Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Jan 19;69(Pt 2):o256–o257. doi: 10.1107/S1600536813001177

5′′-(4-Meth­oxy­benzyl­idene)-1′-(4-meth­oxy­phen­yl)-1′′-methyl-1′,2′,3′,5′,6′,7′,8′,8a′-octa­hydro­dispiro­[acenaphthyl­ene-1,3′-indolizine-2′,3′′-piperidine]-2,4′′(1H)-dione

J Suresh a, R A Nagalakshmi a, S Sivakumar b, R Ranjith Kumar b, P L Nilantha Lakshman c,*
PMCID: PMC3569788  PMID: 23424534

Abstract

In the title compound, C39H38N2O4, the pyridinone ring adopts a twisted half-chair conformation with the N atom deviating by 0.3304 (1) and with the methyl­ene C atom adjacent to the octa­hydro­indolizine unit deviating by 0.444 (3) Å from the mean plane defined by the other four atoms. In the octa­hydro­indolizine system, the pyrrolidine ring exhibits an envelope conformation, with the fused methyne C atom deviating by 0.6315 (1) Å from the mean plane defined by the other four atoms, and the piperidine ring exhibits a distorted chair conformation, as reflected in the puckering parameters Q = 0.568 (4) Å, θ = 1.5 (4) and ϕ = 161 (16)°. In the crystal pairs of weak C—H⋯O inter­actions form centrosymmetric dimers, which are further connected by C—H⋯π inter­actions. The crystal studied was a non-merohedral twin, with a domain ratio of 0.91:0.09.

Related literature  

For general properties of indolizines, see: Weidner et al. (1989); Katritzky et al. (1999); Asano et al. (2000); Gilchrist (2001); Sarkunam & Nallu (2005); Tielmann & Hoenke (2006); Oslund et al. (2008); Vemula et al. (2011); Singh & Mmatli (2011). For bond lengths and angles in a related structure, see: Suresh et al. (2011). For ring conformation analysis, see: Cremer & Pople (1975).graphic file with name e-69-0o256-scheme1.jpg

Experimental  

Crystal data  

  • C39H38N2O4

  • M r = 598.71

  • Monoclinic, Inline graphic

  • a = 8.379 (5) Å

  • b = 16.958 (5) Å

  • c = 22.063 (5) Å

  • β = 96.605 (5)°

  • V = 3114 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.21 × 0.19 × 0.18 mm

Data collection  

  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.967, T max = 0.974

  • 5537 measured reflections

  • 5537 independent reflections

  • 3900 reflections with I > 2σ(I)

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.066

  • wR(F 2) = 0.183

  • S = 1.05

  • 5537 reflections

  • 407 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813001177/bh2471sup1.cif

e-69-0o256-sup1.cif (29.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813001177/bh2471Isup2.hkl

e-69-0o256-Isup2.hkl (265.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the benzene ring (C52–C57) in the phenyl­methyl­idene group.

D—H⋯A D—H H⋯A DA D—H⋯A
C77—H77A⋯O2i 0.96 2.54 3.418 (5) 152
C58—H58CCg1ii 0.96 2.93 3.822 (5) 156

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

JS and RAN thank the management of Madura College for their encouragement and support. RRK thanks the DST, New Delhi, for funds under the fast-track scheme (grant No. SR/FT/CS-073/2009).

supplementary crystallographic information

Comment

Indolizines are used as dyes (Weidner et al., 1989), pharmaceuticals (Singh & Mmatli, 2011), and spectroscopic sensitizers (Katritzky et al., 1999; Sarkunam & Nallu, 2005; Gilchrist, 2001; Vemula et al., 2011). Indolizines, both synthetic and natural, have also been ascribed with a number of useful biological activities (Asano et al., 2000; Tielmann & Hoenke, 2006; Oslund et al., 2008) such as antibacterial, antiviral, CNS depressants, anti-HIV, anti-cancer, and have been used for treating cardiovascular ailments. In view of its medicinal importance we report the crystal structure of the title compound.

In the title compound (Fig. 1), the central pyridinone ring with the methyl substituent in an equatorial position, adopts twisted half chair conformation with atoms N2 and C2 deviating by 0.3304 (1) and -0.444 (3) Å respectively, from the mean plane defined by other atoms C3/C4/C5/C6. The O1 atom is deviating by -0.4117 (1) Å from the above mean plane. The sum of bond angles around N2, 332 (9)°, indicates a pyramidal geometry. In the fused system, the pyrrolidine ring adopts the twisted envelope conformation with C8 atom at the flap deviating by -0.6315 (1) Å from the mean plane defined by other atoms C7/C3/C13/N1, and this orientation may be due to the inter-molecular C7— H7A···O2 interaction. In the fused system, the piperidine ring adopts a slightly distorted chair conformation as evident from the puckering parameters Q = 0.568 (4) Å, θ = 1.5 (4)° and φ = 161 (16)° (Cremer & Pople, 1975). The twist of the 4-methoxy benzene ring (C52 to C57) with respect to the spiro junction is denoted by the torsion angle C5—C51—C52—C57 = -46.4 (5)°. The dihedral angles between the mean plane of the pyridinone ring, defined by atoms C3/C4/C5/C6 and 4-methoxy benzene rings are 85.58 (1) and 61.91 (1)°. The carbonyl bond lengths, C4═O1 and C14═02 [1.217 (4) Å for both], are somewhat long, due to C—H···O contacts. Although atoms C8, C12, C13 attached to the atom N1, are all sp3 hybridized, their different environments cause differences in bond lengths [N1—C12: 1.466 (4) Å, N1—C8: 1.453 (4) Å, and N1—C13: 1.466 (4) Å] and in the bond angles [C12—N1—C13: 116.9 (3)°, C13—N1—C8: 107.7 (2)° and C12—N1—C8: 114.3 (3)°]. The methoxy groups substituted at the phenyl rings are nearly coplanar, as it can be seen from the torsion angles C77—O3—C74—C73 = 2.5 (6)° and C58—O4—C55—C54 = -3.9 (6)°. The C—C bond lengths and C—C—C angles in the acenaphthylene group compare with those of related structures (Suresh et al., 2011).

The structure features weak intra-molecular interactions and inter-molecular interactions. A weak inter-molecular interaction, viz C77—H77A···O2, generates a ring motif R22(25), forming centrosymmetric dimers, and these dimers are interconnected by C—H···π interactions (Fig. 2), involving the benzene ring C52···C57.

Experimental

A mixture of 1-methyl-3,5-bis[(E)-4-methoxyphenyl-methylidene]tetrahydro-4(1H)-pyridinone (1 mmol), acenaphthenequinone (1 mmol) and piperidine-2-carboxylic acid (1 mmol) was dissolved in isopropyl alcohol (15 ml) and refluxed for 60 min. After completion of the reaction (TLC), the mixture was poured into water (50 ml), the precipitated solid was filtered and washed with water (100 ml) to obtain pure yellow solid. Melting point: 520 K, yield: 94%.

Refinement

H atoms were placed at calculated positions and allowed to ride on their carrier atoms with C—H = 0.93–0.98 Å; Uiso = 1.2Ueq(C) for CH2 and CH groups, and Uiso = 1.5Ueq(C) for CH3 groups. The investigated crystal was a non-merohedral twin, with a twin law [-1 0 0, 0 -1 0, 0.606 0 1] and with a ratio of twin components of 0.91:09, corresponding to a 2-fold rotation about (0 0 1), as determined with the TwinRotMat option of PLATON (Spek, 2009). The final refinement was carried out against a detwinned set. Three strongly deviated reflections were omitted in the final refinement.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 50% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

Partial packing diagram showing C—H···O and C—H···π interactions.

Crystal data

C39H38N2O4 F(000) = 1272
Mr = 598.71 Dx = 1.277 Mg m3
Monoclinic, P21/n Melting point: 520 K
Hall symbol: -P 2yn Mo Kα radiation, λ = 0.71073 Å
a = 8.379 (5) Å Cell parameters from 2000 reflections
b = 16.958 (5) Å θ = 2–31°
c = 22.063 (5) Å µ = 0.08 mm1
β = 96.605 (5)° T = 293 K
V = 3114 (2) Å3 Block, yellow
Z = 4 0.21 × 0.19 × 0.18 mm

Data collection

Bruker Kappa APEXII diffractometer 5537 independent reflections
Radiation source: fine-focus sealed tube 3900 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.000
Detector resolution: 0 pixels mm-1 θmax = 25.2°, θmin = 1.5°
ω and φ scans h = −9→9
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) k = −20→20
Tmin = 0.967, Tmax = 0.974 l = −11→26
5537 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.183 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0636P)2 + 4.5987P] where P = (Fo2 + 2Fc2)/3
5537 reflections (Δ/σ)max < 0.001
407 parameters Δρmax = 0.44 e Å3
0 restraints Δρmin = −0.23 e Å3
0 constraints

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.8861 (4) 0.0366 (3) 0.20452 (18) 0.0536 (10)
H1A 0.9729 0.0311 0.2366 0.080*
H1B 0.9130 0.0762 0.1763 0.080*
H1C 0.8681 −0.0128 0.1836 0.080*
C2 0.6039 (4) 0.06949 (18) 0.18388 (14) 0.0311 (7)
H2A 0.5635 0.0181 0.1702 0.037*
H2B 0.6376 0.0972 0.1490 0.037*
C3 0.4716 (4) 0.11596 (16) 0.20994 (13) 0.0278 (7)
C4 0.4221 (4) 0.06915 (17) 0.26417 (14) 0.0311 (7)
C5 0.5514 (4) 0.02671 (17) 0.30318 (14) 0.0306 (7)
C6 0.7001 (4) 0.00261 (19) 0.27528 (15) 0.0376 (8)
H6A 0.7894 −0.0024 0.3072 0.045*
H6B 0.6825 −0.0484 0.2558 0.045*
C7 0.3264 (4) 0.13394 (17) 0.16133 (14) 0.0298 (7)
H7 0.2299 0.1319 0.1825 0.036*
C8 0.3503 (4) 0.21966 (17) 0.14482 (14) 0.0317 (7)
H8 0.4356 0.2236 0.1181 0.038*
C9 0.2017 (4) 0.26274 (19) 0.11600 (17) 0.0426 (9)
H9A 0.1139 0.2546 0.1404 0.051*
H9B 0.1697 0.2419 0.0755 0.051*
C10 0.2372 (5) 0.3506 (2) 0.11197 (19) 0.0539 (10)
H10A 0.1402 0.3784 0.0960 0.065*
H10B 0.3174 0.3591 0.0843 0.065*
C11 0.2983 (5) 0.3829 (2) 0.17483 (19) 0.0546 (10)
H11A 0.3261 0.4381 0.1713 0.066*
H11B 0.2139 0.3791 0.2013 0.066*
C12 0.4441 (5) 0.33755 (18) 0.20268 (18) 0.0458 (9)
H12A 0.5328 0.3459 0.1788 0.055*
H12B 0.4762 0.3563 0.2438 0.055*
C13 0.5304 (4) 0.20110 (17) 0.23384 (14) 0.0281 (7)
C14 0.7028 (4) 0.22267 (18) 0.21664 (16) 0.0353 (8)
C15 0.8039 (4) 0.24767 (19) 0.27284 (16) 0.0398 (8)
C16 0.7076 (4) 0.24392 (19) 0.32061 (15) 0.0383 (8)
C17 0.5508 (4) 0.21718 (17) 0.30216 (14) 0.0344 (8)
C18 0.4439 (5) 0.2155 (2) 0.34435 (16) 0.0465 (9)
H18 0.3378 0.2005 0.3333 0.056*
C19 0.4977 (7) 0.2370 (3) 0.40524 (19) 0.0670 (13)
H19 0.4263 0.2338 0.4345 0.080*
C20 0.6504 (7) 0.2624 (3) 0.42254 (19) 0.0709 (14)
H20 0.6805 0.2760 0.4631 0.085*
C21 0.7631 (5) 0.2684 (2) 0.38039 (18) 0.0554 (11)
C22 0.9208 (6) 0.2975 (3) 0.3887 (2) 0.0740 (15)
H22 0.9631 0.3149 0.4272 0.089*
C23 1.0143 (6) 0.3010 (3) 0.3419 (3) 0.0756 (15)
H23 1.1184 0.3206 0.3494 0.091*
C24 0.9574 (5) 0.2758 (2) 0.2829 (2) 0.0583 (11)
H24 1.0222 0.2782 0.2514 0.070*
C51 0.5327 (4) 0.01730 (18) 0.36210 (15) 0.0362 (8)
H51 0.4389 0.0382 0.3743 0.043*
C52 0.6398 (4) −0.02137 (18) 0.40965 (14) 0.0341 (7)
C53 0.6721 (4) 0.0136 (2) 0.46697 (15) 0.0427 (9)
H53 0.6244 0.0617 0.4741 0.051*
C54 0.7726 (4) −0.0208 (2) 0.51350 (16) 0.0456 (9)
H54 0.7935 0.0045 0.5510 0.055*
C55 0.8418 (4) −0.0929 (2) 0.50414 (15) 0.0399 (8)
C56 0.8081 (5) −0.1299 (2) 0.44809 (16) 0.0469 (9)
H56 0.8526 −0.1791 0.4418 0.056*
C57 0.7096 (4) −0.0948 (2) 0.40169 (15) 0.0409 (8)
H57 0.6892 −0.1204 0.3643 0.049*
C58 0.9814 (5) −0.0940 (3) 0.60414 (18) 0.0623 (11)
H58A 1.0508 −0.1275 0.6305 0.093*
H58B 0.8855 −0.0833 0.6226 0.093*
H58C 1.0357 −0.0454 0.5977 0.093*
C71 0.2988 (4) 0.07706 (18) 0.10796 (14) 0.0333 (7)
C72 0.2147 (4) 0.0085 (2) 0.11315 (17) 0.0442 (9)
H72 0.1765 −0.0032 0.1501 0.053*
C73 0.1844 (4) −0.0451 (2) 0.06395 (17) 0.0473 (9)
H73 0.1277 −0.0915 0.0684 0.057*
C74 0.2402 (5) −0.0272 (2) 0.00964 (16) 0.0458 (9)
C75 0.3242 (5) 0.0405 (2) 0.00330 (17) 0.0547 (10)
H75 0.3615 0.0522 −0.0338 0.066*
C76 0.3539 (5) 0.0915 (2) 0.05173 (15) 0.0474 (9)
H76 0.4125 0.1372 0.0468 0.057*
C77 0.1333 (6) −0.1444 (3) −0.0375 (2) 0.0757 (14)
H77A 0.1286 −0.1720 −0.0757 0.114*
H77B 0.0264 −0.1320 −0.0290 0.114*
H77C 0.1849 −0.1770 −0.0055 0.114*
N1 0.4057 (3) 0.25330 (14) 0.20408 (12) 0.0333 (6)
N2 0.7402 (3) 0.06004 (16) 0.23053 (12) 0.0338 (6)
O1 0.2835 (3) 0.06822 (14) 0.27573 (11) 0.0433 (6)
O2 0.7389 (3) 0.22681 (14) 0.16484 (11) 0.0443 (6)
O3 0.2198 (4) −0.07557 (17) −0.04099 (12) 0.0668 (8)
O4 0.9405 (4) −0.13225 (16) 0.54736 (11) 0.0606 (8)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.037 (2) 0.073 (3) 0.052 (2) 0.0131 (19) 0.0120 (18) 0.008 (2)
C2 0.0320 (17) 0.0306 (16) 0.0306 (17) 0.0024 (13) 0.0036 (14) 0.0017 (13)
C3 0.0288 (16) 0.0232 (15) 0.0315 (17) −0.0002 (12) 0.0031 (13) 0.0003 (12)
C4 0.0341 (19) 0.0236 (15) 0.0353 (18) −0.0002 (13) 0.0026 (14) −0.0006 (13)
C5 0.0313 (17) 0.0267 (16) 0.0333 (18) −0.0016 (13) 0.0023 (14) 0.0048 (13)
C6 0.0359 (18) 0.0354 (18) 0.0414 (19) 0.0065 (14) 0.0033 (15) 0.0023 (15)
C7 0.0302 (17) 0.0280 (16) 0.0309 (17) −0.0004 (13) 0.0023 (13) 0.0023 (13)
C8 0.0337 (17) 0.0292 (16) 0.0315 (17) 0.0021 (13) 0.0006 (14) 0.0010 (13)
C9 0.044 (2) 0.0373 (19) 0.045 (2) 0.0072 (15) −0.0030 (17) 0.0064 (16)
C10 0.055 (2) 0.037 (2) 0.069 (3) 0.0105 (17) 0.004 (2) 0.0163 (19)
C11 0.062 (3) 0.0266 (18) 0.074 (3) 0.0054 (17) 0.001 (2) 0.0048 (18)
C12 0.054 (2) 0.0239 (17) 0.058 (2) 0.0002 (15) 0.0003 (18) −0.0017 (16)
C13 0.0309 (17) 0.0245 (15) 0.0288 (16) −0.0019 (12) 0.0037 (13) 0.0003 (12)
C14 0.0384 (19) 0.0261 (16) 0.041 (2) −0.0029 (13) 0.0042 (16) 0.0021 (14)
C15 0.039 (2) 0.0330 (17) 0.045 (2) −0.0019 (15) −0.0007 (16) −0.0029 (15)
C16 0.050 (2) 0.0287 (17) 0.0345 (19) 0.0069 (15) −0.0043 (16) −0.0051 (14)
C17 0.045 (2) 0.0243 (15) 0.0340 (18) 0.0022 (14) 0.0065 (15) −0.0016 (13)
C18 0.058 (2) 0.040 (2) 0.044 (2) 0.0043 (17) 0.0172 (18) −0.0053 (16)
C19 0.103 (4) 0.060 (3) 0.042 (2) 0.009 (3) 0.027 (3) −0.012 (2)
C20 0.105 (4) 0.069 (3) 0.036 (2) 0.015 (3) −0.003 (3) −0.021 (2)
C21 0.068 (3) 0.047 (2) 0.047 (2) 0.014 (2) −0.010 (2) −0.0151 (18)
C22 0.071 (3) 0.069 (3) 0.072 (3) 0.012 (2) −0.033 (3) −0.035 (3)
C23 0.048 (3) 0.066 (3) 0.106 (4) −0.001 (2) −0.022 (3) −0.029 (3)
C24 0.041 (2) 0.056 (2) 0.075 (3) −0.0083 (18) −0.004 (2) −0.012 (2)
C51 0.0338 (18) 0.0321 (17) 0.043 (2) 0.0026 (14) 0.0065 (15) 0.0054 (15)
C52 0.0367 (18) 0.0343 (17) 0.0323 (18) −0.0008 (14) 0.0078 (14) 0.0062 (14)
C53 0.056 (2) 0.0338 (18) 0.039 (2) 0.0095 (16) 0.0091 (17) 0.0011 (15)
C54 0.059 (2) 0.041 (2) 0.036 (2) 0.0049 (17) 0.0020 (17) −0.0025 (16)
C55 0.047 (2) 0.0382 (18) 0.0340 (19) 0.0051 (16) 0.0029 (16) 0.0044 (15)
C56 0.063 (2) 0.0333 (18) 0.044 (2) 0.0143 (17) 0.0041 (18) 0.0013 (16)
C57 0.052 (2) 0.0372 (18) 0.0331 (18) 0.0032 (16) 0.0031 (16) −0.0021 (15)
C58 0.072 (3) 0.064 (3) 0.047 (2) 0.010 (2) −0.012 (2) 0.002 (2)
C71 0.0312 (17) 0.0299 (17) 0.0378 (19) 0.0024 (13) −0.0006 (14) −0.0020 (14)
C72 0.047 (2) 0.0404 (19) 0.047 (2) −0.0053 (16) 0.0103 (17) −0.0066 (16)
C73 0.051 (2) 0.0358 (19) 0.056 (2) −0.0126 (16) 0.0071 (19) −0.0051 (17)
C74 0.050 (2) 0.049 (2) 0.038 (2) −0.0063 (17) 0.0061 (17) −0.0034 (17)
C75 0.074 (3) 0.055 (2) 0.036 (2) −0.012 (2) 0.010 (2) −0.0026 (17)
C76 0.063 (2) 0.044 (2) 0.035 (2) −0.0118 (18) 0.0069 (18) −0.0020 (16)
C77 0.105 (4) 0.063 (3) 0.062 (3) −0.034 (3) 0.018 (3) −0.029 (2)
N1 0.0384 (15) 0.0228 (13) 0.0376 (15) 0.0010 (11) −0.0005 (12) −0.0008 (11)
N2 0.0286 (14) 0.0388 (15) 0.0342 (15) 0.0017 (11) 0.0047 (12) 0.0030 (12)
O1 0.0317 (14) 0.0499 (15) 0.0494 (15) 0.0019 (11) 0.0092 (11) 0.0153 (11)
O2 0.0479 (15) 0.0467 (14) 0.0401 (15) −0.0058 (11) 0.0128 (12) 0.0073 (11)
O3 0.092 (2) 0.0649 (19) 0.0465 (16) −0.0261 (16) 0.0200 (15) −0.0175 (14)
O4 0.079 (2) 0.0550 (16) 0.0431 (15) 0.0232 (14) −0.0124 (14) −0.0004 (13)

Geometric parameters (Å, º)

C1—N2 1.464 (4) C17—C18 1.365 (5)
C1—H1A 0.9600 C18—C19 1.415 (6)
C1—H1B 0.9600 C18—H18 0.9300
C1—H1C 0.9600 C19—C20 1.362 (7)
C2—N2 1.456 (4) C19—H19 0.9300
C2—C3 1.526 (4) C20—C21 1.403 (7)
C2—H2A 0.9700 C20—H20 0.9300
C2—H2B 0.9700 C21—C22 1.403 (7)
C3—C4 1.533 (4) C22—C23 1.367 (7)
C3—C7 1.557 (4) C22—H22 0.9300
C3—C13 1.595 (4) C23—C24 1.401 (6)
C4—O1 1.217 (4) C23—H23 0.9300
C4—C5 1.489 (4) C24—H24 0.9300
C5—C51 1.337 (4) C51—C52 1.456 (4)
C5—C6 1.509 (5) C51—H51 0.9300
C6—N2 1.453 (4) C52—C53 1.395 (5)
C6—H6A 0.9700 C52—C57 1.396 (5)
C6—H6B 0.9700 C53—C54 1.380 (5)
C7—C8 1.517 (4) C53—H53 0.9300
C7—C71 1.519 (4) C54—C55 1.379 (5)
C7—H7 0.9800 C54—H54 0.9300
C8—N1 1.453 (4) C55—O4 1.363 (4)
C8—C9 1.518 (4) C55—C56 1.386 (5)
C8—H8 0.9800 C56—C57 1.375 (5)
C9—C10 1.524 (5) C56—H56 0.9300
C9—H9A 0.9700 C57—H57 0.9300
C9—H9B 0.9700 C58—O4 1.417 (4)
C10—C11 1.524 (5) C58—H58A 0.9600
C10—H10A 0.9700 C58—H58B 0.9600
C10—H10B 0.9700 C58—H58C 0.9600
C11—C12 1.512 (5) C71—C72 1.372 (5)
C11—H11A 0.9700 C71—C76 1.394 (5)
C11—H11B 0.9700 C72—C73 1.415 (5)
C12—N1 1.466 (4) C72—H72 0.9300
C12—H12A 0.9700 C73—C74 1.370 (5)
C12—H12B 0.9700 C73—H73 0.9300
C13—N1 1.466 (4) C74—C75 1.362 (5)
C13—C17 1.522 (4) C74—O3 1.381 (4)
C13—C14 1.579 (5) C75—C76 1.375 (5)
C14—O2 1.217 (4) C75—H75 0.9300
C14—C15 1.481 (5) C76—H76 0.9300
C15—C24 1.366 (5) C77—O3 1.381 (5)
C15—C16 1.400 (5) C77—H77A 0.9600
C16—C17 1.405 (5) C77—H77B 0.9600
C16—C21 1.410 (5) C77—H77C 0.9600
N2—C1—H1A 109.5 C18—C17—C13 131.6 (3)
N2—C1—H1B 109.5 C16—C17—C13 109.9 (3)
H1A—C1—H1B 109.5 C17—C18—C19 118.7 (4)
N2—C1—H1C 109.5 C17—C18—H18 120.7
H1A—C1—H1C 109.5 C19—C18—H18 120.7
H1B—C1—H1C 109.5 C20—C19—C18 122.3 (4)
N2—C2—C3 109.6 (2) C20—C19—H19 118.9
N2—C2—H2A 109.8 C18—C19—H19 118.9
C3—C2—H2A 109.8 C19—C20—C21 121.3 (4)
N2—C2—H2B 109.8 C19—C20—H20 119.4
C3—C2—H2B 109.8 C21—C20—H20 119.4
H2A—C2—H2B 108.2 C22—C21—C20 129.4 (4)
C2—C3—C4 107.5 (2) C22—C21—C16 115.4 (4)
C2—C3—C7 112.7 (2) C20—C21—C16 115.1 (4)
C4—C3—C7 112.3 (2) C23—C22—C21 122.0 (4)
C2—C3—C13 112.5 (2) C23—C22—H22 119.0
C4—C3—C13 108.2 (2) C21—C22—H22 119.0
C7—C3—C13 103.7 (2) C22—C23—C24 121.7 (4)
O1—C4—C5 121.4 (3) C22—C23—H23 119.2
O1—C4—C3 121.4 (3) C24—C23—H23 119.2
C5—C4—C3 117.2 (3) C15—C24—C23 118.1 (4)
C51—C5—C4 117.4 (3) C15—C24—H24 121.0
C51—C5—C6 124.0 (3) C23—C24—H24 121.0
C4—C5—C6 118.4 (3) C5—C51—C52 128.6 (3)
N2—C6—C5 111.2 (3) C5—C51—H51 115.7
N2—C6—H6A 109.4 C52—C51—H51 115.7
C5—C6—H6A 109.4 C53—C52—C57 116.9 (3)
N2—C6—H6B 109.4 C53—C52—C51 120.1 (3)
C5—C6—H6B 109.4 C57—C52—C51 123.0 (3)
H6A—C6—H6B 108.0 C54—C53—C52 122.2 (3)
C8—C7—C71 115.8 (3) C54—C53—H53 118.9
C8—C7—C3 103.8 (2) C52—C53—H53 118.9
C71—C7—C3 116.5 (2) C55—C54—C53 119.6 (3)
C8—C7—H7 106.7 C55—C54—H54 120.2
C71—C7—H7 106.7 C53—C54—H54 120.2
C3—C7—H7 106.7 O4—C55—C54 124.1 (3)
N1—C8—C7 101.4 (2) O4—C55—C56 116.6 (3)
N1—C8—C9 110.5 (3) C54—C55—C56 119.3 (3)
C7—C8—C9 115.9 (3) C57—C56—C55 120.7 (3)
N1—C8—H8 109.6 C57—C56—H56 119.6
C7—C8—H8 109.6 C55—C56—H56 119.6
C9—C8—H8 109.6 C56—C57—C52 121.2 (3)
C8—C9—C10 109.8 (3) C56—C57—H57 119.4
C8—C9—H9A 109.7 C52—C57—H57 119.4
C10—C9—H9A 109.7 O4—C58—H58A 109.5
C8—C9—H9B 109.7 O4—C58—H58B 109.5
C10—C9—H9B 109.7 H58A—C58—H58B 109.5
H9A—C9—H9B 108.2 O4—C58—H58C 109.5
C9—C10—C11 110.2 (3) H58A—C58—H58C 109.5
C9—C10—H10A 109.6 H58B—C58—H58C 109.5
C11—C10—H10A 109.6 C72—C71—C76 116.7 (3)
C9—C10—H10B 109.6 C72—C71—C7 120.5 (3)
C11—C10—H10B 109.6 C76—C71—C7 122.8 (3)
H10A—C10—H10B 108.1 C71—C72—C73 121.9 (3)
C12—C11—C10 111.0 (3) C71—C72—H72 119.0
C12—C11—H11A 109.4 C73—C72—H72 119.0
C10—C11—H11A 109.4 C74—C73—C72 118.6 (3)
C12—C11—H11B 109.4 C74—C73—H73 120.7
C10—C11—H11B 109.4 C72—C73—H73 120.7
H11A—C11—H11B 108.0 C75—C74—C73 120.6 (3)
N1—C12—C11 109.6 (3) C75—C74—O3 115.8 (3)
N1—C12—H12A 109.8 C73—C74—O3 123.6 (3)
C11—C12—H12A 109.8 C74—C75—C76 120.0 (4)
N1—C12—H12B 109.8 C74—C75—H75 120.0
C11—C12—H12B 109.8 C76—C75—H75 120.0
H12A—C12—H12B 108.2 C75—C76—C71 122.2 (3)
N1—C13—C17 109.2 (2) C75—C76—H76 118.9
N1—C13—C14 112.2 (2) C71—C76—H76 118.9
C17—C13—C14 101.2 (2) O3—C77—H77A 109.5
N1—C13—C3 102.8 (2) O3—C77—H77B 109.5
C17—C13—C3 119.0 (2) H77A—C77—H77B 109.5
C14—C13—C3 112.7 (2) O3—C77—H77C 109.5
O2—C14—C15 126.1 (3) H77A—C77—H77C 109.5
O2—C14—C13 124.9 (3) H77B—C77—H77C 109.5
C15—C14—C13 108.4 (3) C8—N1—C13 107.7 (2)
C24—C15—C16 120.5 (3) C8—N1—C12 114.3 (3)
C24—C15—C14 132.3 (4) C13—N1—C12 116.9 (3)
C16—C15—C14 107.1 (3) C6—N2—C2 109.3 (2)
C15—C16—C17 113.4 (3) C6—N2—C1 110.7 (3)
C15—C16—C21 122.3 (3) C2—N2—C1 112.0 (3)
C17—C16—C21 124.2 (3) C77—O3—C74 118.3 (3)
C18—C17—C16 118.3 (3) C55—O4—C58 117.4 (3)
N2—C2—C3—C4 −60.0 (3) C13—C17—C18—C19 −177.2 (3)
N2—C2—C3—C7 175.8 (2) C17—C18—C19—C20 2.8 (6)
N2—C2—C3—C13 58.9 (3) C18—C19—C20—C21 −0.1 (7)
C2—C3—C4—O1 −145.1 (3) C19—C20—C21—C22 175.7 (4)
C7—C3—C4—O1 −20.6 (4) C19—C20—C21—C16 −2.1 (6)
C13—C3—C4—O1 93.2 (3) C15—C16—C21—C22 0.6 (5)
C2—C3—C4—C5 36.6 (3) C17—C16—C21—C22 −176.4 (3)
C7—C3—C4—C5 161.1 (3) C15—C16—C21—C20 178.6 (3)
C13—C3—C4—C5 −85.1 (3) C17—C16—C21—C20 1.7 (5)
O1—C4—C5—C51 −28.4 (4) C20—C21—C22—C23 −178.3 (5)
C3—C4—C5—C51 149.9 (3) C16—C21—C22—C23 −0.6 (6)
O1—C4—C5—C6 156.2 (3) C21—C22—C23—C24 0.1 (7)
C3—C4—C5—C6 −25.5 (4) C16—C15—C24—C23 −0.3 (6)
C51—C5—C6—N2 −141.0 (3) C14—C15—C24—C23 174.5 (4)
C4—C5—C6—N2 34.1 (4) C22—C23—C24—C15 0.3 (7)
C2—C3—C7—C8 −102.3 (3) C4—C5—C51—C52 −179.9 (3)
C4—C3—C7—C8 136.2 (3) C6—C5—C51—C52 −4.8 (5)
C13—C3—C7—C8 19.6 (3) C5—C51—C52—C53 136.0 (4)
C2—C3—C7—C71 26.3 (4) C5—C51—C52—C57 −46.4 (5)
C4—C3—C7—C71 −95.3 (3) C57—C52—C53—C54 2.1 (5)
C13—C3—C7—C71 148.2 (3) C51—C52—C53—C54 179.9 (3)
C71—C7—C8—N1 −168.6 (3) C52—C53—C54—C55 −1.3 (6)
C3—C7—C8—N1 −39.6 (3) C53—C54—C55—O4 −179.0 (3)
C71—C7—C8—C9 71.8 (4) C53—C54—C55—C56 −0.4 (6)
C3—C7—C8—C9 −159.2 (3) O4—C55—C56—C57 180.0 (3)
N1—C8—C9—C10 55.9 (4) C54—C55—C56—C57 1.3 (6)
C7—C8—C9—C10 170.5 (3) C55—C56—C57—C52 −0.5 (6)
C8—C9—C10—C11 −55.6 (4) C53—C52—C57—C56 −1.2 (5)
C9—C10—C11—C12 56.0 (4) C51—C52—C57—C56 −178.9 (3)
C10—C11—C12—N1 −55.1 (4) C8—C7—C71—C72 −153.6 (3)
C2—C3—C13—N1 129.2 (3) C3—C7—C71—C72 83.9 (4)
C4—C3—C13—N1 −112.2 (3) C8—C7—C71—C76 25.4 (4)
C7—C3—C13—N1 7.2 (3) C3—C7—C71—C76 −97.1 (4)
C2—C3—C13—C17 −110.0 (3) C76—C71—C72—C73 −0.2 (5)
C4—C3—C13—C17 8.5 (4) C7—C71—C72—C73 178.8 (3)
C7—C3—C13—C17 127.9 (3) C71—C72—C73—C74 −0.4 (6)
C2—C3—C13—C14 8.2 (3) C72—C73—C74—C75 0.5 (6)
C4—C3—C13—C14 126.8 (3) C72—C73—C74—O3 178.9 (4)
C7—C3—C13—C14 −113.8 (3) C73—C74—C75—C76 0.1 (6)
N1—C13—C14—O2 −55.5 (4) O3—C74—C75—C76 −178.5 (4)
C17—C13—C14—O2 −171.8 (3) C74—C75—C76—C71 −0.8 (6)
C3—C13—C14—O2 60.0 (4) C72—C71—C76—C75 0.8 (5)
N1—C13—C14—C15 116.5 (3) C7—C71—C76—C75 −178.2 (3)
C17—C13—C14—C15 0.3 (3) C7—C8—N1—C13 46.8 (3)
C3—C13—C14—C15 −128.0 (3) C9—C8—N1—C13 170.2 (3)
O2—C14—C15—C24 −4.2 (6) C7—C8—N1—C12 178.5 (3)
C13—C14—C15—C24 −176.1 (4) C9—C8—N1—C12 −58.1 (4)
O2—C14—C15—C16 171.1 (3) C17—C13—N1—C8 −160.8 (2)
C13—C14—C15—C16 −0.8 (3) C14—C13—N1—C8 87.8 (3)
C24—C15—C16—C17 177.1 (3) C3—C13—N1—C8 −33.5 (3)
C14—C15—C16—C17 1.1 (4) C17—C13—N1—C12 69.0 (3)
C24—C15—C16—C21 −0.1 (5) C14—C13—N1—C12 −42.4 (4)
C14—C15—C16—C21 −176.1 (3) C3—C13—N1—C12 −163.8 (3)
C15—C16—C17—C18 −176.3 (3) C11—C12—N1—C8 57.3 (4)
C21—C16—C17—C18 0.8 (5) C11—C12—N1—C13 −175.7 (3)
C15—C16—C17—C13 −1.0 (4) C5—C6—N2—C2 −57.1 (3)
C21—C16—C17—C13 176.2 (3) C5—C6—N2—C1 179.1 (3)
N1—C13—C17—C18 56.5 (4) C3—C2—N2—C6 73.3 (3)
C14—C13—C17—C18 174.9 (3) C3—C2—N2—C1 −163.6 (3)
C3—C13—C17—C18 −61.0 (5) C75—C74—O3—C77 −179.0 (4)
N1—C13—C17—C16 −118.0 (3) C73—C74—O3—C77 2.5 (6)
C14—C13—C17—C16 0.4 (3) C54—C55—O4—C58 −3.9 (6)
C3—C13—C17—C16 124.5 (3) C56—C55—O4—C58 177.6 (4)
C16—C17—C18—C19 −3.0 (5)

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the benzene ring (C52–C57) in the phenylmethylidene group.

D—H···A D—H H···A D···A D—H···A
C77—H77A···O2i 0.96 2.54 3.418 (5) 152
C58—H58C···Cg1ii 0.96 2.93 3.822 (5) 156

Symmetry codes: (i) −x+1, −y, −z; (ii) −x+2, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2471).

References

  1. Asano, N., Nash, R. J., Molyneux, R. J. & Fleet, G. W. J. (2000). Tetrahedron Asymmetry, 11, 1645–1680.
  2. Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  4. Gilchrist, T. L. (2001). J. Chem. Soc. Perkin Trans. 1, pp. 2491–2515.
  5. Katritzky, A. R., Qiu, G., Yang, B. & He, H.-Y. (1999). J. Org. Chem. 64, 7618–7621.
  6. Oslund, R. C., Cermak, N. & Gelb, M. H. (2008). J. Med. Chem. 51, 4708–4714. [DOI] [PMC free article] [PubMed]
  7. Sarkunam, K. & Nallu, M. (2005). J. Heterocycl. Chem. 42, 5–11.
  8. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Singh, G. S. & Mmatli, E. E. (2011). Eur. J. Med. Chem. 46, 5237–5257. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  12. Suresh, J., Vishnupriya, R., Kumar, R. R., Sivakumar, S. & Lakshman, P. L. N. (2011). Acta Cryst. E67, o3210. [DOI] [PMC free article] [PubMed]
  13. Tielmann, P. & Hoenke, C. (2006). Tetrahedron Lett. 47, 261–265.
  14. Vemula, V. R., Vurukonda, S. & Bairi, C. K. (2011). Int. J. Pharm. Sci. Rev. Res. 11, 159–163.
  15. Weidner, C. H., Wadsworth, D. H., Bender, S. L. & Beltman, D. J. (1989). J. Org. Chem. 54, 3660–3664.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813001177/bh2471sup1.cif

e-69-0o256-sup1.cif (29.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813001177/bh2471Isup2.hkl

e-69-0o256-Isup2.hkl (265.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES