Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Jan 23;69(Pt 2):o271. doi: 10.1107/S1600536813001451

7-Meth­oxy-2-phenyl­chroman-4-one

Agata Piaskowska a,*, Maciej Hodorowicz a, Wojciech Nitek a
PMCID: PMC3569799  PMID: 23424545

Abstract

In the title compound, C16H14O3, the ring O atom and the two adjacent non-fused C atoms, as well as the attached phenyl ring, exhibit static disorder [occupancy ratio 0.559 (12):0.441 (12)]. The crystal packing features π–π [centroid–centroid distance = 3.912 (1) Å] and C—H⋯π inter­actions.

Related literature  

For aromatase inhibition of flavanones, see: Hong & Chen (2006). For the properties of 7-meth­oxy­flavanone, see: Pouget et al. (2001); Le Bail et al. (1998); Kostrzewa-Susłow et al. (2010). For classification of X—H⋯π inter­actions, see: Malone et al. (1997).graphic file with name e-69-0o271-scheme1.jpg

Experimental  

Crystal data  

  • C16H14O3

  • M r = 254.27

  • Monoclinic, Inline graphic

  • a = 8.5600 (3) Å

  • b = 6.6320 (2) Å

  • c = 23.4130 (7) Å

  • β = 90.742 (2)°

  • V = 1329.04 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.55 × 0.16 × 0.10 mm

Data collection  

  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (DENZO-SMN; Otwinowski & Minor, 1997) T min = 0.954, T max = 0.991

  • 15170 measured reflections

  • 2710 independent reflections

  • 1765 reflections with I > 2σ(I)

  • R int = 0.072

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.086

  • wR(F 2) = 0.280

  • S = 1.18

  • 2710 reflections

  • 165 parameters

  • 122 restraints

  • H-atom parameters constrained

  • Δρmax = 0.65 e Å−3

  • Δρmin = −0.35 e Å−3

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813001451/kj2213sup1.cif

e-69-0o271-sup1.cif (21KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813001451/kj2213Isup2.hkl

e-69-0o271-Isup2.hkl (130.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813001451/kj2213Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg3, Cg4 and Cg5 are the centroids of the C5–C10, C11A–C16A and C11B–C16B rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C13A—H13ACg4i 0.93 2.80 3.598 (11) 144
C13A—H13ACg5i 0.93 2.71 3.515 (11) 146
C13B—H13BCg4i 0.93 2.82 3.695 (12) 158
C13B—H13BCg5i 0.93 2.76 3.639 (13) 157
C19—H19BCg4ii 0.96 2.72 3.619 (7) 156
C19—H19BCg5ii 0.96 2.76 3.660 (7) 157
C15B—H15BCg3iii 0.93 2.65 3.497 (14) 151

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors thank the Joint X-ray Laboratory, Faculty of Chemistry, Jagiellonian University, for making the Nonius KappaCCD diffractometer available.

supplementary crystallographic information

Comment

Flavanones are of interest because of their anticancer effect as the aromatase inhibitors. By competing with androgens for binding with aromatase these compounds prevent the hydroxylation of C18 androgens to aromatic C19 estrogenic steroids (Hong & Chen, 2006). This suppresses the overexpression of aromatase in breast cancer (Pouget et al., 2001).

The heterocyclic ring contains O1, C2 and C3 atoms exhibiting static disorder. This disorder is propagated into the attached phenyl. The dihedral angle between the C5—C10 aromatic ring plane and the phenyl ring plane is 88.6 (1)° for the major disorder component (C11A—C16A) and 87.3 (1)° for the minor component (C11B—C16B). The structure is stabilized by π–π and C—H···π interactions (Table 1). The C5—C10 ring displays a π–π interaction with the C5i—C10i ring (Fig. 2 b) with a perpendicular distance of 3.543 (1) Å, a centroid-to-centroid distance of 3.912 (1) Å and a slippage of 1.658 Å [symmetry code: (i) 1 - x, -y, -z]. There are three types of C—H···π interactions: C13A—H13A···Cg4i (C13B—13B··· Cg4i in the minor disorder component), C19—H19B··· Cg4ii (Fig. 2a) and C15B—H15B···Cg3iii (Fig. 2 a) [symmetry codes: (i) -x, y+1/2, 1/2-z, (ii) 1 - x, 1 - y, -z, (iii) x - 1, y, z]. The first interaction falls into type III X—H···pi interactions while the rest can be classified as type I according to Malone and coworkers (Malone et al. (1997)).

Experimental

The title compound was purchased from Sigma-Aldrich and used without further purification. Single crystals were obtained by slow evaporation of MeOH solution.

Refinement

All hydrogen atom positions were observed in difference Fourier map. Nevertheless, in the refinement procedure the hydrogen atoms were positioned geometrically and refined using a riding model (including free rotation about the C—C bond for CH3groups), with C—H = 0.93—0.96 Å (C—H = 0.97 Å for CH2 groups, 0.96 Å for CH3 groups, and 0.93 Å for aromatic CH) and with Uiso(H) = 1.5Ueq(C) for methyl groups and Uiso(H) = 1.2Ueq(C) for all other H atoms. Disordered non-H atoms were refined with isotropic displacement parameters.

Figures

Fig. 1.

Fig. 1.

ORTEP-3 (Farrugia, 2012) drawing of the title compound with labels. Displacement ellipsoids of non-H atoms drawn at 30% probabilty level.

Fig. 2.

Fig. 2.

C—H···π and interactions in the crystal packing. Thermal ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) -x, y-½, ½-z, (ii) -x, y+½, ½-z, (iii) 1 - x, 1 - y, -z.]

Fig. 3.

Fig. 3.

π–π interactions in the crystal packing. Thermal ellipsoids are drawn at the 30% probability level. [Symmetry codes: (iv) 1 - x, -y, -z, (v) 2 - x, -y, -z, (vi) x + 1, y, z.]

Crystal data

C16H14O3 F(000) = 536
Mr = 254.27 Dx = 1.271 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 13054 reflections
a = 8.5600 (3) Å θ = 0.4–26.4°
b = 6.6320 (2) Å µ = 0.09 mm1
c = 23.4130 (7) Å T = 293 K
β = 90.742 (2)° Prism, colourless
V = 1329.04 (7) Å3 0.55 × 0.16 × 0.10 mm
Z = 4

Data collection

Nonius KappaCCD diffractometer 2710 independent reflections
Radiation source: fine-focus sealed tube 1765 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.072
Detector resolution: 9 pixels mm-1 θmax = 26.4°, θmin = 2.9°
CCD scans h = −8→10
Absorption correction: multi-scan (DENZO-SMN; Otwinowski & Minor, 1997) k = −8→8
Tmin = 0.954, Tmax = 0.991 l = −29→29
15170 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.086 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.280 H-atom parameters constrained
S = 1.18 w = 1/[σ2(Fo2) + (0.1433P)2 + 0.4478P] where P = (Fo2 + 2Fc2)/3
2710 reflections (Δ/σ)max < 0.001
165 parameters Δρmax = 0.65 e Å3
122 restraints Δρmin = −0.35 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O17 0.5477 (4) −0.2944 (5) 0.18360 (14) 0.0728 (11)
O18 0.8157 (4) 0.1840 (5) −0.02843 (13) 0.0638 (9)
C4 0.5036 (5) −0.1399 (6) 0.15982 (17) 0.0534 (11)
C5 0.5802 (5) −0.0580 (6) 0.10887 (16) 0.0476 (10)
C6 0.7077 (5) −0.1537 (7) 0.08388 (19) 0.0592 (12)
H6 0.7426 −0.2759 0.0988 0.071*
C7 0.7821 (5) −0.0726 (7) 0.03831 (18) 0.0577 (12)
H7 0.8668 −0.1386 0.0224 0.069*
C8 0.7298 (5) 0.1117 (6) 0.01556 (16) 0.0483 (10)
C9 0.6034 (5) 0.2073 (6) 0.03813 (16) 0.0483 (10)
H9 0.5684 0.3286 0.0227 0.058*
C10 0.5271 (4) 0.1219 (6) 0.08444 (15) 0.0429 (9)
C19 0.7766 (7) 0.3789 (8) −0.0506 (2) 0.0777 (16)
H19A 0.6695 0.3793 −0.0634 0.116*
H19B 0.8431 0.4098 −0.0822 0.116*
H19C 0.7908 0.4784 −0.0213 0.116*
O1A 0.4127 (8) 0.2362 (10) 0.1081 (3) 0.043 (2)* 0.559 (12)
C2A 0.3587 (8) 0.1876 (10) 0.1623 (3) 0.043 (2)* 0.559 (12)
H2A 0.4289 0.2677 0.1867 0.052* 0.559 (12)
C3A 0.3801 (12) −0.0050 (14) 0.1850 (4) 0.049 (3)* 0.559 (12)
H3A1 0.2810 −0.0754 0.1819 0.059* 0.559 (12)
H3A2 0.4039 0.0100 0.2254 0.059* 0.559 (12)
C11A 0.2053 (10) 0.2932 (13) 0.1710 (4) 0.047 (2)* 0.559 (12)
C12A 0.2038 (13) 0.4478 (18) 0.2065 (6) 0.065 (4)* 0.559 (12)
H12A 0.2961 0.4805 0.2258 0.078* 0.559 (12)
C13A 0.0813 (12) 0.5567 (15) 0.2160 (4) 0.062 (3)* 0.559 (12)
H13A 0.0901 0.6657 0.2408 0.074* 0.559 (12)
C14A −0.0591 (11) 0.5178 (13) 0.1912 (4) 0.050 (2)* 0.559 (12)
H14A −0.1453 0.5977 0.1992 0.060* 0.559 (12)
C15A −0.0727 (12) 0.3545 (19) 0.1530 (5) 0.068 (4)* 0.559 (12)
H15A −0.1678 0.3222 0.1356 0.082* 0.559 (12)
C16A 0.0671 (13) 0.2391 (16) 0.1419 (5) 0.061 (3)* 0.559 (12)
H16A 0.0655 0.1322 0.1162 0.073* 0.559 (12)
O1B 0.3856 (10) 0.2064 (12) 0.0994 (3) 0.036 (2)* 0.441 (12)
C2B 0.2931 (11) 0.1055 (15) 0.1386 (4) 0.050 (3)* 0.441 (12)
H2B 0.2276 0.0244 0.1128 0.060* 0.441 (12)
C3B 0.3513 (14) −0.0439 (19) 0.1748 (5) 0.046 (3)* 0.441 (12)
H3B1 0.2734 −0.1497 0.1770 0.055* 0.441 (12)
H3B2 0.3624 0.0137 0.2127 0.055* 0.441 (12)
C11B 0.1728 (13) 0.2564 (14) 0.1603 (4) 0.040 (3)* 0.441 (12)
C12B 0.1843 (14) 0.424 (2) 0.1974 (7) 0.062 (5)* 0.441 (12)
H12B 0.2792 0.4617 0.2140 0.074* 0.441 (12)
C13B 0.0404 (14) 0.5362 (17) 0.2086 (5) 0.052 (3)* 0.441 (12)
H13B 0.0393 0.6463 0.2333 0.062* 0.441 (12)
C14B −0.0916 (11) 0.4712 (16) 0.1813 (4) 0.044 (3)* 0.441 (12)
H14B −0.1852 0.5388 0.1871 0.053* 0.441 (12)
C15B −0.0895 (15) 0.313 (2) 0.1463 (7) 0.068 (5)* 0.441 (12)
H15B −0.1818 0.2747 0.1280 0.082* 0.441 (12)
C16B 0.0329 (14) 0.213 (2) 0.1373 (6) 0.063 (5)* 0.441 (12)
H16B 0.0256 0.1026 0.1130 0.076* 0.441 (12)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O17 0.072 (2) 0.069 (2) 0.078 (2) 0.0210 (17) 0.0127 (17) 0.0313 (17)
O18 0.065 (2) 0.063 (2) 0.0643 (18) 0.0106 (15) 0.0277 (15) 0.0115 (14)
C4 0.054 (3) 0.053 (2) 0.053 (2) 0.004 (2) 0.0016 (19) 0.0095 (19)
C5 0.045 (2) 0.048 (2) 0.050 (2) 0.0077 (18) 0.0035 (17) 0.0043 (17)
C6 0.058 (3) 0.053 (2) 0.066 (3) 0.015 (2) 0.007 (2) 0.011 (2)
C7 0.052 (3) 0.059 (3) 0.063 (3) 0.015 (2) 0.017 (2) 0.003 (2)
C8 0.045 (2) 0.053 (2) 0.047 (2) 0.0039 (18) 0.0085 (17) 0.0032 (17)
C9 0.050 (2) 0.046 (2) 0.049 (2) 0.0081 (18) 0.0058 (18) 0.0056 (16)
C10 0.041 (2) 0.046 (2) 0.0426 (19) 0.0041 (16) 0.0048 (16) −0.0013 (16)
C19 0.095 (4) 0.065 (3) 0.074 (3) 0.008 (3) 0.036 (3) 0.016 (2)

Geometric parameters (Å, º)

O17—C4 1.224 (5) C11A—C16A 1.404 (12)
O18—C8 1.361 (5) C12A—C13A 1.295 (11)
O18—C19 1.432 (6) C12A—H12A 0.9300
C4—C5 1.472 (6) C13A—C14A 1.353 (11)
C4—C3B 1.496 (12) C13A—H13A 0.9300
C4—C3A 1.510 (10) C14A—C15A 1.409 (12)
C5—C10 1.397 (5) C14A—H14A 0.9300
C5—C6 1.398 (6) C15A—C16A 1.447 (12)
C6—C7 1.360 (6) C15A—H15A 0.9300
C6—H6 0.9300 C16A—H16A 0.9300
C7—C8 1.404 (6) O1B—C2B 1.392 (11)
C7—H7 0.9300 C2B—C3B 1.391 (14)
C8—C9 1.366 (5) C2B—C11B 1.527 (13)
C9—C10 1.393 (5) C2B—H2B 0.9800
C9—H9 0.9300 C3B—H3B1 0.9700
C10—O1A 1.362 (7) C3B—H3B2 0.9700
C10—O1B 1.384 (8) C11B—C16B 1.337 (13)
C19—H19A 0.9600 C11B—C12B 1.414 (13)
C19—H19B 0.9600 C12B—C13B 1.465 (13)
C19—H19C 0.9600 C12B—H12B 0.9300
O1A—C2A 1.394 (9) C13B—C14B 1.362 (13)
C2A—C3A 1.395 (11) C13B—H13B 0.9300
C2A—C11A 1.504 (10) C14B—C15B 1.330 (13)
C2A—H2A 0.9800 C14B—H14B 0.9300
C3A—H3A1 0.9700 C15B—C16B 1.260 (13)
C3A—H3A2 0.9700 C15B—H15B 0.9300
C11A—C12A 1.321 (12) C16B—H16B 0.9300
C8—O18—C19 117.8 (3) C12A—C11A—C2A 117.5 (8)
O17—C4—C5 122.6 (4) C16A—C11A—C2A 123.2 (8)
O17—C4—C3B 121.0 (5) C13A—C12A—C11A 123.8 (10)
C5—C4—C3B 115.5 (5) C13A—C12A—H12A 118.1
O17—C4—C3A 122.1 (5) C11A—C12A—H12A 118.1
C5—C4—C3A 114.8 (5) C12A—C13A—C14A 122.4 (9)
C3B—C4—C3A 16.3 (6) C12A—C13A—H13A 118.8
C10—C5—C6 117.9 (4) C14A—C13A—H13A 118.8
C10—C5—C4 120.1 (3) C13A—C14A—C15A 119.0 (7)
C6—C5—C4 122.0 (4) C13A—C14A—H14A 120.5
C7—C6—C5 121.6 (4) C15A—C14A—H14A 120.5
C7—C6—H6 119.2 C14A—C15A—C16A 117.3 (8)
C5—C6—H6 119.2 C14A—C15A—H15A 121.4
C6—C7—C8 119.4 (4) C16A—C15A—H15A 121.4
C6—C7—H7 120.3 C11A—C16A—C15A 118.1 (8)
C8—C7—H7 120.3 C11A—C16A—H16A 120.9
O18—C8—C9 124.6 (4) C15A—C16A—H16A 120.9
O18—C8—C7 114.9 (3) C10—O1B—C2B 118.7 (6)
C9—C8—C7 120.5 (4) C3B—C2B—O1B 122.8 (9)
C8—C9—C10 119.6 (4) C3B—C2B—C11B 120.2 (8)
C8—C9—H9 120.2 O1B—C2B—C11B 107.2 (7)
C10—C9—H9 120.2 C3B—C2B—H2B 100.5
O1A—C10—O1B 15.2 (4) O1B—C2B—H2B 100.5
O1A—C10—C9 115.9 (4) C11B—C2B—H2B 100.5
O1B—C10—C9 116.9 (4) C2B—C3B—C4 117.9 (8)
O1A—C10—C5 122.8 (4) C2B—C3B—H3B1 107.8
O1B—C10—C5 121.6 (4) C4—C3B—H3B1 107.8
C9—C10—C5 120.9 (3) C2B—C3B—H3B2 107.8
O18—C19—H19A 109.5 C4—C3B—H3B2 107.8
O18—C19—H19B 109.5 H3B1—C3B—H3B2 107.2
H19A—C19—H19B 109.5 C16B—C11B—C12B 118.0 (8)
O18—C19—H19C 109.5 C16B—C11B—C2B 109.3 (9)
H19A—C19—H19C 109.5 C12B—C11B—C2B 132.7 (10)
H19B—C19—H19C 109.5 C11B—C12B—C13B 117.3 (9)
C10—O1A—C2A 119.3 (5) C11B—C12B—H12B 121.4
O1A—C2A—C3A 121.0 (6) C13B—C12B—H12B 121.4
O1A—C2A—C11A 108.4 (6) C14B—C13B—C12B 116.6 (9)
C3A—C2A—C11A 119.0 (7) C14B—C13B—H13B 121.7
O1A—C2A—H2A 101.4 C12B—C13B—H13B 121.7
C3A—C2A—H2A 101.4 C15B—C14B—C13B 121.5 (9)
C11A—C2A—H2A 101.4 C15B—C14B—H14B 119.3
C2A—C3A—C4 118.9 (7) C13B—C14B—H14B 119.3
C2A—C3A—H3A1 107.6 C16B—C15B—C14B 122.3 (11)
C4—C3A—H3A1 107.6 C16B—C15B—H15B 118.8
C2A—C3A—H3A2 107.6 C14B—C15B—H15B 118.8
C4—C3A—H3A2 107.6 C15B—C16B—C11B 124.3 (11)
H3A1—C3A—H3A2 107.0 C15B—C16B—H16B 117.9
C12A—C11A—C16A 119.3 (8) C11B—C16B—H16B 117.9
O17—C4—C5—C10 −178.3 (4) O1A—C2A—C11A—C12A −107.5 (10)
C3B—C4—C5—C10 12.2 (8) C3A—C2A—C11A—C12A 108.8 (11)
C3A—C4—C5—C10 −5.9 (7) O1A—C2A—C11A—C16A 70.2 (10)
O17—C4—C5—C6 0.8 (7) C3A—C2A—C11A—C16A −73.4 (12)
C3B—C4—C5—C6 −168.7 (7) C16A—C11A—C12A—C13A −0.8 (19)
C3A—C4—C5—C6 173.3 (6) C2A—C11A—C12A—C13A 177.1 (11)
C10—C5—C6—C7 2.1 (7) C11A—C12A—C13A—C14A 2 (2)
C4—C5—C6—C7 −177.1 (4) C12A—C13A—C14A—C15A −0.8 (16)
C5—C6—C7—C8 −0.1 (7) C13A—C14A—C15A—C16A −1.0 (16)
C19—O18—C8—C9 3.7 (6) C12A—C11A—C16A—C15A −1.0 (16)
C19—O18—C8—C7 −175.1 (4) C2A—C11A—C16A—C15A −178.8 (9)
C6—C7—C8—O18 177.5 (4) C14A—C15A—C16A—C11A 1.8 (16)
C6—C7—C8—C9 −1.3 (7) C9—C10—O1B—C2B 169.1 (7)
O18—C8—C9—C10 −178.0 (4) C5—C10—O1B—C2B −1.6 (10)
C7—C8—C9—C10 0.7 (6) C10—O1B—C2B—C3B 17.8 (14)
C8—C9—C10—O1A 173.5 (5) C10—O1B—C2B—C11B 163.4 (7)
C8—C9—C10—O1B −169.5 (5) O1B—C2B—C3B—C4 −17.8 (16)
C8—C9—C10—C5 1.3 (6) C11B—C2B—C3B—C4 −159.3 (9)
C6—C5—C10—O1A −174.3 (5) O17—C4—C3B—C2B −167.1 (8)
C4—C5—C10—O1A 4.9 (7) C5—C4—C3B—C2B 2.6 (13)
C6—C5—C10—O1B 167.7 (6) C3B—C2B—C11B—C16B −107.0 (13)
C4—C5—C10—O1B −13.1 (7) O1B—C2B—C11B—C16B 106.3 (11)
C6—C5—C10—C9 −2.7 (6) C3B—C2B—C11B—C12B 74.0 (17)
C4—C5—C10—C9 176.5 (4) O1B—C2B—C11B—C12B −72.7 (15)
C9—C10—O1A—C2A −163.7 (5) C16B—C11B—C12B—C13B 1.1 (19)
C5—C10—O1A—C2A 8.3 (9) C2B—C11B—C12B—C13B −180.0 (10)
C10—O1A—C2A—C3A −20.7 (11) C11B—C12B—C13B—C14B −1.4 (19)
C10—O1A—C2A—C11A −163.5 (6) C12B—C13B—C14B—C15B 0.4 (18)
O1A—C2A—C3A—C4 19.2 (13) C13B—C14B—C15B—C16B 1 (2)
C11A—C2A—C3A—C4 158.2 (7) C14B—C15B—C16B—C11B −1 (3)
O17—C4—C3A—C2A 166.8 (7) C12B—C11B—C16B—C15B 0 (2)
C5—C4—C3A—C2A −5.7 (11) C2B—C11B—C16B—C15B −178.9 (15)

Hydrogen-bond geometry (Å, º)

Cg3, Cg4 and Cg5 are the centroid of the C5–C10, C11A–C16A and C11B–C16B rings, respectively.

D—H···A D—H H···A D···A D—H···A
C13A—H13A···Cg4i 0.93 2.80 3.598 (11) 144
C13A—H13A···Cg5i 0.93 2.71 3.515 (11) 146
C13B—H13B···Cg4i 0.93 2.82 3.695 (12) 158
C13B—H13B···Cg5i 0.93 2.76 3.639 (13) 157
C19—H19B···Cg4ii 0.96 2.72 3.619 (7) 156
C19—H19B···Cg5ii 0.96 2.76 3.660 (7) 157
C15B—H15B···Cg3iii 0.93 2.65 3.497 (14) 151

Symmetry codes: (i) −x, y+1/2, −z+1/2; (ii) −x+1, −y+1, −z; (iii) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KJ2213).

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
  2. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  3. Hong, Y. & Chen, S. (2006). Ann. N. Y. Acad. Sci. 1089, 237–251. [DOI] [PubMed]
  4. Kostrzewa-Susłow, E., Dmochowska-Gładysz, J. & Janeczko, T. (2010). Z. Naturforsch. Teil C, 65, 55–60. [DOI] [PubMed]
  5. Le Bail, J. C., Varnat, F., Nicolas, J. C. & Habrioux, G. (1998). Cancer Lett., 130, 209–216. [DOI] [PubMed]
  6. Malone, J. F., Murray, C. M., Charlton, M. H., Docherty, R. & Lavery, A. J. (1997). J. Chem. Soc. Faraday Trans. 93, 3429–3436.
  7. Nonius (1998). COLLECT Nonius BV, Delft, The Netherlands.
  8. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  9. Pouget, C., Lauthier, F., Simon, A., Fagnere, C., Basly, J.-P., Delage, C. & Chulia, A.-J. (2001). Bioorg. Med. Chem. Lett. 11, 3095–3097. [DOI] [PubMed]
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813001451/kj2213sup1.cif

e-69-0o271-sup1.cif (21KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813001451/kj2213Isup2.hkl

e-69-0o271-Isup2.hkl (130.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813001451/kj2213Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES