Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Jan 19;69(Pt 2):o249–o250. doi: 10.1107/S1600536812051550

3′′-(2-Fluoro­benzyl­idene)-4′-(2-fluoro­phen­yl)-1′-methyl­dispiro­[acenaphthyl­ene-1,2′-pyrrolidine-3′,1′′-cyclo­penta­ne]-2,2′′-dione

Gao-Zhi Chen a, Xiao-Yan Wei a, Yi Wang a, Lu-Qing Ren a, Xiao-Kun Li a,*
PMCID: PMC3569782  PMID: 23424528

Abstract

In the title compound, C33H25F2NO2, the acenaphthene ring system forms dihedral angles of 50.93 (14) and 36.89 (14)° with the benzene rings. The pyrrolidine and cyclo­penta­none rings adopt envelope (with the N atom as the flap) and twisted conformations, respectively. In the crystal, C—H⋯O and C—H⋯F inter­actions link the mol­ecules.

Related literature  

For related structures, see: Abdul Ajees et al. (2002); Usha et al. (2003). For background to the biological properties of spiro-pyrrolidine derivatives, see: Chande et al. (2005); Dandia et al. (2003); Cravotto et al. (2001); Winfred et al. (2000); Metwally et al. (1998); Suenaga et al. (2001). For the synthesis of the title compound, see: Kumar et al. (2008a ,b ); Liang et al. (2009).graphic file with name e-69-0o249-scheme1.jpg

Experimental  

Crystal data  

  • C33H25F2NO2

  • M r = 505.54

  • Orthorhombic, Inline graphic

  • a = 17.728 (13) Å

  • b = 12.272 (9) Å

  • c = 12.094 (8) Å

  • V = 2631 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.45 × 0.38 × 0.27 mm

Data collection  

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002) T min = 0.641, T max = 1.000

  • 12188 measured reflections

  • 2500 independent reflections

  • 2072 reflections with I > 2σ(I)

  • R int = 0.123

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.055

  • wR(F 2) = 0.126

  • S = 1.02

  • 2500 reflections

  • 344 parameters

  • 13 restraints

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.32 e Å−3

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812051550/pk2458sup1.cif

e-69-0o249-sup1.cif (26.1KB, cif)

Structure factors: contains datablock(s) cd20184. DOI: 10.1107/S1600536812051550/pk2458Isup2.hkl

e-69-0o249-Isup2.hkl (125.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3B⋯O1i 0.97 2.35 3.317 (5) 172
C14—H14A⋯F2ii 0.93 2.43 3.212 (7) 141
C25—H25⋯O2iii 0.93 2.58 3.458 (7) 158

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

This work was supported by the Zhejiang Provincial Natural Science Foundation of China (grant Nos. LY12H16003 and Y4110197) and the Project of Wenzhou Science & Technology Bureau (Y20100273). The X-ray crystallographic facility at the Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, is gratefully acknowledged for the data collection.

supplementary crystallographic information

Comment

Spiro-pyrrolidine compounds find applications in the synthesis of biologically active compounds. The synthesis of spiro compounds has drawn considerable attention of chemists, in view of their wide spectrum of pharmacological properties (Chande et al., 2005; Dandia et al., 2003; Cravotto et al., 2001; Winfred et al., 2000; Metwally et al., 1998; Suenaga et al., 2001). In the present study, the 1,3-dipolar cycloaddition of an azomethine ylide generated in situ from acenaphthenequinone and sarcosine to novel mono-carbonyl analogue of curcumin containg cyclopentanone afforded the title compound (Kumar et al., 2008; Liang et al., 2009). With this background, and in continuation of our structural analysis of spiro-pyrrolidine derivatives, the X-ray crystal structure determination of the title compound, (I), was undertaken.

The bond lengths and angles in the pyrrolidine ring are slightly larger than normal values because of bulky substituents on the pyrrolidine moiety. A similar effect has been observed in related reported structures (Abdul Ajees et al., 2002; Usha et al., 2003). The sum of the angles at atom N1 [339.1 (11)°] is in accordance with sp3-hybridization. The dihedral angles between the acenaphthene ring system and phenyl rings C21—C26 and C27—C32 are 50.93 (14)° and 36.89 (14)° respectively, while that between the two phenyl-ring substituents is 87.55 (17)°. The pyrrolidine and cyclopentanone ring both adopt an envelope conformation. In addition to van der Waals interactions, the crystal structure is stabilized by C—H···O and C—H···F intramolecular interactions. In the present study, the 1,3-dipolar cycloaddition of an azomethine ylide generated in situ from acenaphthenequinone and sarcosine to novel mono-carbonyl analogue of curcumin containg cyclopentanone afforded title compound.

Experimental

A mixture of (2E,5E)-2,5-bis(2-fluorobenzylidene)cyclopentanone (1 mmol), (Liang et al., 2009), acenaphthenequinone (0.182 g, 1 mmol), and sarcosine (0.089 g, 1 mmol) was dissolved in methanol (10 mL) and refluxed for 1 h. After completion of the reaction as evident from TLC, the mixture was cooled to room temperature and poured into cold water (50 mL). The precipitate was filtered and washed with water to obtain pure product as a yellow solid (79.6% yield, mp 93.2–95.0°C). Single crystals were grown in an ethyl acetate/CH2Cl2 mixture (2:1ν/ν).

Refinement

The H(C) atom positions were calculated. The H atoms bound to C were positioned geometrically and allowed to ride on their parent atoms at distances of 0.96 Å (RCH3), 0.97 Å (R2CH2), 0.98 Å (R3CH), 0.93 Å (R2CH), and with Uiso(H) values set to either 1.2Ueq or 1.5Ueq (RCH3) of the attached atom.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 30% displacement ellipsoids for the non-hydrogen atoms. Hydrogen atoms are drawn as spheres of arbitrary radius.

Crystal data

C33H25F2NO2 F(000) = 1052
Mr = 505.54 Dx = 1.274 Mg m3
Orthorhombic, Pca21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2ac Cell parameters from 3224 reflections
a = 17.728 (13) Å θ = 4.6–41.9°
b = 12.272 (9) Å µ = 0.09 mm1
c = 12.094 (8) Å T = 293 K
V = 2631 (3) Å3 Prismatic, yellow
Z = 4 0.45 × 0.38 × 0.27 mm

Data collection

Bruker SMART CCD area-detector diffractometer 2500 independent reflections
Radiation source: fine-focus sealed tube 2072 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.123
φ and ω scans θmax = 25.5°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Bruker, 2002) h = −21→20
Tmin = 0.641, Tmax = 1.000 k = −14→10
12188 measured reflections l = −14→13

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0837P)2] where P = (Fo2 + 2Fc2)/3
2500 reflections (Δ/σ)max < 0.001
344 parameters Δρmax = 0.24 e Å3
13 restraints Δρmin = −0.32 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
F1 0.1562 (3) 0.1946 (2) 0.9893 (3) 0.1212 (15)
F2 0.37848 (15) 0.7382 (2) 1.1356 (2) 0.0723 (8)
O1 0.20514 (17) 0.54755 (19) 1.1294 (2) 0.0503 (7)
O2 0.08624 (18) 0.9035 (2) 0.9244 (3) 0.0656 (9)
N1 0.0970 (2) 0.7803 (3) 1.1430 (3) 0.0494 (8)
C1 0.1917 (2) 0.5827 (3) 1.0368 (3) 0.0351 (8)
C2 0.1848 (2) 0.5181 (3) 0.9340 (3) 0.0367 (8)
C3 0.1787 (2) 0.5964 (3) 0.8387 (3) 0.0390 (8)
H3A 0.1272 0.6007 0.8120 0.047*
H3B 0.2113 0.5745 0.7783 0.047*
C4 0.2041 (2) 0.7055 (2) 0.8874 (3) 0.0351 (8)
H4A 0.1802 0.7655 0.8486 0.042*
H4B 0.2583 0.7135 0.8812 0.042*
C5 0.18001 (19) 0.7045 (2) 1.0097 (3) 0.0329 (7)
C6 0.2244 (2) 0.7800 (3) 1.0916 (3) 0.0376 (8)
H6 0.2461 0.7324 1.1483 0.045*
C7 0.1640 (2) 0.8486 (3) 1.1487 (3) 0.0515 (10)
H7A 0.1777 0.8636 1.2249 0.062*
H7B 0.1562 0.9170 1.1103 0.062*
C8 0.0945 (2) 0.7332 (3) 1.0318 (3) 0.0376 (8)
C9 0.0633 (2) 0.8121 (3) 0.9403 (3) 0.0460 (9)
C10 0.0007 (2) 0.7571 (4) 0.8828 (3) 0.0520 (11)
C11 −0.0125 (2) 0.6583 (3) 0.9373 (3) 0.0501 (10)
C12 0.0375 (2) 0.6408 (3) 1.0259 (3) 0.0467 (9)
C13 0.0260 (3) 0.5518 (4) 1.0922 (4) 0.0690 (13)
H14 0.0563 0.5400 1.1538 0.083*
C14 −0.0322 (4) 0.4789 (5) 1.0659 (6) 0.0884 (17)
H14A −0.0390 0.4182 1.1109 0.106*
C15 −0.0788 (3) 0.4923 (4) 0.9792 (6) 0.093 (2)
H15 −0.1158 0.4407 0.9646 0.112*
C16 −0.0713 (3) 0.5851 (4) 0.9099 (4) 0.0718 (14)
C17 −0.1165 (3) 0.6177 (6) 0.8195 (6) 0.094 (2)
H17 −0.1559 0.5731 0.7967 0.113*
C18 −0.1034 (3) 0.7133 (7) 0.7648 (5) 0.098 (2)
H18 −0.1339 0.7309 0.7048 0.118*
C19 −0.0455 (3) 0.7867 (4) 0.7954 (4) 0.0719 (15)
H19 −0.0387 0.8523 0.7582 0.086*
C20 0.1819 (2) 0.4093 (3) 0.9397 (3) 0.0430 (8)
H21 0.1849 0.3811 1.0109 0.052*
C21 0.1747 (2) 0.3280 (3) 0.8532 (3) 0.0452 (9)
C22 0.1803 (3) 0.3482 (3) 0.7384 (3) 0.0562 (11)
H22 0.1859 0.4196 0.7140 0.067*
C23 0.1776 (3) 0.2659 (4) 0.6621 (4) 0.0689 (14)
H23 0.1820 0.2824 0.5873 0.083*
C24 0.1685 (3) 0.1603 (4) 0.6939 (5) 0.0726 (14)
H24 0.1678 0.1048 0.6415 0.087*
C25 0.1604 (4) 0.1365 (4) 0.8058 (5) 0.0829 (18)
H25 0.1528 0.0652 0.8294 0.099*
C26 0.1639 (3) 0.2197 (3) 0.8797 (4) 0.0676 (14)
C27 0.2887 (2) 0.8456 (3) 1.0442 (3) 0.0374 (8)
C28 0.2768 (3) 0.9352 (3) 0.9739 (3) 0.0533 (11)
H28 0.2278 0.9556 0.9559 0.064*
C29 0.3368 (3) 0.9934 (3) 0.9313 (4) 0.0632 (12)
H29 0.3274 1.0522 0.8849 0.076*
C30 0.4090 (3) 0.9666 (4) 0.9558 (4) 0.0647 (13)
H30 0.4485 1.0070 0.9263 0.078*
C31 0.4239 (3) 0.8797 (4) 1.0239 (4) 0.0614 (11)
H31 0.4731 0.8598 1.0412 0.074*
C32 0.3623 (2) 0.8225 (3) 1.0661 (3) 0.0457 (9)
C33 0.0275 (3) 0.8304 (4) 1.1823 (4) 0.0793 (15)
H33A 0.0325 0.8479 1.2593 0.119*
H33B −0.0136 0.7805 1.1724 0.119*
H33C 0.0179 0.8958 1.1410 0.119*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
F1 0.251 (5) 0.0477 (15) 0.0652 (18) −0.031 (2) −0.035 (2) 0.0173 (15)
F2 0.0645 (19) 0.0727 (17) 0.0798 (18) 0.0172 (13) 0.0031 (14) 0.0249 (15)
O1 0.078 (2) 0.0374 (14) 0.0354 (13) −0.0033 (12) −0.0117 (13) 0.0106 (11)
O2 0.073 (2) 0.0410 (16) 0.082 (2) 0.0067 (14) −0.0102 (17) 0.0123 (16)
N1 0.050 (2) 0.060 (2) 0.0389 (16) −0.0045 (15) 0.0072 (14) −0.0143 (15)
C1 0.041 (2) 0.0303 (17) 0.0343 (18) −0.0005 (14) 0.0016 (15) 0.0056 (15)
C2 0.043 (2) 0.0327 (18) 0.0347 (17) −0.0015 (14) 0.0011 (15) 0.0035 (15)
C3 0.057 (3) 0.0307 (18) 0.0296 (16) −0.0015 (15) 0.0021 (16) 0.0000 (14)
C4 0.045 (2) 0.0305 (17) 0.0303 (16) 0.0003 (14) 0.0002 (14) 0.0042 (14)
C5 0.039 (2) 0.0298 (17) 0.0298 (16) 0.0002 (14) −0.0024 (14) −0.0003 (14)
C6 0.046 (2) 0.0338 (17) 0.0326 (16) −0.0041 (14) −0.0044 (16) −0.0004 (14)
C7 0.058 (3) 0.054 (2) 0.043 (2) −0.0043 (18) 0.0014 (18) −0.0198 (19)
C8 0.041 (2) 0.0350 (18) 0.0366 (17) −0.0028 (14) −0.0019 (16) −0.0044 (15)
C9 0.052 (3) 0.039 (2) 0.046 (2) 0.0113 (17) 0.0017 (19) −0.0034 (17)
C10 0.049 (3) 0.063 (3) 0.045 (2) 0.0167 (19) −0.0042 (19) −0.0184 (19)
C11 0.044 (2) 0.054 (2) 0.053 (2) −0.0005 (16) 0.0025 (19) −0.024 (2)
C12 0.043 (2) 0.045 (2) 0.052 (2) −0.0027 (16) 0.0068 (19) −0.0049 (18)
C13 0.057 (3) 0.068 (3) 0.082 (3) −0.012 (2) 0.017 (2) 0.017 (3)
C14 0.075 (4) 0.076 (4) 0.114 (5) −0.032 (3) 0.013 (4) 0.007 (3)
C15 0.078 (4) 0.069 (3) 0.133 (5) −0.038 (3) 0.027 (4) −0.028 (4)
C16 0.047 (3) 0.086 (4) 0.082 (3) −0.005 (2) 0.001 (2) −0.043 (3)
C17 0.067 (4) 0.115 (5) 0.101 (5) −0.001 (3) −0.019 (3) −0.060 (4)
C18 0.077 (4) 0.149 (6) 0.069 (4) 0.031 (4) −0.037 (3) −0.055 (4)
C19 0.071 (4) 0.094 (4) 0.050 (2) 0.031 (3) −0.014 (2) −0.018 (2)
C20 0.055 (2) 0.0339 (19) 0.0407 (18) −0.0037 (15) −0.0023 (17) 0.0052 (16)
C21 0.048 (2) 0.035 (2) 0.053 (2) −0.0003 (16) −0.0060 (18) −0.0006 (17)
C22 0.073 (3) 0.043 (2) 0.052 (2) −0.016 (2) 0.004 (2) −0.0028 (19)
C23 0.080 (4) 0.068 (3) 0.058 (3) −0.020 (2) 0.009 (2) −0.018 (2)
C24 0.081 (4) 0.057 (3) 0.080 (4) 0.011 (2) −0.018 (3) −0.032 (3)
C25 0.131 (5) 0.032 (2) 0.085 (4) 0.004 (2) −0.040 (3) −0.004 (3)
C26 0.109 (4) 0.035 (2) 0.059 (3) −0.004 (2) −0.024 (3) 0.008 (2)
C27 0.048 (2) 0.0332 (18) 0.0313 (16) −0.0048 (14) −0.0008 (15) −0.0074 (15)
C28 0.067 (3) 0.040 (2) 0.052 (2) −0.0045 (18) −0.006 (2) 0.0060 (18)
C29 0.090 (4) 0.038 (2) 0.061 (3) −0.022 (2) −0.003 (3) 0.002 (2)
C30 0.083 (4) 0.061 (3) 0.050 (3) −0.037 (2) 0.009 (2) −0.011 (2)
C31 0.050 (3) 0.073 (3) 0.061 (3) −0.005 (2) 0.004 (2) −0.009 (2)
C32 0.053 (3) 0.040 (2) 0.044 (2) −0.0025 (17) 0.0018 (18) −0.0059 (17)
C33 0.058 (3) 0.106 (4) 0.074 (3) 0.000 (3) 0.014 (3) −0.039 (3)

Geometric parameters (Å, º)

F1—C26 1.368 (6) C14—H14A 0.9300
F2—C32 1.362 (5) C15—C16 1.421 (8)
O1—C1 1.224 (4) C15—H15 0.9300
O2—C9 1.209 (5) C16—C17 1.413 (9)
N1—C7 1.455 (5) C17—C18 1.367 (9)
N1—C33 1.456 (6) C17—H17 0.9300
N1—C8 1.465 (5) C18—C19 1.415 (8)
C1—C2 1.478 (5) C18—H18 0.9300
C1—C5 1.545 (5) C19—H19 0.9300
C2—C20 1.338 (5) C20—C21 1.451 (5)
C2—C3 1.505 (5) C20—H21 0.9300
C3—C4 1.530 (5) C21—C26 1.380 (6)
C3—H3A 0.9700 C21—C22 1.414 (6)
C3—H3B 0.9700 C22—C23 1.369 (6)
C4—C5 1.539 (5) C22—H22 0.9300
C4—H4A 0.9700 C23—C24 1.361 (7)
C4—H4B 0.9700 C23—H23 0.9300
C5—C6 1.568 (5) C24—C25 1.392 (8)
C5—C8 1.580 (5) C24—H24 0.9300
C6—C27 1.508 (5) C25—C26 1.359 (6)
C6—C7 1.527 (5) C25—H25 0.9300
C6—H6 0.9800 C27—C32 1.362 (5)
C7—H7A 0.9700 C27—C28 1.405 (5)
C7—H7B 0.9700 C28—C29 1.381 (6)
C8—C12 1.520 (5) C28—H28 0.9300
C8—C9 1.571 (5) C29—C30 1.353 (7)
C9—C10 1.473 (6) C29—H29 0.9300
C10—C19 1.386 (6) C30—C31 1.373 (7)
C10—C11 1.400 (6) C30—H30 0.9300
C11—C12 1.408 (6) C31—C32 1.395 (6)
C11—C16 1.415 (6) C31—H31 0.9300
C12—C13 1.370 (6) C33—H33A 0.9600
C13—C14 1.402 (7) C33—H33B 0.9600
C13—H14 0.9300 C33—H33C 0.9600
C14—C15 1.344 (10)
C7—N1—C33 115.6 (3) C13—C14—H14A 118.3
C7—N1—C8 107.2 (3) C14—C15—C16 120.1 (5)
C33—N1—C8 116.1 (4) C14—C15—H15 120.0
O1—C1—C2 126.6 (3) C16—C15—H15 120.0
O1—C1—C5 124.1 (3) C17—C16—C11 114.8 (6)
C2—C1—C5 109.3 (3) C17—C16—C15 129.1 (5)
C20—C2—C1 119.7 (3) C11—C16—C15 116.0 (5)
C20—C2—C3 132.3 (3) C18—C17—C16 121.4 (5)
C1—C2—C3 107.9 (3) C18—C17—H17 119.3
C2—C3—C4 104.1 (3) C16—C17—H17 119.3
C2—C3—H3A 110.9 C17—C18—C19 122.9 (5)
C4—C3—H3A 110.9 C17—C18—H18 118.6
C2—C3—H3B 110.9 C19—C18—H18 118.6
C4—C3—H3B 110.9 C10—C19—C18 117.5 (6)
H3A—C3—H3B 109.0 C10—C19—H19 121.3
C3—C4—C5 106.3 (3) C18—C19—H19 121.3
C3—C4—H4A 110.5 C2—C20—C21 130.8 (3)
C5—C4—H4A 110.5 C2—C20—H21 114.6
C3—C4—H4B 110.5 C21—C20—H21 114.6
C5—C4—H4B 110.5 C26—C21—C22 113.9 (4)
H4A—C4—H4B 108.7 C26—C21—C20 120.5 (4)
C4—C5—C1 100.0 (3) C22—C21—C20 125.5 (4)
C4—C5—C6 117.6 (3) C23—C22—C21 122.1 (4)
C1—C5—C6 111.8 (3) C23—C22—H22 119.0
C4—C5—C8 115.3 (3) C21—C22—H22 119.0
C1—C5—C8 108.0 (3) C24—C23—C22 121.0 (5)
C6—C5—C8 104.1 (3) C24—C23—H23 119.5
C27—C6—C7 114.1 (3) C22—C23—H23 119.5
C27—C6—C5 117.0 (3) C23—C24—C25 119.2 (4)
C7—C6—C5 105.1 (3) C23—C24—H24 120.4
C27—C6—H6 106.7 C25—C24—H24 120.4
C7—C6—H6 106.7 C26—C25—C24 118.4 (5)
C5—C6—H6 106.7 C26—C25—H25 120.8
N1—C7—C6 103.5 (3) C24—C25—H25 120.8
N1—C7—H7A 111.1 C25—C26—F1 117.6 (4)
C6—C7—H7A 111.1 C25—C26—C21 125.3 (4)
N1—C7—H7B 111.1 F1—C26—C21 117.1 (4)
C6—C7—H7B 111.1 C32—C27—C28 115.1 (3)
H7A—C7—H7B 109.0 C32—C27—C6 122.6 (3)
N1—C8—C12 110.9 (3) C28—C27—C6 122.2 (3)
N1—C8—C9 114.5 (3) C29—C28—C27 120.9 (4)
C12—C8—C9 101.2 (3) C29—C28—H28 119.5
N1—C8—C5 102.4 (3) C27—C28—H28 119.5
C12—C8—C5 117.6 (3) C30—C29—C28 121.4 (4)
C9—C8—C5 110.9 (3) C30—C29—H29 119.3
O2—C9—C10 127.2 (4) C28—C29—H29 119.3
O2—C9—C8 124.4 (4) C29—C30—C31 120.1 (4)
C10—C9—C8 108.4 (3) C29—C30—H30 119.9
C19—C10—C11 119.2 (5) C31—C30—H30 119.9
C19—C10—C9 133.2 (5) C30—C31—C32 117.4 (4)
C11—C10—C9 107.5 (3) C30—C31—H31 121.3
C10—C11—C12 112.7 (3) C32—C31—H31 121.3
C10—C11—C16 124.2 (4) C27—C32—F2 118.7 (3)
C12—C11—C16 123.1 (4) C27—C32—C31 125.0 (4)
C13—C12—C11 118.3 (4) F2—C32—C31 116.3 (4)
C13—C12—C8 131.8 (4) N1—C33—H33A 109.5
C11—C12—C8 109.9 (3) N1—C33—H33B 109.5
C12—C13—C14 119.1 (5) H33A—C33—H33B 109.5
C12—C13—H14 120.5 N1—C33—H33C 109.5
C14—C13—H14 120.5 H33A—C33—H33C 109.5
C15—C14—C13 123.4 (5) H33B—C33—H33C 109.5
C15—C14—H14A 118.3
O1—C1—C2—C20 10.5 (6) C16—C11—C12—C13 −3.8 (6)
C5—C1—C2—C20 −170.2 (3) C10—C11—C12—C8 −3.1 (5)
O1—C1—C2—C3 −172.3 (4) C16—C11—C12—C8 179.1 (4)
C5—C1—C2—C3 7.0 (4) N1—C8—C12—C13 −49.0 (5)
C20—C2—C3—C4 −168.1 (4) C9—C8—C12—C13 −170.8 (4)
C1—C2—C3—C4 15.2 (4) C5—C8—C12—C13 68.3 (6)
C2—C3—C4—C5 −32.0 (4) N1—C8—C12—C11 127.7 (3)
C3—C4—C5—C1 34.8 (4) C9—C8—C12—C11 5.8 (4)
C3—C4—C5—C6 156.0 (3) C5—C8—C12—C11 −115.1 (3)
C3—C4—C5—C8 −80.6 (3) C11—C12—C13—C14 3.4 (6)
O1—C1—C5—C4 153.6 (4) C8—C12—C13—C14 179.9 (5)
C2—C1—C5—C4 −25.7 (3) C12—C13—C14—C15 −1.0 (9)
O1—C1—C5—C6 28.4 (5) C13—C14—C15—C16 −1.3 (10)
C2—C1—C5—C6 −150.9 (3) C10—C11—C16—C17 1.4 (6)
O1—C1—C5—C8 −85.5 (4) C12—C11—C16—C17 178.9 (4)
C2—C1—C5—C8 95.2 (3) C10—C11—C16—C15 −176.1 (4)
C4—C5—C6—C27 −1.6 (4) C12—C11—C16—C15 1.5 (6)
C1—C5—C6—C27 113.3 (3) C14—C15—C16—C17 −175.9 (6)
C8—C5—C6—C27 −130.4 (3) C14—C15—C16—C11 1.0 (8)
C4—C5—C6—C7 126.1 (3) C11—C16—C17—C18 −0.4 (8)
C1—C5—C6—C7 −119.0 (3) C15—C16—C17—C18 176.6 (6)
C8—C5—C6—C7 −2.7 (3) C16—C17—C18—C19 −1.2 (9)
C33—N1—C7—C6 −174.1 (4) C11—C10—C19—C18 −1.0 (6)
C8—N1—C7—C6 −42.8 (4) C9—C10—C19—C18 −177.1 (4)
C27—C6—C7—N1 155.9 (3) C17—C18—C19—C10 1.9 (8)
C5—C6—C7—N1 26.4 (4) C1—C2—C20—C21 179.5 (4)
C7—N1—C8—C12 166.6 (3) C3—C2—C20—C21 3.0 (7)
C33—N1—C8—C12 −62.4 (5) C2—C20—C21—C26 −172.3 (4)
C7—N1—C8—C9 −79.7 (4) C2—C20—C21—C22 9.8 (7)
C33—N1—C8—C9 51.3 (5) C26—C21—C22—C23 −2.1 (7)
C7—N1—C8—C5 40.4 (4) C20—C21—C22—C23 175.8 (4)
C33—N1—C8—C5 171.4 (4) C21—C22—C23—C24 0.7 (7)
C4—C5—C8—N1 −151.9 (3) C22—C23—C24—C25 1.3 (8)
C1—C5—C8—N1 97.2 (3) C23—C24—C25—C26 −1.7 (9)
C6—C5—C8—N1 −21.7 (3) C24—C25—C26—F1 −179.6 (6)
C4—C5—C8—C12 86.3 (4) C24—C25—C26—C21 0.2 (9)
C1—C5—C8—C12 −24.6 (4) C22—C21—C26—C25 1.7 (7)
C6—C5—C8—C12 −143.5 (3) C20—C21—C26—C25 −176.4 (5)
C4—C5—C8—C9 −29.4 (4) C22—C21—C26—F1 −178.5 (5)
C1—C5—C8—C9 −140.2 (3) C20—C21—C26—F1 3.4 (7)
C6—C5—C8—C9 100.8 (3) C7—C6—C27—C32 128.5 (4)
N1—C8—C9—O2 51.8 (5) C5—C6—C27—C32 −108.3 (4)
C12—C8—C9—O2 171.1 (4) C7—C6—C27—C28 −51.5 (4)
C5—C8—C9—O2 −63.4 (4) C5—C6—C27—C28 71.7 (4)
N1—C8—C9—C10 −125.9 (3) C32—C27—C28—C29 0.3 (5)
C12—C8—C9—C10 −6.6 (4) C6—C27—C28—C29 −179.7 (4)
C5—C8—C9—C10 118.9 (3) C27—C28—C29—C30 −0.2 (7)
O2—C9—C10—C19 4.0 (7) C28—C29—C30—C31 0.2 (7)
C8—C9—C10—C19 −178.4 (4) C29—C30—C31—C32 −0.4 (6)
O2—C9—C10—C11 −172.4 (4) C28—C27—C32—F2 178.6 (3)
C8—C9—C10—C11 5.2 (4) C6—C27—C32—F2 −1.4 (5)
C19—C10—C11—C12 −178.4 (4) C28—C27—C32—C31 −0.6 (5)
C9—C10—C11—C12 −1.4 (5) C6—C27—C32—C31 179.5 (3)
C19—C10—C11—C16 −0.7 (6) C30—C31—C32—C27 0.6 (6)
C9—C10—C11—C16 176.4 (4) C30—C31—C32—F2 −178.5 (3)
C10—C11—C12—C13 174.0 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C3—H3B···O1i 0.97 2.35 3.317 (5) 172
C14—H14A···F2ii 0.93 2.43 3.212 (7) 141
C25—H25···O2iii 0.93 2.58 3.458 (7) 158

Symmetry codes: (i) −x+1/2, y, z−1/2; (ii) x−1/2, −y+1, z; (iii) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2458).

References

  1. Abdul Ajees, A., Manikandan, S. & Raghunathan, R. (2002). Acta Cryst. E58, o802–o804.
  2. Bruker (2002). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Chande, M. S., Verma, R. S., Barve, P. A. & Khanwelkar, R. R. (2005). Eur. J. Med. Chem. 40, 1143–1148. [DOI] [PubMed]
  4. Cravotto, G., Giovenzana, G. B., Pilati, T., Sisti, M. & Palmisano, G. (2001). J. Org. Chem. 66, 8447–8453. [DOI] [PubMed]
  5. Dandia, A., Sati, M., Arya, K., Sharma, R. & Loupy, A. (2003). Chem. Pharm. Bull. 51, 1137–1141. [DOI] [PubMed]
  6. Kumar, R. R., Perumal, S., Senthilkumar, P., Yogeeswari, P. & Sriram, D. (2008a). Tetrahedron, 64, 2962–2971.
  7. Kumar, R. R., Perumal, S., Senthilkumar, P., Yogeeswari, P. & Sriram, D. (2008b). J. Med. Chem. 51, 5731–5735. [DOI] [PubMed]
  8. Liang, G., Shao, L. L., Wang, Y., Zhao, C. G., Chu, Y. H., Xiao, J., Zhao, Y., Li, X. K. & Yang, S. L. (2009). Bioorg. Med. Chem. 17, 2623–2631. [DOI] [PubMed]
  9. Metwally, K. A., Dukat, M. & Egan, C. T. (1998). J. Med. Chem. 41, 5084–5093. [DOI] [PubMed]
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Suenaga, K., Araki, K. & Sengoku, T. (2001). Org. Lett. 3, 527–529. [DOI] [PubMed]
  12. Usha, G., Selvanayagam, S., Yogavel, M., Velmurugan, D., Amalraj, A., Raghunathan, R., Shanmuga Sundara Raj, S. & Fun, H.-K. (2003). Acta Cryst. E59, o1572–o1574.
  13. Winfred, G. B., Rutger, M. & Fieseler, F. (2000). J. Org. Chem. 65, 8317–8320.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812051550/pk2458sup1.cif

e-69-0o249-sup1.cif (26.1KB, cif)

Structure factors: contains datablock(s) cd20184. DOI: 10.1107/S1600536812051550/pk2458Isup2.hkl

e-69-0o249-Isup2.hkl (125.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES