Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Jan 19;69(Pt 2):o262. doi: 10.1107/S1600536813000846

1H-Benzotriazol-1-yl 4-{(E)-[4-(dimethyl­amino)­phen­yl]diazen­yl}benzoate

Abdelkrim El-Ghayoury a, Leokadiya Zorina b, Mostafa Khouili c,*
PMCID: PMC3569792  PMID: 23424538

Abstract

The title compound, C21H18N6O2, was obtained as a by-product of a reaction between (E)-4-(4-dimethyl­amino­phenyl­azo)benzoic acid and 2-amino-4-(2-pyrid­yl)-6-(6-pyrid­yl)-1,3,5-triazine, which has a very low solubility, under peptidic coupling conditions, using THF as solvent. The condensation reaction occurred between 1-hy­droxy­benzotriazole and (E)-4-(4-dimethyl­amino­phenyl­azo)benzoic acid. The dihedral angle between the benzene rings in the (E)-diphenyl­diazene fragment is 10.92 (13)° and that between the benzotriazole mean plane and the central benzene ring is 80.57 (7)°. In the crystal, π–π stacking [centroid–centroid distances = 3.823 (2) and 3.863 (2) Å] of similar fragments generates mol­ecular layers parallel to (0-12). The crystal packing also features weak C—H⋯N hydrogen bonds involving N atoms of the benzotriazole ring.

Related literature  

For applications of 1-hy­droxy­benzotriazole in organic syntheses, see: König & Geiger (1970); Miyazawa et al. (1984); Baldini et al. (2008). For the use of 1-hy­droxy­benzotriazole in the preparation of coordination compounds, see: Papaefstathiou et al. (2002).graphic file with name e-69-0o262-scheme1.jpg

Experimental  

Crystal data  

  • C21H18N6O2

  • M r = 386.41

  • Triclinic, Inline graphic

  • a = 6.6362 (8) Å

  • b = 11.384 (3) Å

  • c = 13.022 (3) Å

  • α = 99.64 (3)°

  • β = 103.61 (2)°

  • γ = 92.440 (17)°

  • V = 939.2 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.3 × 0.2 × 0.2 mm

Data collection  

  • Bruker KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008) T min = 0.697, T max = 0.746

  • 18381 measured reflections

  • 4288 independent reflections

  • 2107 reflections with I > 2σ(I)

  • R int = 0.059

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.062

  • wR(F 2) = 0.142

  • S = 1.04

  • 4288 reflections

  • 264 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: COLLECT (Hooft, 1998); cell refinement: DIRAX (Duisenberg, 1992); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: WinGX (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813000846/zq2193sup1.cif

e-69-0o262-sup1.cif (21.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813000846/zq2193Isup2.hkl

e-69-0o262-Isup2.hkl (205.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813000846/zq2193Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯N5i 0.93 2.63 3.415 (3) 142
C23—H23⋯N6ii 0.93 2.63 3.560 (3) 176

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors acknowledge the CNRST (Morocco) for partial financial support

supplementary crystallographic information

Comment

1-Hydroxybenzotriazole is a widely used compound in organic syntheses to decrease the racemization in the carbodiimide peptide coupling (König et al., 1970) and especially in racemization-free condensation of aminoacids and peptidic fragments (Miyazawa et al., 1984). It has also been utilized to form a benzotriazolyl active ester (Baldini et al., 2008). Recently 1-hydroxybenzotriazole was used in the preparation of one-dimensional coordination polymers (Papaefstathiou et al., 2002).

The molecular structure of the title compound is shown in Fig. 1. The diphenyldiazene fragment of the molecule is not planar (its benzene rings form a dihedral angle of 10.92 (13) °) and adopts an E conformation about the N2═N3 bond. The benzotriazolyl fragment (tautomer A) is essentially planar with an r.m.s. deviation of 0.010 (2) Å and is almost perpendicularly attached to the benzoate ring. The dihedral angles between mean plane of benzotriazolyl and two benzene rings, C3–C8 & C9–C14, are 88.57 (7) ° and 80.57 (7) °, respectively.

In the crystal structure (Fig. 2) π-π stacking of the similar fragments generates molecular layers parallel to (012) [Cg1···Cg2i, 3.823 Å; Cg3···Cg3ii, 3.863 Å; Cg1, Cg2 and Cg3 are the centroids of the C3–C8, C9–C14 and C20–C25 rings, respectively; symmetry codes: (i) 1 + x, y, z; (ii) -3 - x, -1 - y, -1 - z]. Adjacent molecules inside and between the layers are linked additionally by weak C—H···N hydrogen bonds to N-atoms of the benzotriazolyl ring (the shortest H···N distances are 2.63 Å).

Experimental

The title compound, C21H18N6O2, was obtained as a byproduct of a reaction between (E)-4-(4-dimethylaminophenylazo)benzoic acid and 2-amino-4-(2-pyridyl)-6-(6-pyridyl)-1,3,5-triazine, which is hardly soluble, under peptidic coupling condition. The condensation reaction has occurred between 1-hydroxybenzotriazole and (E)-4-(4-dimethylaminophenylazo)benzoic acid.

Refinement

Hydrogen atoms were located in a difference electron density map and refined in a riding model (including free rotation for methyl groups), with Uiso(H) = 1.2 (1.5 for methyl groups) times Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Packing diagram of the title compound viewed along the a–axis. Hydrogen C—H···N bonds are shown as dashed lines.

Crystal data

C21H18N6O2 Z = 2
Mr = 386.41 F(000) = 404
Triclinic, P1 Dx = 1.366 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 6.6362 (8) Å Cell parameters from 4814 reflections
b = 11.384 (3) Å θ = 3.7–27.6°
c = 13.022 (3) Å µ = 0.09 mm1
α = 99.64 (3)° T = 293 K
β = 103.61 (2)° Prism, dark-red
γ = 92.440 (17)° 0.3 × 0.2 × 0.2 mm
V = 939.2 (3) Å3

Data collection

Bruker KappaCCD diffractometer 4288 independent reflections
Radiation source: fine-focus sealed tube 2107 reflections with I > 2σ(I)
Horizontally mounted graphite crystal monochromator Rint = 0.059
Detector resolution: 9 pixels mm-1 θmax = 27.6°, θmin = 3.7°
combined ω– and φ–scans h = −8→8
Absorption correction: multi-scan (SADABS; Bruker, 2008) k = −14→14
Tmin = 0.697, Tmax = 0.746 l = −16→16
18381 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062 Hydrogen site location: difference Fourier map
wR(F2) = 0.142 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0421P)2 + 0.3933P] where P = (Fo2 + 2Fc2)/3
4288 reflections (Δ/σ)max = 0.006
264 parameters Δρmax = 0.20 e Å3
0 restraints Δρmin = −0.18 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 1.7674 (4) 0.3683 (3) 1.0813 (2) 0.0622 (8)
H1A 1.8814 0.4273 1.0911 0.093*
H1B 1.8198 0.2915 1.0858 0.093*
H1C 1.6942 0.3894 1.1362 0.093*
C2 1.7041 (4) 0.4217 (3) 0.9009 (2) 0.0616 (8)
H2A 1.8431 0.4572 0.9338 0.092*
H2B 1.6156 0.4828 0.8805 0.092*
H2C 1.7048 0.3639 0.8382 0.092*
C3 1.4360 (3) 0.3014 (2) 0.94775 (19) 0.0396 (6)
C4 1.3631 (4) 0.2398 (2) 1.0190 (2) 0.0424 (6)
H4 1.4470 0.2409 1.0874 0.051*
C5 1.3021 (4) 0.2962 (2) 0.8449 (2) 0.0481 (7)
H5 1.3452 0.3359 0.7958 0.058*
C6 1.1699 (4) 0.1782 (2) 0.9887 (2) 0.0439 (6)
H6 1.1252 0.1386 1.0373 0.053*
C7 1.1107 (4) 0.2342 (2) 0.8161 (2) 0.0479 (7)
H7 1.0259 0.2322 0.7478 0.057*
C8 1.0396 (3) 0.1736 (2) 0.8874 (2) 0.0421 (6)
C9 0.5372 (3) 0.0387 (2) 0.7486 (2) 0.0424 (6)
C10 0.4539 (3) −0.0039 (2) 0.8252 (2) 0.0418 (6)
H10 0.5271 0.0114 0.8970 0.050*
C11 0.4233 (4) 0.0191 (2) 0.6422 (2) 0.0527 (7)
H11 0.4757 0.0504 0.5912 0.063*
C12 0.2630 (3) −0.0688 (2) 0.7946 (2) 0.0421 (6)
H12 0.2079 −0.0973 0.8459 0.051*
C13 0.2336 (4) −0.0462 (2) 0.6120 (2) 0.0516 (7)
H13 0.1591 −0.0600 0.5404 0.062*
C14 0.1516 (3) −0.0921 (2) 0.6875 (2) 0.0405 (6)
C15 −0.0433 (4) −0.1686 (2) 0.6479 (2) 0.0459 (6)
C20 −0.4479 (3) −0.4709 (2) 0.64582 (19) 0.0422 (6)
C21 −0.2442 (3) −0.4259 (2) 0.65840 (19) 0.0396 (6)
C22 −0.5059 (4) −0.5924 (2) 0.6047 (2) 0.0531 (7)
H22 −0.6414 −0.6247 0.5956 0.064*
C23 −0.0905 (4) −0.4947 (2) 0.6317 (2) 0.0517 (7)
H23 0.0451 −0.4627 0.6405 0.062*
C24 −0.3566 (5) −0.6615 (2) 0.5784 (2) 0.0587 (8)
H24 −0.3908 −0.7426 0.5512 0.070*
C25 −0.1519 (4) −0.6131 (3) 0.5914 (2) 0.0591 (8)
H25 −0.0548 −0.6633 0.5720 0.071*
N1 1.6270 (3) 0.36337 (19) 0.97666 (17) 0.0496 (6)
N2 0.8454 (3) 0.10799 (17) 0.86454 (18) 0.0453 (5)
N3 0.7346 (3) 0.10456 (18) 0.77031 (18) 0.0494 (6)
N4 −0.2534 (3) −0.30838 (18) 0.69602 (17) 0.0480 (6)
N5 −0.4415 (3) −0.2807 (2) 0.70813 (18) 0.0565 (6)
N6 −0.5633 (3) −0.3798 (2) 0.67744 (17) 0.0551 (6)
O1 −0.1551 (3) −0.19039 (18) 0.55969 (16) 0.0682 (6)
O2 −0.0874 (2) −0.22242 (15) 0.73157 (14) 0.0527 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0443 (15) 0.076 (2) 0.0604 (19) −0.0091 (14) 0.0009 (13) 0.0164 (16)
C2 0.0521 (16) 0.0671 (19) 0.067 (2) −0.0110 (14) 0.0127 (14) 0.0212 (16)
C3 0.0386 (13) 0.0351 (13) 0.0433 (15) 0.0008 (10) 0.0074 (11) 0.0068 (11)
C4 0.0431 (14) 0.0460 (15) 0.0370 (14) −0.0008 (11) 0.0073 (11) 0.0098 (12)
C5 0.0453 (15) 0.0531 (16) 0.0472 (16) −0.0056 (12) 0.0082 (12) 0.0198 (13)
C6 0.0437 (14) 0.0479 (15) 0.0430 (16) −0.0001 (11) 0.0141 (12) 0.0122 (12)
C7 0.0459 (15) 0.0501 (16) 0.0444 (16) −0.0017 (12) 0.0015 (12) 0.0146 (13)
C8 0.0398 (13) 0.0386 (14) 0.0468 (16) 0.0004 (11) 0.0097 (11) 0.0075 (12)
C9 0.0405 (14) 0.0362 (14) 0.0487 (16) −0.0021 (11) 0.0094 (12) 0.0068 (12)
C10 0.0419 (14) 0.0373 (14) 0.0406 (15) 0.0002 (11) 0.0039 (11) 0.0014 (12)
C11 0.0540 (16) 0.0581 (17) 0.0452 (17) −0.0100 (13) 0.0104 (13) 0.0138 (14)
C12 0.0440 (14) 0.0382 (14) 0.0428 (16) −0.0001 (11) 0.0101 (11) 0.0055 (12)
C13 0.0520 (16) 0.0558 (17) 0.0405 (16) −0.0077 (13) 0.0010 (12) 0.0084 (13)
C14 0.0396 (13) 0.0334 (13) 0.0452 (16) −0.0007 (10) 0.0065 (11) 0.0044 (12)
C15 0.0437 (15) 0.0435 (15) 0.0493 (17) −0.0021 (12) 0.0102 (13) 0.0087 (13)
C20 0.0362 (13) 0.0580 (17) 0.0328 (14) −0.0067 (12) 0.0087 (10) 0.0113 (12)
C21 0.0362 (13) 0.0451 (15) 0.0359 (14) −0.0049 (11) 0.0063 (10) 0.0089 (12)
C22 0.0534 (16) 0.0613 (19) 0.0413 (16) −0.0204 (14) 0.0083 (12) 0.0119 (14)
C23 0.0377 (14) 0.0608 (19) 0.0565 (18) 0.0011 (13) 0.0084 (12) 0.0160 (15)
C24 0.074 (2) 0.0464 (17) 0.0523 (18) −0.0070 (15) 0.0094 (15) 0.0118 (14)
C25 0.0589 (18) 0.0575 (19) 0.0603 (19) 0.0110 (14) 0.0115 (14) 0.0120 (15)
N1 0.0416 (12) 0.0570 (14) 0.0483 (13) −0.0109 (10) 0.0056 (10) 0.0157 (11)
N2 0.0389 (11) 0.0432 (12) 0.0513 (14) −0.0021 (9) 0.0078 (10) 0.0076 (10)
N3 0.0427 (12) 0.0479 (13) 0.0537 (15) −0.0060 (10) 0.0082 (10) 0.0063 (11)
N4 0.0376 (12) 0.0490 (14) 0.0528 (14) −0.0105 (10) 0.0106 (10) 0.0007 (11)
N5 0.0465 (13) 0.0686 (16) 0.0533 (15) 0.0000 (12) 0.0184 (11) 0.0007 (12)
N6 0.0410 (12) 0.0723 (16) 0.0512 (14) −0.0088 (12) 0.0177 (10) 0.0032 (12)
O1 0.0596 (12) 0.0825 (15) 0.0505 (13) −0.0235 (10) −0.0060 (10) 0.0137 (11)
O2 0.0494 (10) 0.0538 (11) 0.0474 (11) −0.0177 (8) 0.0048 (8) 0.0041 (9)

Geometric parameters (Å, º)

C1—N1 1.449 (3) C11—C13 1.372 (3)
C1—H1A 0.9600 C11—H11 0.9300
C1—H1B 0.9600 C12—C14 1.391 (3)
C1—H1C 0.9600 C12—H12 0.9300
C2—N1 1.451 (3) C13—C14 1.391 (3)
C2—H2A 0.9600 C13—H13 0.9300
C2—H2B 0.9600 C14—C15 1.461 (3)
C2—H2C 0.9600 C15—O1 1.191 (3)
C3—N1 1.362 (3) C15—O2 1.417 (3)
C3—C4 1.410 (3) C20—N6 1.380 (3)
C3—C5 1.413 (3) C20—C21 1.388 (3)
C4—C6 1.372 (3) C20—C22 1.399 (3)
C4—H4 0.9300 C21—N4 1.354 (3)
C5—C7 1.365 (3) C21—C23 1.385 (3)
C5—H5 0.9300 C22—C24 1.362 (4)
C6—C8 1.389 (3) C22—H22 0.9300
C6—H6 0.9300 C23—C25 1.369 (4)
C7—C8 1.396 (3) C23—H23 0.9300
C7—H7 0.9300 C24—C25 1.405 (4)
C8—N2 1.404 (3) C24—H24 0.9300
C9—C11 1.389 (3) C25—H25 0.9300
C9—C10 1.392 (3) N2—N3 1.267 (3)
C9—N3 1.425 (3) N4—N5 1.339 (3)
C10—C12 1.376 (3) N4—O2 1.379 (2)
C10—H10 0.9300 N5—N6 1.306 (3)
N1—C1—H1A 109.5 C10—C12—H12 119.7
N1—C1—H1B 109.5 C14—C12—H12 119.7
H1A—C1—H1B 109.5 C11—C13—C14 120.6 (2)
N1—C1—H1C 109.5 C11—C13—H13 119.7
H1A—C1—H1C 109.5 C14—C13—H13 119.7
H1B—C1—H1C 109.5 C13—C14—C12 119.0 (2)
N1—C2—H2A 109.5 C13—C14—C15 117.4 (2)
N1—C2—H2B 109.5 C12—C14—C15 123.6 (2)
H2A—C2—H2B 109.5 O1—C15—O2 120.9 (2)
N1—C2—H2C 109.5 O1—C15—C14 129.1 (2)
H2A—C2—H2C 109.5 O2—C15—C14 110.0 (2)
H2B—C2—H2C 109.5 N6—C20—C21 109.7 (2)
N1—C3—C4 121.6 (2) N6—C20—C22 130.7 (2)
N1—C3—C5 121.3 (2) C21—C20—C22 119.6 (2)
C4—C3—C5 117.1 (2) N4—C21—C23 134.8 (2)
C6—C4—C3 120.8 (2) N4—C21—C20 101.5 (2)
C6—C4—H4 119.6 C23—C21—C20 123.7 (2)
C3—C4—H4 119.6 C24—C22—C20 117.5 (2)
C7—C5—C3 121.2 (2) C24—C22—H22 121.3
C7—C5—H5 119.4 C20—C22—H22 121.3
C3—C5—H5 119.4 C25—C23—C21 115.4 (2)
C4—C6—C8 121.7 (2) C25—C23—H23 122.3
C4—C6—H6 119.2 C21—C23—H23 122.3
C8—C6—H6 119.2 C22—C24—C25 121.6 (3)
C5—C7—C8 121.3 (2) C22—C24—H24 119.2
C5—C7—H7 119.4 C25—C24—H24 119.2
C8—C7—H7 119.4 C23—C25—C24 122.3 (3)
C6—C8—C7 117.9 (2) C23—C25—H25 118.9
C6—C8—N2 117.1 (2) C24—C25—H25 118.9
C7—C8—N2 125.0 (2) C3—N1—C1 122.1 (2)
C11—C9—C10 119.6 (2) C3—N1—C2 121.0 (2)
C11—C9—N3 115.5 (2) C1—N1—C2 116.8 (2)
C10—C9—N3 124.9 (2) N3—N2—C8 114.5 (2)
C12—C10—C9 119.8 (2) N2—N3—C9 113.9 (2)
C12—C10—H10 120.1 N5—N4—C21 113.82 (19)
C9—C10—H10 120.1 N5—N4—O2 119.6 (2)
C13—C11—C9 120.2 (2) C21—N4—O2 126.21 (19)
C13—C11—H11 119.9 N6—N5—N4 106.8 (2)
C9—C11—H11 119.9 N5—N6—C20 108.21 (19)
C10—C12—C14 120.7 (2) N4—O2—C15 112.84 (18)
N1—C3—C4—C6 179.7 (2) C21—C20—C22—C24 −0.1 (4)
C5—C3—C4—C6 −0.2 (3) N4—C21—C23—C25 −177.4 (3)
N1—C3—C5—C7 −179.9 (2) C20—C21—C23—C25 −0.2 (4)
C4—C3—C5—C7 0.0 (4) C20—C22—C24—C25 −0.3 (4)
C3—C4—C6—C8 0.3 (4) C21—C23—C25—C24 −0.2 (4)
C3—C5—C7—C8 0.1 (4) C22—C24—C25—C23 0.5 (4)
C4—C6—C8—C7 −0.1 (4) C4—C3—N1—C1 0.9 (4)
C4—C6—C8—N2 179.9 (2) C5—C3—N1—C1 −179.2 (2)
C5—C7—C8—C6 −0.1 (4) C4—C3—N1—C2 177.1 (2)
C5—C7—C8—N2 179.9 (2) C5—C3—N1—C2 −3.0 (4)
C11—C9—C10—C12 2.3 (4) C6—C8—N2—N3 −178.6 (2)
N3—C9—C10—C12 −178.6 (2) C7—C8—N2—N3 1.5 (3)
C10—C9—C11—C13 −2.7 (4) C8—N2—N3—C9 −179.39 (19)
N3—C9—C11—C13 178.2 (2) C11—C9—N3—N2 −171.6 (2)
C9—C10—C12—C14 −0.2 (3) C10—C9—N3—N2 9.4 (3)
C9—C11—C13—C14 0.9 (4) C23—C21—N4—N5 178.5 (3)
C11—C13—C14—C12 1.2 (4) C20—C21—N4—N5 0.9 (3)
C11—C13—C14—C15 −175.3 (2) C23—C21—N4—O2 −8.5 (4)
C10—C12—C14—C13 −1.6 (3) C20—C21—N4—O2 173.9 (2)
C10—C12—C14—C15 174.7 (2) C21—N4—N5—N6 −0.7 (3)
C13—C14—C15—O1 −7.1 (4) O2—N4—N5—N6 −174.2 (2)
C12—C14—C15—O1 176.5 (3) N4—N5—N6—C20 0.1 (3)
C13—C14—C15—O2 170.8 (2) C21—C20—N6—N5 0.5 (3)
C12—C14—C15—O2 −5.6 (3) C22—C20—N6—N5 −178.6 (2)
N6—C20—C21—N4 −0.8 (3) N5—N4—O2—C15 −99.1 (3)
C22—C20—C21—N4 178.3 (2) C21—N4—O2—C15 88.3 (3)
N6—C20—C21—C23 −178.8 (2) O1—C15—O2—N4 6.6 (3)
C22—C20—C21—C23 0.4 (4) C14—C15—O2—N4 −171.51 (18)
N6—C20—C22—C24 178.8 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C4—H4···N5i 0.93 2.63 3.415 (3) 142
C23—H23···N6ii 0.93 2.63 3.560 (3) 176

Symmetry codes: (i) −x+1, −y, −z+2; (ii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZQ2193).

References

  1. Baldini, L., Sansone, F., Faimani, G., Massera, C., Casnati, A. & Ungaro, R. (2008). Eur. J. Org. Chem. 5, 869–886.
  2. Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  3. Bruker (2008). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92–96.
  5. Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229.
  6. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  7. Hooft, R. W. W. (1998). COLLECT Nonius BV, Delft, The Netherlands.
  8. König, W. & Geiger, R. (1970). Chem. Ber. 103, 788–798. [DOI] [PubMed]
  9. Miyazawa, T., Otomatsu, T., Yamada, T. & Kuwata, S. (1984). Tetrahedron Lett. 25, 771–772.
  10. Papaefstathiou, G. S., Vicente, R., Raptopoulou, C. P., Terzis, A., Escuer, A. & Perlepes, S. P. (2002). Eur. J. Inorg. Chem. 9, 2488–2493.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813000846/zq2193sup1.cif

e-69-0o262-sup1.cif (21.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813000846/zq2193Isup2.hkl

e-69-0o262-Isup2.hkl (205.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813000846/zq2193Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES