Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Jan 23;69(Pt 2):o276. doi: 10.1107/S160053681300175X

(E)-N′-(4-Chloro­benzyl­idene)-2-meth­oxy­benzohydrazide

M Syukri Baharudin a, Muhammad Taha a, Nor Hadiani Ismail b, Syed Adnan Ali Shah a,c, Sammer Yousuf d,*
PMCID: PMC3569803  PMID: 23424549

Abstract

In the title hydrazone derivative, C15H13ClN2O2, the dihedral angle between the benzene rings is 2.36 (2)°. An intra­molecular N—H⋯O hydrogen bond is present. In the crystal, N—H⋯O and C—H⋯O hydrogen bonds link the mol­ecules into chains running parallel to the b axis.

Related literature  

For applications and biological activity of hydrazone derivatives, see: Khan et al. (2011, 2012); Kūçūkgūzel et al. (1999); Patel et al. (1984); Wilder (1967); Glasser & Doughty (1962). For a related structure, see: Cao (2009).graphic file with name e-69-0o276-scheme1.jpg

Experimental  

Crystal data  

  • C15H13ClN2O2

  • M r = 288.72

  • Orthorhombic, Inline graphic

  • a = 12.5830 (7) Å

  • b = 9.8335 (5) Å

  • c = 23.6377 (13) Å

  • V = 2924.8 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 273 K

  • 0.48 × 0.27 × 0.10 mm

Data collection  

  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000) T min = 0.884, T max = 0.974

  • 16194 measured reflections

  • 2713 independent reflections

  • 2021 reflections with I > 2σ(I)

  • R int = 0.030

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.124

  • S = 1.06

  • 2713 reflections

  • 186 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.35 e Å−3

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681300175X/rz5038sup1.cif

e-69-0o276-sup1.cif (18.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681300175X/rz5038Isup2.hkl

e-69-0o276-Isup2.hkl (133.3KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681300175X/rz5038Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2 0.76 (2) 2.04 (2) 2.632 (2) 135.7 (19)
N1—H1A⋯O1i 0.76 (2) 2.58 (2) 3.163 (3) 135.5 (19)
C8—H8A⋯O1i 0.93 2.42 3.127 (3) 132

Symmetry code: (i) Inline graphic.

supplementary crystallographic information

Comment

Organic compounds based on the hydrazone moiety are well known due to their wide range of applications both in structural and medicinal chemistry (Khan et al., 2011, 2012; Kūçūkgūzel et al., 1999; Patel et al., 1984; Wilder, 1967; Glasser & Doughty, 1962). The title compound is a hydrazone derivative synthesized in order to evaluate its biological activities.

The structure of title compound (Fig. 1) is similar to that of the previously published compound (E)-N'-(2-chlorobenzylidene)-2-methoxybenzohydrazide (Cao, 2009) with the difference that the 2-chlorobenzene ring is replaced by a 4-chlorobenzene ring (C9–19 C14). The bond lengths and angles were found to be similar to those observed in the structurally related phenyl hydrazone (Cao, 2009). The azomethine double bond adopts an E configuration (C═N, 1.270 (3) Å). The molecular conformation is stablized by an intramolecular N1—H1A···O2 hydrogen bond (Table 1) to generate an S6 graph set ring motif. N1—H1A···O1 and C8—H8A···O1 hydrogen bonds play important roles in stabilizing the crystal structure by forming chains running parallel to the b axis (Fig. 2).

Experimental

The title compound was synthesized by refluxing in methanol a mixture of 2-methoxybenzohydrazide (0.332 g, 2 mmol), 4-chlorobenzaldehyde (0.281 g, 2 mmol) and a catalytical amount of acetic acid for 3 h. The progress of reaction was monitored by TLC. After completion of the reaction, the solvent was evaporated by vacuum to afford the crude product which was further recrystallized in methanol to obtain colourless crystals (0.467 g, 81% yield). All chemicals were purchased by sigma Aldrich, Germany.

Refinement

H atoms on methyl, phenyl and methine carbon atoms were positioned geometrically with C—H = 0.96 (CH3) and 0.93 Å (CH) and constrained to ride on their parent atoms with Uiso(H) = 1.5Ueq(CH3) or 1.2Ueq(CH). The H atoms on the nitrogen (N–H = 0.76 (2) Å) and oxygen (O–H = 0.84 (2)–0.93 (2) Å) atoms were located in a difference Fourier map and refined isotropically. A rotating group model was applied to the methyl group.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with displacement ellipsoids drawn at 30% probability level. An intramolecular hydrogen bond is shown as a dashed line.

Fig. 2.

Fig. 2.

Crystal packing of the title compound viewed down the a axis. Only hydrogen atoms involved in hydrogen bonding are shown.

Crystal data

C15H13ClN2O2 F(000) = 1200
Mr = 288.72 Dx = 1.311 Mg m3
Orthorhombic, Pbca Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 3504 reflections
a = 12.5830 (7) Å θ = 2.4–24.1°
b = 9.8335 (5) Å µ = 0.26 mm1
c = 23.6377 (13) Å T = 273 K
V = 2924.8 (3) Å3 Block, colourless
Z = 8 0.48 × 0.27 × 0.10 mm

Data collection

Bruker SMART APEX CCD area-detector diffractometer 2713 independent reflections
Radiation source: fine-focus sealed tube 2021 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.030
ω scan θmax = 25.5°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Bruker, 2000) h = −14→15
Tmin = 0.884, Tmax = 0.974 k = −11→11
16194 measured reflections l = −28→28

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124 H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0533P)2 + 0.7724P] where P = (Fo2 + 2Fc2)/3
2713 reflections (Δ/σ)max = 0.001
186 parameters Δρmax = 0.32 e Å3
0 restraints Δρmin = −0.35 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.01370 (6) 0.06519 (7) 0.64198 (3) 0.0891 (3)
O1 0.18055 (13) 0.53482 (16) 0.95365 (6) 0.0713 (4)
O2 0.43399 (11) 0.28997 (14) 0.99795 (6) 0.0659 (4)
N1 0.27223 (15) 0.3462 (2) 0.93138 (7) 0.0582 (5)
H1A 0.3141 (16) 0.295 (2) 0.9402 (8) 0.048 (6)*
N2 0.21338 (13) 0.32469 (18) 0.88327 (7) 0.0578 (5)
C1 0.2839 (2) 0.5735 (2) 1.05402 (9) 0.0710 (6)
H1B 0.2255 0.6267 1.0443 0.085*
C2 0.3375 (2) 0.5997 (3) 1.10386 (11) 0.0896 (8)
H2B 0.3155 0.6702 1.1274 0.108*
C3 0.4228 (3) 0.5217 (4) 1.11831 (11) 0.0981 (9)
H3A 0.4587 0.5393 1.1519 0.118*
C4 0.4567 (2) 0.4175 (3) 1.08405 (10) 0.0800 (7)
H4A 0.5150 0.3652 1.0945 0.096*
C5 0.40351 (16) 0.3906 (2) 1.03376 (8) 0.0562 (5)
C6 0.31540 (16) 0.4690 (2) 1.01800 (8) 0.0536 (5)
C7 0.25085 (17) 0.4537 (2) 0.96504 (8) 0.0532 (5)
C8 0.23811 (16) 0.2194 (2) 0.85504 (8) 0.0607 (6)
H8A 0.2935 0.1645 0.8675 0.073*
C9 0.18113 (16) 0.1828 (2) 0.80327 (8) 0.0567 (5)
C10 0.09208 (18) 0.2521 (2) 0.78495 (9) 0.0645 (6)
H10A 0.0663 0.3246 0.8062 0.077*
C11 0.04081 (19) 0.2156 (2) 0.73582 (9) 0.0678 (6)
H11A −0.0191 0.2632 0.7240 0.081*
C12 0.07826 (18) 0.1091 (2) 0.70448 (8) 0.0645 (6)
C13 0.1646 (2) 0.0373 (3) 0.72182 (11) 0.0889 (8)
H13A 0.1889 −0.0359 0.7006 0.107*
C14 0.2162 (2) 0.0741 (3) 0.77145 (11) 0.0843 (8)
H14A 0.2751 0.0247 0.7834 0.101*
C15 0.51850 (19) 0.2009 (2) 1.01362 (11) 0.0751 (7)
H15A 0.5257 0.1307 0.9857 0.113*
H15B 0.5031 0.1606 1.0497 0.113*
H15C 0.5836 0.2515 1.0160 0.113*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.1105 (6) 0.0983 (6) 0.0586 (4) −0.0205 (4) −0.0205 (3) −0.0091 (3)
O1 0.0817 (11) 0.0609 (10) 0.0711 (10) 0.0121 (8) −0.0116 (8) 0.0011 (7)
O2 0.0701 (9) 0.0635 (10) 0.0640 (9) 0.0090 (7) −0.0198 (7) −0.0044 (8)
N1 0.0554 (11) 0.0685 (12) 0.0506 (10) 0.0102 (10) −0.0114 (8) −0.0033 (9)
N2 0.0566 (10) 0.0696 (12) 0.0472 (9) 0.0031 (8) −0.0080 (7) −0.0016 (8)
C1 0.0811 (16) 0.0689 (15) 0.0631 (13) −0.0042 (12) 0.0063 (11) −0.0067 (11)
C2 0.109 (2) 0.092 (2) 0.0677 (15) −0.0094 (17) 0.0051 (15) −0.0277 (14)
C3 0.109 (2) 0.122 (2) 0.0634 (16) −0.011 (2) −0.0229 (15) −0.0227 (17)
C4 0.0838 (16) 0.0930 (19) 0.0632 (14) −0.0032 (14) −0.0199 (12) −0.0054 (13)
C5 0.0597 (12) 0.0579 (13) 0.0510 (11) −0.0119 (10) −0.0057 (9) 0.0025 (10)
C6 0.0600 (12) 0.0528 (12) 0.0481 (10) −0.0093 (10) 0.0017 (9) 0.0026 (9)
C7 0.0565 (12) 0.0529 (12) 0.0501 (11) −0.0034 (10) 0.0005 (9) 0.0048 (9)
C8 0.0565 (12) 0.0751 (15) 0.0504 (11) 0.0103 (11) −0.0054 (9) 0.0000 (11)
C9 0.0601 (12) 0.0651 (13) 0.0449 (10) 0.0040 (10) −0.0014 (9) 0.0003 (9)
C10 0.0707 (14) 0.0663 (14) 0.0564 (12) 0.0058 (11) −0.0077 (10) −0.0072 (10)
C11 0.0705 (14) 0.0718 (15) 0.0610 (13) 0.0018 (12) −0.0149 (11) 0.0016 (11)
C12 0.0735 (14) 0.0731 (15) 0.0468 (11) −0.0122 (12) −0.0056 (10) 0.0004 (10)
C13 0.1018 (19) 0.095 (2) 0.0701 (15) 0.0180 (16) −0.0084 (14) −0.0314 (14)
C14 0.0852 (17) 0.097 (2) 0.0708 (15) 0.0272 (15) −0.0162 (13) −0.0182 (14)
C15 0.0708 (15) 0.0766 (17) 0.0778 (16) 0.0116 (12) −0.0149 (12) 0.0070 (13)

Geometric parameters (Å, º)

Cl1—C12 1.740 (2) C5—C6 1.401 (3)
O1—C7 1.221 (2) C6—C7 1.500 (3)
O2—C5 1.357 (2) C8—C9 1.463 (3)
O2—C15 1.427 (2) C8—H8A 0.9300
N1—C7 1.350 (3) C9—C14 1.380 (3)
N1—N2 1.374 (2) C9—C10 1.381 (3)
N1—H1A 0.76 (2) C10—C11 1.376 (3)
N2—C8 1.270 (3) C10—H10A 0.9300
C1—C2 1.382 (3) C11—C12 1.366 (3)
C1—C6 1.392 (3) C11—H11A 0.9300
C1—H1B 0.9300 C12—C13 1.359 (3)
C2—C3 1.363 (4) C13—C14 1.389 (3)
C2—H2B 0.9300 C13—H13A 0.9300
C3—C4 1.374 (4) C14—H14A 0.9300
C3—H3A 0.9300 C15—H15A 0.9600
C4—C5 1.390 (3) C15—H15B 0.9600
C4—H4A 0.9300 C15—H15C 0.9600
C5—O2—C15 119.75 (16) N2—C8—H8A 119.3
C7—N1—N2 120.07 (19) C9—C8—H8A 119.3
C7—N1—H1A 119.8 (16) C14—C9—C10 118.1 (2)
N2—N1—H1A 119.9 (16) C14—C9—C8 119.3 (2)
C8—N2—N1 115.37 (18) C10—C9—C8 122.58 (19)
C2—C1—C6 121.3 (2) C11—C10—C9 121.1 (2)
C2—C1—H1B 119.3 C11—C10—H10A 119.5
C6—C1—H1B 119.3 C9—C10—H10A 119.5
C3—C2—C1 119.5 (3) C12—C11—C10 119.7 (2)
C3—C2—H2B 120.2 C12—C11—H11A 120.1
C1—C2—H2B 120.2 C10—C11—H11A 120.1
C2—C3—C4 121.1 (2) C13—C12—C11 120.7 (2)
C2—C3—H3A 119.5 C13—C12—Cl1 120.00 (19)
C4—C3—H3A 119.5 C11—C12—Cl1 119.31 (18)
C3—C4—C5 119.8 (3) C12—C13—C14 119.6 (2)
C3—C4—H4A 120.1 C12—C13—H13A 120.2
C5—C4—H4A 120.1 C14—C13—H13A 120.2
O2—C5—C4 122.5 (2) C9—C14—C13 120.8 (2)
O2—C5—C6 117.33 (17) C9—C14—H14A 119.6
C4—C5—C6 120.2 (2) C13—C14—H14A 119.6
C1—C6—C5 118.0 (2) O2—C15—H15A 109.5
C1—C6—C7 115.5 (2) O2—C15—H15B 109.5
C5—C6—C7 126.51 (19) H15A—C15—H15B 109.5
O1—C7—N1 121.7 (2) O2—C15—H15C 109.5
O1—C7—C6 120.70 (19) H15A—C15—H15C 109.5
N1—C7—C6 117.56 (19) H15B—C15—H15C 109.5
N2—C8—C9 121.32 (19)
C7—N1—N2—C8 −178.62 (19) C5—C6—C7—O1 −174.3 (2)
C6—C1—C2—C3 −0.2 (4) C1—C6—C7—N1 −174.05 (19)
C1—C2—C3—C4 0.2 (5) C5—C6—C7—N1 6.8 (3)
C2—C3—C4—C5 0.0 (4) N1—N2—C8—C9 179.13 (18)
C15—O2—C5—C4 4.9 (3) N2—C8—C9—C14 174.7 (2)
C15—O2—C5—C6 −175.69 (19) N2—C8—C9—C10 −6.1 (3)
C3—C4—C5—O2 179.3 (2) C14—C9—C10—C11 −1.2 (3)
C3—C4—C5—C6 −0.2 (4) C8—C9—C10—C11 179.5 (2)
C2—C1—C6—C5 0.1 (3) C9—C10—C11—C12 0.0 (4)
C2—C1—C6—C7 −179.1 (2) C10—C11—C12—C13 1.1 (4)
O2—C5—C6—C1 −179.35 (18) C10—C11—C12—Cl1 −179.24 (18)
C4—C5—C6—C1 0.1 (3) C11—C12—C13—C14 −1.0 (4)
O2—C5—C6—C7 −0.2 (3) Cl1—C12—C13—C14 179.3 (2)
C4—C5—C6—C7 179.2 (2) C10—C9—C14—C13 1.3 (4)
N2—N1—C7—O1 −0.9 (3) C8—C9—C14—C13 −179.4 (2)
N2—N1—C7—C6 177.96 (17) C12—C13—C14—C9 −0.2 (4)
C1—C6—C7—O1 4.8 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1A···O2 0.76 (2) 2.04 (2) 2.632 (2) 135.7 (19)
N1—H1A···O1i 0.76 (2) 2.58 (2) 3.163 (3) 135.5 (19)
C8—H8A···O1i 0.93 2.42 3.127 (3) 132

Symmetry code: (i) −x+1/2, y−1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ5038).

References

  1. Bruker (2000). SADABS, SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Cao, G.-B. (2009). Acta Cryst. E65, o2650. [DOI] [PMC free article] [PubMed]
  3. Glasser, A. C. & Doughty, R. M. (1962). J. Pharm. Sci. 51, 1031–1033. [DOI] [PubMed]
  4. Khan, K. M., Shah, Z., Ahmad, V. U., Khan, M., Taha, M., Rahim, F., Jahan, H., Perveen, S. & Choudhary, M. I. (2011). Med. Chem. 7, 572–580. [DOI] [PubMed]
  5. Khan, K. M., Taha, M., Naz, F., Siddiqui, S., Ali, S., Rahim, F., Perveen, S. & Choudhary, M. I. (2012). Med. Chem. 8, 705–710. [DOI] [PubMed]
  6. Kūçūkgūzel, Ş. G., Rollas, S., Kūçūkgūzel, I. & Kiraz, M. (1999). Eur. J. Med. Chem. 34, 1093–1100.
  7. Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
  8. Patel, J. M., Dave, M. P., Langalia, N. A. & Thaker, K. A. (1984). J. Indian Chem. Soc. 61, 718–720.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  11. Wilder, S. A. E. (1967). Arzneimittelforschung, 17, 1150–1156.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681300175X/rz5038sup1.cif

e-69-0o276-sup1.cif (18.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681300175X/rz5038Isup2.hkl

e-69-0o276-Isup2.hkl (133.3KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681300175X/rz5038Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES