2–N4/C18/C19 1H-1,2,3-triazole and C11–C16 benzene rings, respectively.

D—H···A D—H H···A D···A D—H···A
C2—H2···Cg3i 0.93 2.96 3.752 (5) 144
C8—H8A···Cg1ii 0.96 2.80 3.678 (6) 153

Symmetry codes: (i) −x, y+1/2, −z+1/2; (ii) −x+1, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2382).

References

  1. Ajello, T. & Cusmanos, G. (1940). Chim. Ital. 70, 770–778.
  2. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  3. Bruker (2005). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Bruker (2009). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Dhar, D. N. & Taploo, C. L. (1982). J. Sci. Ind. Res. 41, 501–506.
  6. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  7. Holla, B. S., Mahalinga, M., Karthikeyan, M. S., Poojary, B., Akberali, P. M. & Kumari, N. S. (2005). Eur. J. Med. Chem. 40, 1173–1178. [DOI] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Singh, P., Raj, R., Kumar, V., Mahajan, M. P., Bedi, P. M. S., Kaur, T. & Saxena, A. K. (2012). Eur. J. Med. Chem. 47, 594–600. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  11. Supuran, C. T., Barboiu, M., Luca, C., Pop, E., Brewster, M. E. & Dinculescu, A. (1996). Eur. J. Med. Chem. 31, 597–606.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813000755/bq2382sup1.cif

e-69-0o247-sup1.cif (30.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813000755/bq2382Isup2.hkl

e-69-0o247-Isup2.hkl (165.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813000755/bq2382Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES