Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Jan 23;69(Pt 2):o273–o274. doi: 10.1107/S160053681300144X

(4R*,4aR*,7aS*)-5-Oxo-6-phenyl-4a,5,6,7,7a,8-hexa­hydro-4H-furo[2,3-f]isoindole-4-carb­oxy­lic acid

Yuriy I Horak a,*, Roman Z Lytvyn a, Fedor I Zubkov b, Eugeniya V Nikitina b, Yuriy V Homza a, Tadeusz Lis c, Vasyl Kinzhybalo d, Mykola D Obushak a
PMCID: PMC3569801  PMID: 23424547

Abstract

The asymmetric unit of the title compound, C17H15NO4, contains two independent mol­ecules with similar geometric parameters. In both mol­ecules, the conformation of the cyclo­hexene ring is half-chair, while the pyrrolidinone ring adopts an envelope conformation with the γ-carbon atom of the α-pyrrolidinone ring as the flap. In the crystal, O—H⋯O hydrogen bonds between the carb­oxylic and carbonyl groups link alternate independent mol­ecules into chains propagating in the b-axis direction. The crystal packing also features weak C—H⋯π inter­actions.

Related literature  

For the intra­molecular Diels–Alder reaction of vinyl­furanes, see: Patre et al. (2007). For related solid-phase Diels–Alder reaction with vinyl benzenes, see: Sun et al. (2000). For palladium-catalysed tandem cyclization of allenes with heteroaryl­halides, see: Ohno et al. (2005). For heterolignan derivatives, see: Ramos et al. (1999); Leteurtre et al. (1992) and for their pharmaceutical properties, see: Iwasaki et al. (1996); Ducharme et al. (1994). For a related structure, see: Obushak et al. (2011). For puckering parameters, see: Cremer & Pople (1975).graphic file with name e-69-0o273-scheme1.jpg

Experimental  

Crystal data  

  • C17H15NO4

  • M r = 297.30

  • Orthorhombic, Inline graphic

  • a = 12.107 (4) Å

  • b = 16.945 (5) Å

  • c = 27.370 (9) Å

  • V = 5615 (3) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 120 K

  • 0.64 × 0.42 × 0.28 mm

Data collection  

  • Kuma KM-4-CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006) T min = 0.972, T max = 1.000

  • 84648 measured reflections

  • 13130 independent reflections

  • 9304 reflections with I > 2σ(I)

  • R int = 0.030

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.127

  • S = 1.03

  • 13130 reflections

  • 399 parameters

  • H-atom parameters constrained

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681300144X/cv5382sup1.cif

e-69-0o273-sup1.cif (30KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681300144X/cv5382Isup2.hkl

e-69-0o273-Isup2.hkl (642KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681300144X/cv5382Isup3.cdx

Supplementary material file. DOI: 10.1107/S160053681300144X/cv5382Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C13A–C18A and O1A–C5A rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O3B—H3B1⋯O4A 0.84 1.83 2.6517 (11) 165
O3A—H3A1⋯O4B i 0.84 1.79 2.6329 (10) 178
C8A—H8ACg1ii 1.00 2.50 3.4710 (14) 165
C15A—H15ACg2iii 0.95 2.63 3.5470 (15) 162
C18A—H18BCg2iv 0.99 2.72 3.5492 (14) 141

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

The authors are grateful to the Ukrainian State Fund for Fundamental Research (grant No. F40.3/045) and the Russian Foundation for Basic Research (grant No. 11–03-90416) for the financial support of this work.

supplementary crystallographic information

Comment

Recently, the researchers attention was drawn to such class of compounds as heterolignans (Figure 1) (Ramos et al., 1999). The best known heterolignan is azatoxin, which has antineoplastic activity (Leteurtre et al., 1992). In addition, it should be noted that a number heterolignans show anticancer, antirheumatic and antiasthmatic activity (Iwasaki et al., 1996; Ducharme et al., 1994). There are two important aspects of the synthesis of these compounds. First, as biological activity investigations have shown, the replacement of carbon atoms by heteroatoms in the cycle, or the replacement of benzene fragments by heterocycles, has little effect on biological activity. Second, from the synthetic point of view C–heteroatom bonds are easier accesible than C–C bonds. In addition to this, structural variability and synthetic availability of heterocycles are significantly higher than benzene fragments.

Considering mentioned above, synthesis of lignan analogues or their synthetic precursors, including those with furan cycles, are contemporary tasks. It was found that in the reaction of maleic anhydride and [3-(2-furyl)-2-propenyl]-phenylamine the furane cycle persists and exocyclic double bond reacts. Furoisoindole system with carboxyl group in the six-membered ring is formed. It should be noted that earlier furoisoindole system used to be obtained by the Domino Wittig-Diels-Alder reaction (Patre et al., 2007) and palladium-catalyzed tandem cyclization of allenes with heteroarylhalides (Ohno et al., 2005).

Crystal structure of title compound consists of two independent molecules with very similar geometrical parameters (Figure 2). The five-membered C7—C8—C11—N1—C18 rings of both independent A and B molecules adopt envelope conformation puckered on C7 [puckering parameters (Cremer & Pople, 1975): q2 = 0.3449 (8) and 0.3525 (9) Å, φ2 = 283.66 (13) and 287.71 (14)° for A and B molecules, respectively]. The six-membered C4—C5—C6—C7—C8—C9 rings of both independent A and B molecules adopt half-chair conformation (Q = 0.5113 (8) and 0.5190 (9) Å, θ = 130.33 (9) and 129.98 (10)°, φ = 31.02 (12) and 25.34 (13)° for A and B molecules, respectively). There are three chiral carbon atoms (C7, C8 and C9) in the molecule. Two independent molecules are of the same chirality. Since, the compound crystalizes in centrosymmetric space group, it consists of 1:1 ratio mixture of S,R,R- and R,S,S-isomers.

The structure displays O—H···O hydrogen bonding between acid carboxyl and carbonyl groups, which connects molecules into chains propagating in b-axis direction (Figure 3). The crystal packing exhibits weak intermolecular C—H···π interactions.

Experimental

To a solution of 0.003 mol [3-(2-furyl)-2-propenyl]-phenylamine in benzene 0.003 mol of grinded into a powder maleic anhydride was added. The mixture was boiled until the precipitation of sediment (6–7 h) and 3–4 h thereafter. The precipitate was filtered, washed with benzene and alcohol and recrystalized from EtOH/DMF/H2O.

Refinement

H atoms bonded to O atoms were located in a difference map, but in final refinement cycles O—H distances and C—O—H angles were constrained to 0.84 Å and 109.5°, respectively, with only C—C—O—H torsion angles refined (Uiso(H) = 1.5Ueq(O)). Other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95–1.00 Å and with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

Schematic represenation of heterolignan: X = O, N, S; Q1-4 = C or heteroatom; Ar - Ar' = benzene or heterocycle.

Fig. 2.

Fig. 2.

View of two hydrogen-bonded (dashed lines) independent molecules, showing the atom-numbering scheme and 50% probability displacement ellipsoids.

Fig. 3.

Fig. 3.

A portion of the crystal packing viewed along the a-axis. Hydrogen atoms not involved in hydrogen bonding were omitted for clarity.

Crystal data

C17H15NO4 F(000) = 2496
Mr = 297.30 Dx = 1.407 Mg m3
Orthorhombic, Pbca Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 39275 reflections
a = 12.107 (4) Å θ = 2.8–36.8°
b = 16.945 (5) Å µ = 0.10 mm1
c = 27.370 (9) Å T = 120 K
V = 5615 (3) Å3 Block, brown
Z = 16 0.64 × 0.42 × 0.28 mm

Data collection

Kuma KM-4-CCD diffractometer 13130 independent reflections
Radiation source: fine-focus sealed tube 9304 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.030
ω scan θmax = 36.9°, θmin = 2.8°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006) h = −20→20
Tmin = 0.972, Tmax = 1.000 k = −27→28
84648 measured reflections l = −41→41

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.08P)2] where P = (Fo2 + 2Fc2)/3
13130 reflections (Δ/σ)max = 0.001
399 parameters Δρmax = 0.54 e Å3
0 restraints Δρmin = −0.21 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1A 0.43614 (5) 0.45308 (4) 0.74410 (2) 0.02474 (13)
C2A 0.48122 (7) 0.47477 (5) 0.70003 (4) 0.02650 (18)
H2A 0.5417 0.5099 0.6963 0.032*
C3A 0.42783 (6) 0.43933 (5) 0.66270 (3) 0.02283 (16)
H3A 0.4434 0.4448 0.6289 0.027*
C4A 0.34282 (6) 0.39162 (4) 0.68434 (3) 0.01725 (13)
C5A 0.35163 (6) 0.40237 (4) 0.73337 (3) 0.01896 (14)
C6A 0.28127 (6) 0.36960 (5) 0.77313 (3) 0.02086 (14)
H6A1 0.2621 0.4112 0.7971 0.025*
H6A2 0.3202 0.3265 0.7904 0.025*
C7A 0.17744 (6) 0.33842 (4) 0.74799 (3) 0.01599 (13)
H7A 0.1307 0.3844 0.7381 0.019*
C8A 0.20610 (5) 0.29054 (4) 0.70217 (3) 0.01401 (12)
H8A 0.2658 0.2530 0.7120 0.017*
C9A 0.25425 (5) 0.34096 (4) 0.66122 (3) 0.01490 (12)
H9A 0.2886 0.3059 0.6361 0.018*
C10A 0.16936 (6) 0.39389 (4) 0.63691 (3) 0.01704 (13)
O2A 0.07210 (5) 0.39574 (4) 0.64693 (2) 0.02327 (12)
O3A 0.21636 (5) 0.43830 (4) 0.60227 (2) 0.02464 (13)
H3A1 0.1690 0.4689 0.5903 0.037*
C11A 0.10348 (6) 0.24089 (4) 0.69385 (3) 0.01467 (12)
O4A 0.07488 (4) 0.20698 (3) 0.65625 (2) 0.01945 (11)
N1A 0.05043 (5) 0.23543 (4) 0.73791 (2) 0.01587 (11)
C12A −0.03743 (6) 0.18323 (4) 0.74959 (3) 0.01686 (13)
C13A −0.12017 (6) 0.16453 (5) 0.71592 (3) 0.01985 (14)
H13A −0.1170 0.1844 0.6835 0.024*
C14A −0.20769 (7) 0.11622 (5) 0.73062 (4) 0.02544 (17)
H14A −0.2644 0.1037 0.7079 0.031*
C15A −0.21328 (7) 0.08613 (5) 0.77770 (4) 0.02926 (19)
H15A −0.2735 0.0536 0.7872 0.035*
C16A −0.13026 (8) 0.10393 (5) 0.81074 (4) 0.02896 (19)
H16A −0.1331 0.0830 0.8429 0.035*
C17A −0.04275 (7) 0.15232 (5) 0.79697 (3) 0.02339 (16)
H17A 0.0137 0.1644 0.8199 0.028*
C18A 0.10617 (6) 0.28081 (4) 0.77672 (3) 0.01724 (13)
H18A 0.1520 0.2461 0.7976 0.021*
H18B 0.0520 0.3090 0.7974 0.021*
O1B 0.18541 (6) 0.22957 (5) 0.39331 (2) 0.03053 (14)
C2B 0.07999 (8) 0.21098 (7) 0.40790 (4) 0.0343 (2)
H2B 0.0149 0.2267 0.3912 0.041*
C3B 0.08127 (8) 0.16764 (6) 0.44902 (4) 0.03071 (19)
H3B 0.0190 0.1472 0.4659 0.037*
C4B 0.19523 (7) 0.15827 (5) 0.46234 (3) 0.02264 (15)
C5B 0.25439 (7) 0.19673 (5) 0.42746 (3) 0.02408 (16)
C6B 0.37635 (7) 0.20572 (5) 0.42263 (3) 0.02560 (17)
H6B1 0.3958 0.2605 0.4135 0.031*
H6B2 0.4058 0.1693 0.3975 0.031*
C7B 0.42244 (7) 0.18526 (4) 0.47312 (3) 0.01961 (14)
H7B 0.4032 0.2288 0.4963 0.024*
C8B 0.37084 (7) 0.10836 (4) 0.49177 (3) 0.01969 (14)
H8B 0.3763 0.0694 0.4644 0.024*
C9B 0.24858 (7) 0.11491 (5) 0.50458 (3) 0.02059 (14)
H9B 0.2163 0.0607 0.5069 0.025*
C10B 0.22962 (7) 0.15828 (5) 0.55291 (3) 0.02022 (14)
O2B 0.29800 (6) 0.19859 (5) 0.57299 (3) 0.03523 (17)
O3B 0.12847 (5) 0.14681 (4) 0.57001 (2) 0.02688 (14)
H3B1 0.1208 0.1714 0.5965 0.040*
C11B 0.45022 (7) 0.08127 (5) 0.53048 (3) 0.02118 (15)
O4B 0.43207 (6) 0.03220 (4) 0.56273 (3) 0.03127 (15)
N1B 0.54962 (6) 0.11605 (4) 0.52171 (3) 0.02045 (13)
C12B 0.65092 (7) 0.09661 (5) 0.54476 (3) 0.02148 (15)
C13B 0.65372 (9) 0.05946 (5) 0.59053 (3) 0.02803 (18)
H13B 0.5871 0.0483 0.6075 0.034*
C14B 0.75534 (10) 0.03908 (6) 0.61076 (4) 0.0346 (2)
H14B 0.7571 0.0122 0.6412 0.042*
C15B 0.85333 (10) 0.05686 (6) 0.58777 (4) 0.0375 (2)
H15B 0.9220 0.0436 0.6024 0.045*
C16B 0.84995 (9) 0.09450 (7) 0.54291 (4) 0.0361 (2)
H16B 0.9171 0.1073 0.5268 0.043*
C17B 0.74999 (8) 0.11391 (6) 0.52103 (4) 0.02780 (17)
H17B 0.7491 0.1389 0.4900 0.033*
C18B 0.54527 (7) 0.16734 (5) 0.47787 (3) 0.02155 (15)
H18C 0.5734 0.1394 0.4486 0.026*
H18D 0.5886 0.2163 0.4828 0.026*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1A 0.0215 (3) 0.0201 (3) 0.0327 (3) −0.0047 (2) −0.0089 (2) 0.0004 (2)
C2A 0.0198 (3) 0.0208 (3) 0.0388 (5) −0.0051 (3) −0.0022 (3) 0.0034 (3)
C3A 0.0179 (3) 0.0196 (3) 0.0310 (5) −0.0025 (3) 0.0013 (3) 0.0036 (3)
C4A 0.0141 (3) 0.0143 (3) 0.0233 (4) 0.0001 (2) −0.0011 (2) 0.0008 (2)
C5A 0.0168 (3) 0.0150 (3) 0.0251 (4) −0.0011 (2) −0.0048 (3) −0.0006 (3)
C6A 0.0230 (3) 0.0210 (3) 0.0186 (4) −0.0020 (3) −0.0042 (3) −0.0027 (3)
C7A 0.0180 (3) 0.0158 (3) 0.0141 (3) 0.0005 (2) −0.0005 (2) −0.0014 (2)
C8A 0.0136 (2) 0.0134 (3) 0.0150 (3) 0.0009 (2) 0.0001 (2) −0.0003 (2)
C9A 0.0146 (3) 0.0141 (3) 0.0159 (3) −0.0001 (2) 0.0007 (2) −0.0002 (2)
C10A 0.0200 (3) 0.0163 (3) 0.0148 (3) −0.0008 (2) −0.0023 (2) 0.0006 (2)
O2A 0.0187 (2) 0.0281 (3) 0.0231 (3) 0.0036 (2) −0.0021 (2) 0.0048 (2)
O3A 0.0250 (3) 0.0254 (3) 0.0235 (3) −0.0033 (2) −0.0026 (2) 0.0101 (2)
C11A 0.0149 (3) 0.0147 (3) 0.0144 (3) 0.0013 (2) 0.0010 (2) 0.0001 (2)
O4A 0.0196 (2) 0.0230 (3) 0.0158 (3) −0.00351 (19) 0.00158 (19) −0.0040 (2)
N1A 0.0157 (2) 0.0178 (3) 0.0141 (3) −0.0016 (2) 0.0019 (2) −0.0007 (2)
C12A 0.0160 (3) 0.0150 (3) 0.0196 (4) 0.0008 (2) 0.0043 (2) 0.0003 (2)
C13A 0.0174 (3) 0.0181 (3) 0.0241 (4) 0.0002 (2) 0.0025 (3) −0.0040 (3)
C14A 0.0198 (3) 0.0186 (3) 0.0379 (5) −0.0023 (3) 0.0053 (3) −0.0081 (3)
C15A 0.0273 (4) 0.0171 (3) 0.0434 (6) −0.0043 (3) 0.0129 (4) −0.0021 (3)
C16A 0.0340 (4) 0.0214 (4) 0.0315 (5) −0.0022 (3) 0.0113 (4) 0.0057 (3)
C17A 0.0247 (3) 0.0223 (3) 0.0231 (4) −0.0007 (3) 0.0042 (3) 0.0049 (3)
C18A 0.0194 (3) 0.0192 (3) 0.0131 (3) −0.0003 (2) 0.0006 (2) −0.0015 (2)
O1B 0.0337 (3) 0.0394 (4) 0.0184 (3) 0.0012 (3) −0.0039 (2) 0.0016 (3)
C2B 0.0307 (4) 0.0488 (6) 0.0234 (5) 0.0004 (4) −0.0054 (3) −0.0050 (4)
C3B 0.0286 (4) 0.0421 (5) 0.0214 (4) −0.0035 (4) −0.0015 (3) −0.0063 (4)
C4B 0.0276 (4) 0.0249 (4) 0.0154 (4) −0.0011 (3) 0.0012 (3) −0.0051 (3)
C5B 0.0304 (4) 0.0263 (4) 0.0155 (4) 0.0019 (3) −0.0002 (3) −0.0016 (3)
C6B 0.0307 (4) 0.0283 (4) 0.0178 (4) 0.0013 (3) 0.0048 (3) 0.0043 (3)
C7B 0.0261 (3) 0.0170 (3) 0.0158 (4) 0.0007 (3) 0.0049 (3) 0.0016 (3)
C8B 0.0274 (3) 0.0150 (3) 0.0167 (4) −0.0004 (3) 0.0052 (3) −0.0014 (2)
C9B 0.0261 (3) 0.0189 (3) 0.0168 (4) −0.0027 (3) 0.0039 (3) −0.0027 (3)
C10B 0.0239 (3) 0.0211 (3) 0.0157 (4) −0.0003 (3) 0.0039 (3) 0.0000 (3)
O2B 0.0313 (3) 0.0474 (4) 0.0270 (4) −0.0132 (3) 0.0095 (3) −0.0181 (3)
O3B 0.0231 (3) 0.0381 (4) 0.0194 (3) −0.0034 (2) 0.0054 (2) −0.0073 (3)
C11B 0.0292 (4) 0.0155 (3) 0.0188 (4) 0.0000 (3) 0.0057 (3) 0.0010 (3)
O4B 0.0378 (4) 0.0270 (3) 0.0291 (4) −0.0052 (3) 0.0039 (3) 0.0128 (3)
N1B 0.0272 (3) 0.0176 (3) 0.0166 (3) 0.0006 (2) 0.0043 (2) 0.0030 (2)
C12B 0.0303 (4) 0.0166 (3) 0.0176 (4) 0.0010 (3) −0.0001 (3) −0.0007 (3)
C13B 0.0419 (5) 0.0233 (4) 0.0189 (4) −0.0009 (3) −0.0013 (3) 0.0017 (3)
C14B 0.0524 (6) 0.0271 (4) 0.0244 (5) 0.0005 (4) −0.0105 (4) 0.0045 (3)
C15B 0.0417 (5) 0.0322 (5) 0.0387 (6) 0.0052 (4) −0.0128 (4) 0.0026 (4)
C16B 0.0300 (4) 0.0414 (5) 0.0367 (6) 0.0021 (4) −0.0035 (4) 0.0048 (4)
C17B 0.0291 (4) 0.0304 (4) 0.0239 (4) 0.0010 (3) −0.0002 (3) 0.0044 (3)
C18B 0.0270 (3) 0.0209 (3) 0.0168 (4) 0.0016 (3) 0.0061 (3) 0.0047 (3)

Geometric parameters (Å, º)

O1A—C5A 1.3681 (9) O1B—C5B 1.3715 (11)
O1A—C2A 1.3740 (12) O1B—C2B 1.3739 (13)
C2A—C3A 1.3500 (13) C2B—C3B 1.3440 (16)
C2A—H2A 0.9500 C2B—H2B 0.9500
C3A—C4A 1.4364 (11) C3B—C4B 1.4359 (13)
C3A—H3A 0.9500 C3B—H3B 0.9500
C4A—C5A 1.3585 (13) C4B—C5B 1.3598 (13)
C4A—C9A 1.5124 (10) C4B—C9B 1.5144 (13)
C5A—C6A 1.4893 (12) C5B—C6B 1.4902 (14)
C6A—C7A 1.5273 (11) C6B—C7B 1.5301 (13)
C6A—H6A1 0.9900 C6B—H6B1 0.9900
C6A—H6A2 0.9900 C6B—H6B2 0.9900
C7A—C18A 1.5218 (11) C7B—C18B 1.5234 (12)
C7A—C8A 1.5335 (11) C7B—C8B 1.5326 (11)
C7A—H7A 1.0000 C7B—H7B 1.0000
C8A—C11A 1.5175 (10) C8B—C11B 1.5024 (13)
C8A—C9A 1.5251 (10) C8B—C9B 1.5251 (12)
C8A—H8A 1.0000 C8B—H8B 1.0000
C9A—C10A 1.5178 (10) C9B—C10B 1.5307 (12)
C9A—H9A 1.0000 C9B—H9B 1.0000
C10A—O2A 1.2094 (10) C10B—O2B 1.2057 (11)
C10A—O3A 1.3375 (10) C10B—O3B 1.3254 (10)
O3A—H3A1 0.8400 O3B—H3B1 0.8400
C11A—O4A 1.2286 (9) C11B—O4B 1.2324 (10)
C11A—N1A 1.3696 (10) C11B—N1B 1.3613 (11)
N1A—C12A 1.4199 (10) N1B—C12B 1.4181 (12)
N1A—C18A 1.4747 (10) N1B—C18B 1.4825 (11)
C12A—C13A 1.3976 (12) C12B—C17B 1.3953 (13)
C12A—C17A 1.4000 (12) C12B—C13B 1.4024 (13)
C13A—C14A 1.3981 (11) C13B—C14B 1.3926 (15)
C13A—H13A 0.9500 C13B—H13B 0.9500
C14A—C15A 1.3875 (15) C14B—C15B 1.3763 (17)
C14A—H14A 0.9500 C14B—H14B 0.9500
C15A—C16A 1.3852 (15) C15B—C16B 1.3843 (16)
C15A—H15A 0.9500 C15B—H15B 0.9500
C16A—C17A 1.3916 (12) C16B—C17B 1.3898 (14)
C16A—H16A 0.9500 C16B—H16B 0.9500
C17A—H17A 0.9500 C17B—H17B 0.9500
C18A—H18A 0.9900 C18B—H18C 0.9900
C18A—H18B 0.9900 C18B—H18D 0.9900
C5A—O1A—C2A 106.06 (7) C5B—O1B—C2B 105.94 (8)
C3A—C2A—O1A 110.80 (7) C3B—C2B—O1B 110.97 (9)
C3A—C2A—H2A 124.6 C3B—C2B—H2B 124.5
O1A—C2A—H2A 124.6 O1B—C2B—H2B 124.5
C2A—C3A—C4A 106.34 (8) C2B—C3B—C4B 106.51 (9)
C2A—C3A—H3A 126.8 C2B—C3B—H3B 126.7
C4A—C3A—H3A 126.8 C4B—C3B—H3B 126.7
C5A—C4A—C3A 106.00 (7) C5B—C4B—C3B 105.95 (8)
C5A—C4A—C9A 123.02 (7) C5B—C4B—C9B 122.94 (8)
C3A—C4A—C9A 130.92 (8) C3B—C4B—C9B 131.10 (8)
C4A—C5A—O1A 110.79 (7) C4B—C5B—O1B 110.62 (8)
C4A—C5A—C6A 128.83 (7) C4B—C5B—C6B 129.29 (8)
O1A—C5A—C6A 120.34 (7) O1B—C5B—C6B 120.09 (8)
C5A—C6A—C7A 105.69 (7) C5B—C6B—C7B 104.95 (7)
C5A—C6A—H6A1 110.6 C5B—C6B—H6B1 110.8
C7A—C6A—H6A1 110.6 C7B—C6B—H6B1 110.8
C5A—C6A—H6A2 110.6 C5B—C6B—H6B2 110.8
C7A—C6A—H6A2 110.6 C7B—C6B—H6B2 110.8
H6A1—C6A—H6A2 108.7 H6B1—C6B—H6B2 108.8
C18A—C7A—C6A 117.12 (7) C18B—C7B—C6B 118.57 (7)
C18A—C7A—C8A 102.21 (6) C18B—C7B—C8B 101.53 (6)
C6A—C7A—C8A 111.43 (6) C6B—C7B—C8B 110.17 (7)
C18A—C7A—H7A 108.6 C18B—C7B—H7B 108.7
C6A—C7A—H7A 108.6 C6B—C7B—H7B 108.7
C8A—C7A—H7A 108.6 C8B—C7B—H7B 108.7
C11A—C8A—C9A 120.88 (6) C11B—C8B—C9B 118.75 (7)
C11A—C8A—C7A 103.34 (6) C11B—C8B—C7B 103.53 (7)
C9A—C8A—C7A 113.02 (6) C9B—C8B—C7B 114.22 (7)
C11A—C8A—H8A 106.2 C11B—C8B—H8B 106.5
C9A—C8A—H8A 106.2 C9B—C8B—H8B 106.5
C7A—C8A—H8A 106.2 C7B—C8B—H8B 106.5
C4A—C9A—C10A 109.15 (6) C4B—C9B—C8B 105.89 (7)
C4A—C9A—C8A 106.36 (6) C4B—C9B—C10B 111.28 (7)
C10A—C9A—C8A 113.23 (6) C8B—C9B—C10B 112.28 (7)
C4A—C9A—H9A 109.3 C4B—C9B—H9B 109.1
C10A—C9A—H9A 109.3 C8B—C9B—H9B 109.1
C8A—C9A—H9A 109.3 C10B—C9B—H9B 109.1
O2A—C10A—O3A 124.08 (7) O2B—C10B—O3B 123.81 (8)
O2A—C10A—C9A 125.12 (7) O2B—C10B—C9B 124.26 (7)
O3A—C10A—C9A 110.80 (7) O3B—C10B—C9B 111.93 (7)
C10A—O3A—H3A1 109.5 C10B—O3B—H3B1 109.5
O4A—C11A—N1A 125.02 (7) O4B—C11B—N1B 125.18 (8)
O4A—C11A—C8A 128.01 (6) O4B—C11B—C8B 126.67 (8)
N1A—C11A—C8A 106.82 (6) N1B—C11B—C8B 107.98 (7)
C11A—N1A—C12A 126.28 (6) C11B—N1B—C12B 125.83 (7)
C11A—N1A—C18A 112.60 (6) C11B—N1B—C18B 111.42 (7)
C12A—N1A—C18A 120.36 (6) C12B—N1B—C18B 121.81 (7)
C13A—C12A—C17A 119.54 (7) C17B—C12B—C13B 119.31 (8)
C13A—C12A—N1A 121.99 (7) C17B—C12B—N1B 119.17 (8)
C17A—C12A—N1A 118.43 (7) C13B—C12B—N1B 121.51 (8)
C12A—C13A—C14A 119.09 (8) C14B—C13B—C12B 119.20 (9)
C12A—C13A—H13A 120.5 C14B—C13B—H13B 120.4
C14A—C13A—H13A 120.5 C12B—C13B—H13B 120.4
C15A—C14A—C13A 121.29 (8) C15B—C14B—C13B 121.70 (9)
C15A—C14A—H14A 119.4 C15B—C14B—H14B 119.2
C13A—C14A—H14A 119.4 C13B—C14B—H14B 119.2
C16A—C15A—C14A 119.40 (8) C14B—C15B—C16B 118.75 (10)
C16A—C15A—H15A 120.3 C14B—C15B—H15B 120.6
C14A—C15A—H15A 120.3 C16B—C15B—H15B 120.6
C15A—C16A—C17A 120.26 (9) C15B—C16B—C17B 121.13 (10)
C15A—C16A—H16A 119.9 C15B—C16B—H16B 119.4
C17A—C16A—H16A 119.9 C17B—C16B—H16B 119.4
C16A—C17A—C12A 120.41 (9) C16B—C17B—C12B 119.88 (9)
C16A—C17A—H17A 119.8 C16B—C17B—H17B 120.1
C12A—C17A—H17A 119.8 C12B—C17B—H17B 120.1
N1A—C18A—C7A 102.82 (6) N1B—C18B—C7B 102.75 (6)
N1A—C18A—H18A 111.2 N1B—C18B—H18C 111.2
C7A—C18A—H18A 111.2 C7B—C18B—H18C 111.2
N1A—C18A—H18B 111.2 N1B—C18B—H18D 111.2
C7A—C18A—H18B 111.2 C7B—C18B—H18D 111.2
H18A—C18A—H18B 109.1 H18C—C18B—H18D 109.1
C5A—O1A—C2A—C3A −0.07 (9) C5B—O1B—C2B—C3B −0.68 (11)
O1A—C2A—C3A—C4A −0.06 (9) O1B—C2B—C3B—C4B 0.72 (12)
C2A—C3A—C4A—C5A 0.16 (9) C2B—C3B—C4B—C5B −0.48 (11)
C2A—C3A—C4A—C9A 177.41 (7) C2B—C3B—C4B—C9B −179.30 (9)
C3A—C4A—C5A—O1A −0.22 (8) C3B—C4B—C5B—O1B 0.07 (10)
C9A—C4A—C5A—O1A −177.73 (6) C9B—C4B—C5B—O1B 179.02 (7)
C3A—C4A—C5A—C6A 177.26 (7) C3B—C4B—C5B—C6B −179.45 (9)
C9A—C4A—C5A—C6A −0.25 (12) C9B—C4B—C5B—C6B −0.51 (14)
C2A—O1A—C5A—C4A 0.18 (9) C2B—O1B—C5B—C4B 0.35 (10)
C2A—O1A—C5A—C6A −177.54 (7) C2B—O1B—C5B—C6B 179.93 (8)
C4A—C5A—C6A—C7A −14.66 (11) C4B—C5B—C6B—C7B −17.32 (12)
O1A—C5A—C6A—C7A 162.62 (6) O1B—C5B—C6B—C7B 163.19 (7)
C5A—C6A—C7A—C18A 162.60 (6) C5B—C6B—C7B—C18B 164.07 (7)
C5A—C6A—C7A—C8A 45.46 (8) C5B—C6B—C7B—C8B 47.79 (9)
C18A—C7A—C8A—C11A 33.72 (7) C18B—C7B—C8B—C11B 33.71 (8)
C6A—C7A—C8A—C11A 159.58 (6) C6B—C7B—C8B—C11B 160.23 (6)
C18A—C7A—C8A—C9A 166.08 (6) C18B—C7B—C8B—C9B 164.30 (7)
C6A—C7A—C8A—C9A −68.05 (8) C6B—C7B—C8B—C9B −69.18 (9)
C5A—C4A—C9A—C10A 106.75 (8) C5B—C4B—C9B—C8B −12.99 (10)
C3A—C4A—C9A—C10A −70.09 (10) C3B—C4B—C9B—C8B 165.66 (9)
C5A—C4A—C9A—C8A −15.74 (9) C5B—C4B—C9B—C10B 109.28 (9)
C3A—C4A—C9A—C8A 167.42 (7) C3B—C4B—C9B—C10B −72.07 (11)
C11A—C8A—C9A—C4A 170.99 (6) C11B—C8B—C9B—C4B 169.01 (7)
C7A—C8A—C9A—C4A 47.89 (7) C7B—C8B—C9B—C4B 46.37 (9)
C11A—C8A—C9A—C10A 51.12 (9) C11B—C8B—C9B—C10B 47.39 (9)
C7A—C8A—C9A—C10A −71.98 (8) C7B—C8B—C9B—C10B −75.25 (9)
C4A—C9A—C10A—O2A −120.49 (8) C4B—C9B—C10B—O2B −102.12 (10)
C8A—C9A—C10A—O2A −2.23 (11) C8B—C9B—C10B—O2B 16.37 (12)
C4A—C9A—C10A—O3A 60.04 (8) C4B—C9B—C10B—O3B 77.38 (9)
C8A—C9A—C10A—O3A 178.30 (6) C8B—C9B—C10B—O3B −164.12 (7)
C9A—C8A—C11A—O4A 33.83 (11) C9B—C8B—C11B—O4B 35.02 (12)
C7A—C8A—C11A—O4A 161.42 (7) C7B—C8B—C11B—O4B 162.85 (8)
C9A—C8A—C11A—N1A −150.61 (6) C9B—C8B—C11B—N1B −149.49 (7)
C7A—C8A—C11A—N1A −23.01 (7) C7B—C8B—C11B—N1B −21.66 (8)
O4A—C11A—N1A—C12A 8.13 (12) O4B—C11B—N1B—C12B 6.42 (14)
C8A—C11A—N1A—C12A −167.60 (6) C8B—C11B—N1B—C12B −169.16 (7)
O4A—C11A—N1A—C18A 178.15 (7) O4B—C11B—N1B—C18B 175.43 (8)
C8A—C11A—N1A—C18A 2.42 (8) C8B—C11B—N1B—C18B −0.14 (9)
C11A—N1A—C12A—C13A −37.46 (11) C11B—N1B—C12B—C17B 156.19 (8)
C18A—N1A—C12A—C13A 153.23 (7) C18B—N1B—C12B—C17B −11.76 (12)
C11A—N1A—C12A—C17A 145.01 (8) C11B—N1B—C12B—C13B −22.92 (12)
C18A—N1A—C12A—C17A −24.30 (10) C18B—N1B—C12B—C13B 169.13 (8)
C17A—C12A—C13A—C14A 1.04 (11) C17B—C12B—C13B—C14B −1.42 (13)
N1A—C12A—C13A—C14A −176.46 (7) N1B—C12B—C13B—C14B 177.70 (8)
C12A—C13A—C14A—C15A −0.55 (12) C12B—C13B—C14B—C15B 2.25 (15)
C13A—C14A—C15A—C16A −0.35 (13) C13B—C14B—C15B—C16B −1.38 (16)
C14A—C15A—C16A—C17A 0.76 (13) C14B—C15B—C16B—C17B −0.32 (17)
C15A—C16A—C17A—C12A −0.26 (13) C15B—C16B—C17B—C12B 1.10 (16)
C13A—C12A—C17A—C16A −0.65 (12) C13B—C12B—C17B—C16B −0.21 (14)
N1A—C12A—C17A—C16A 176.94 (7) N1B—C12B—C17B—C16B −179.34 (9)
C11A—N1A—C18A—C7A 19.30 (8) C11B—N1B—C18B—C7B 21.95 (9)
C12A—N1A—C18A—C7A −170.02 (6) C12B—N1B—C18B—C7B −168.52 (7)
C6A—C7A—C18A—N1A −154.05 (6) C6B—C7B—C18B—N1B −154.21 (7)
C8A—C7A—C18A—N1A −32.00 (7) C8B—C7B—C18B—N1B −33.41 (8)

Hydrogen-bond geometry (Å, º)

Cg1 and Cg2 are the centroids of the C13A–C18A and O1A–C5A rings, respectively.

D—H···A D—H H···A D···A D—H···A
O3B—H3B1···O4A 0.84 1.83 2.6517 (11) 165
O3A—H3A1···O4Bi 0.84 1.79 2.6329 (10) 178
C8A—H8A···Cg1ii 1.00 2.50 3.4710 (14) 165
C15A—H15A···Cg2iii 0.95 2.63 3.5470 (15) 162
C18A—H18B···Cg2iv 0.99 2.72 3.5492 (14) 141

Symmetry codes: (i) −x+1/2, y+1/2, z; (ii) x+1/2, y, −z+3/2; (iii) −x, y−1/2, −z+3/2; (iv) x−1/2, y, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5382).

References

  1. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  3. Ducharme, Y., Brideau, C., Dube, D., Chan, C. C., Falgueyret, J. P., Gillard, J. W., Guay, J., Hutchison, J. H., McFarlane, C. S., Riendeau, D., Scheigetz, J. & Girard, Y. (1994). J. Med. Chem. 37, 512–518. [DOI] [PubMed]
  4. Iwasaki, T., Kondo, K., Kuroda, T., Moritani, Y., Yamagata, S., Sugiura, M., Kikkawa, H., Kaminuma, O. & Ikezawa, K. (1996). J. Med. Chem. 39, 2696–2704. [DOI] [PubMed]
  5. Leteurtre, F., Madalengoitia, J., Orr, A., Guzi, T., Lehnert, E., MacDonald, T. & Pommier, Y. (1992). Cancer Res. 52, 4478–4483. [PubMed]
  6. Obushak, M. D., Horak, Y. I., Zaytsev, V. P., Motorygina, E. L., Zubkov, F. I. & Khrustalev, V. N. (2011). Acta Cryst. E67, o3031–o3032. [DOI] [PMC free article] [PubMed]
  7. Ohno, H., Miyamura, K., Mizutani, T., Kadoh, Y., Takeoka, Y., Hamaguchi, H. & Tanaka, T. (2005). Chem. Eur. J. 11, 3728–3741. [DOI] [PubMed]
  8. Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Wroclaw, Poland.
  9. Patre, E. R., Gawas, S., Sen, S., Parameswaran, P. S. & Tilve, S. G. (2007). Tetrahedron Lett. 48, 3517–3520.
  10. Ramos, A. C., Pelaez-Lamamie de Clairac, R. & Medarde, M. (1999). Heterocycles, 51, 1443–1470.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Sun, S., Turchi, I. J., Xu, D. & Murray, W. V. (2000). J. Org. Chem. 65, 2555–2559. [DOI] [PubMed]
  13. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681300144X/cv5382sup1.cif

e-69-0o273-sup1.cif (30KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681300144X/cv5382Isup2.hkl

e-69-0o273-Isup2.hkl (642KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681300144X/cv5382Isup3.cdx

Supplementary material file. DOI: 10.1107/S160053681300144X/cv5382Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES