Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Jan 23;69(Pt 2):o279. doi: 10.1107/S1600536813001785

4-Methyl­pyridinium 4-hy­droxy­benzoate

S Sudhahar a, M Krishnakumar a, B M Sornamurthy a, G Chakkaravarthi b,*, R Mohankumar a,*
PMCID: PMC3569806  PMID: 23424552

Abstract

In the crystal structure of the title salt, C6H8N+·C7H5O3 , the anions and cations are linked by classical N—H⋯O hydrogen bonds. The anions are connected by pairs of C—H⋯O hydrogen bonds into inversion dimers and further linked by classical O—H⋯O hydrogen bonds. Weak π–π inter­actions [centroid–centroid distances = 3.740 (3) and 3.855 (3) Å] also occur. The dihedral angle between the CO2 group and the benzene ring to which it is attached is 20.95 (8)°.

Related literature  

For biological applications of picolinium-containing compounds, see: Butler & Walker (1993); Roy et al. (2001). For bond-length data, see: Allen et al. (1987).graphic file with name e-69-0o279-scheme1.jpg

Experimental  

Crystal data  

  • C6H8N+·C7H5O3

  • M r = 231.24

  • Monoclinic, Inline graphic

  • a = 7.479 (5) Å

  • b = 11.671 (4) Å

  • c = 13.520 (5) Å

  • β = 100.217 (5)°

  • V = 1161.4 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 295 K

  • 0.24 × 0.20 × 0.18 mm

Data collection  

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.978, T max = 0.983

  • 11741 measured reflections

  • 2564 independent reflections

  • 1939 reflections with I > 2σ(I)

  • R int = 0.029

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.128

  • S = 1.06

  • 2564 reflections

  • 156 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813001785/rk2392sup1.cif

e-69-0o279-sup1.cif (20.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813001785/rk2392Isup2.hkl

e-69-0o279-Isup2.hkl (123.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813001785/rk2392Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.82 1.85 2.6707 (19) 176
N1—H1A⋯O3ii 0.86 1.73 2.5889 (19) 173
C2—H2⋯O1iii 0.93 2.60 3.485 (2) 160

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

MK would like to thank Council of Scientific and Industrial Research, New Delhi, India, for providing financial support [project No. 03 (1200)/11/EMR–II].

supplementary crystallographic information

Comment

Picolinium compounds are valuable intermediates in organic synthesis and they have been used widely in industrially important products and biologically active substrates as antitumor, antifungal, antibacterial, antineoplastic and antviral (Butler & Walker, 1993; Roy et al., 2001) activities.

The asymmetric unit of the title salt, I, (Fig. 1), contains C6H8N+ cation and C7H5O3- anion. The bond lengths and angles in both anion and cation are within normal range (Allen et al., 1987). The crystal structure exhibit weak intermolecular classical N—H···O, O—H···O and non–classical C—H···O interactions (Table 1 & Fig. 2). The π–π interactions are found in crystal structure: Cg1···Cg2iv = 3.740 (3)Å; Cg1···Cg2v = 3.855 (3)Å, where Cg1 and Cg2 are the centroids of the rings (C1–C6) and (N1/C8–C12), respectively. Symmetry codes: (iv) x, -y+1/2, z+1/2); (v) x+1, y, z;

Experimental

4-Picolinium 4-hydroxybenzoate compound was synthesized by using the starting materials of 4-picoline (1.66 g) and 4-hydroxybenzoic acid (1.12 g) in methanol and the single crystals suitable for X-ray diffraction were grown by slow evaporation.

Refinement

The H atoms were positioned geometrically with C—H = 0.93Å and 0.96Å, O—H = 0.82Å and N—H = 0.86Å, and allowed to ride on their parent atoms, with Uiso(H) = 1.5Ueq(O) for hydroxy group, Uiso(H) = 1.2Ueq(N) for amino group, Uiso(H) = 1.2Ueq(C) for aryl H and Uiso(H) = 1.5Ueq(C) for methyl H.

Figures

Fig. 1.

Fig. 1.

The molecular structure of title compound with the atom numbering scheme. Displacement ellipsoids are drawn at 30% probability level. H atoms are presented as a small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

The crystal packing of I, viewed down a axis. Intermolecular hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.

Crystal data

C6H8N+·C7H5O3 F(000) = 488
Mr = 231.24 Dx = 1.322 Mg m3
Monoclinic, P21/c Melting point = 470.4–481.2 K
Hall symbol: -P 2ybc Mo Kα radiation, λ = 0.71073 Å
a = 7.479 (5) Å Cell parameters from 7082 reflections
b = 11.671 (4) Å θ = 2.3–27.1°
c = 13.520 (5) Å µ = 0.10 mm1
β = 100.217 (5)° T = 295 K
V = 1161.4 (10) Å3 Block, colourless
Z = 4 0.24 × 0.20 × 0.18 mm

Data collection

Bruker Kappa APEXII CCD diffractometer 2564 independent reflections
Radiation source: fine–focus sealed tube 1939 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.029
ω and φ scans θmax = 27.2°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −9→9
Tmin = 0.978, Tmax = 0.983 k = −14→8
11741 measured reflections l = −17→17

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043 H-atom parameters constrained
wR(F2) = 0.128 w = 1/[σ2(Fo2) + (0.058P)2 + 0.3003P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max < 0.001
2564 reflections Δρmax = 0.38 e Å3
156 parameters Δρmin = −0.34 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.010 (2)

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.55020 (18) 0.18454 (10) 0.02055 (8) 0.0578 (4)
H1 0.5981 0.2464 0.0131 0.087*
O2 0.7215 (2) 0.11967 (10) 0.49538 (9) 0.0599 (4)
O3 0.71511 (18) −0.05893 (9) 0.44053 (8) 0.0563 (4)
C1 0.5832 (2) 0.15548 (13) 0.11952 (11) 0.0396 (4)
C2 0.5407 (2) 0.04549 (13) 0.14510 (11) 0.0435 (4)
H2 0.4883 −0.0056 0.0955 0.052*
C3 0.5761 (2) 0.01174 (12) 0.24435 (11) 0.0394 (4)
H3 0.5492 −0.0628 0.2612 0.047*
C4 0.6512 (2) 0.08716 (12) 0.31929 (10) 0.0356 (3)
C5 0.6894 (2) 0.19833 (12) 0.29287 (11) 0.0394 (4)
H5 0.7375 0.2503 0.3427 0.047*
C6 0.6571 (2) 0.23261 (13) 0.19390 (11) 0.0397 (4)
H6 0.6846 0.3070 0.1769 0.048*
C7 0.6972 (2) 0.05049 (13) 0.42610 (11) 0.0412 (4)
N1 0.18709 (19) 0.10699 (12) 0.37067 (10) 0.0475 (4)
H1A 0.2170 0.0966 0.4344 0.057*
C8 0.2266 (2) 0.20451 (14) 0.32853 (13) 0.0490 (4)
H8 0.2872 0.2617 0.3692 0.059*
C9 0.1813 (2) 0.22368 (14) 0.22732 (12) 0.0473 (4)
H9 0.2099 0.2933 0.2005 0.057*
C10 0.0932 (2) 0.13982 (14) 0.16510 (11) 0.0446 (4)
C11 0.0517 (2) 0.03949 (14) 0.20988 (13) 0.0480 (4)
H11 −0.0091 −0.0190 0.1709 0.058*
C12 0.1000 (2) 0.02581 (14) 0.31174 (13) 0.0478 (4)
H12 0.0710 −0.0424 0.3407 0.057*
C13 0.0475 (3) 0.15746 (19) 0.05391 (14) 0.0686 (6)
H13A 0.0259 0.2374 0.0398 0.103*
H13B −0.0596 0.1145 0.0272 0.103*
H13C 0.1469 0.1318 0.0234 0.103*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0913 (9) 0.0446 (7) 0.0328 (6) −0.0132 (6) −0.0014 (6) 0.0060 (5)
O2 0.1019 (10) 0.0430 (7) 0.0334 (6) 0.0124 (6) 0.0079 (6) −0.0037 (5)
O3 0.0980 (10) 0.0342 (6) 0.0363 (6) 0.0073 (6) 0.0106 (6) 0.0038 (5)
C1 0.0502 (9) 0.0365 (8) 0.0309 (7) 0.0008 (6) 0.0040 (6) 0.0032 (6)
C2 0.0561 (9) 0.0357 (8) 0.0363 (8) −0.0062 (7) 0.0014 (7) −0.0028 (6)
C3 0.0509 (9) 0.0283 (7) 0.0391 (8) −0.0019 (6) 0.0081 (7) 0.0025 (6)
C4 0.0440 (8) 0.0316 (7) 0.0320 (7) 0.0046 (6) 0.0091 (6) 0.0012 (6)
C5 0.0520 (9) 0.0325 (8) 0.0339 (8) −0.0003 (6) 0.0085 (6) −0.0050 (6)
C6 0.0537 (9) 0.0282 (7) 0.0383 (8) −0.0022 (6) 0.0106 (7) 0.0016 (6)
C7 0.0554 (9) 0.0357 (8) 0.0343 (8) 0.0052 (7) 0.0123 (7) −0.0005 (6)
N1 0.0592 (9) 0.0506 (8) 0.0323 (7) 0.0066 (6) 0.0073 (6) 0.0070 (6)
C8 0.0561 (10) 0.0450 (9) 0.0441 (9) −0.0015 (7) 0.0036 (7) −0.0009 (7)
C9 0.0550 (10) 0.0417 (9) 0.0454 (9) −0.0008 (7) 0.0089 (7) 0.0087 (7)
C10 0.0468 (9) 0.0502 (10) 0.0365 (8) 0.0059 (7) 0.0068 (7) 0.0045 (7)
C11 0.0544 (10) 0.0446 (9) 0.0440 (9) −0.0011 (7) 0.0057 (7) −0.0018 (7)
C12 0.0563 (10) 0.0415 (9) 0.0474 (9) 0.0016 (7) 0.0138 (8) 0.0070 (7)
C13 0.0898 (15) 0.0731 (13) 0.0400 (10) 0.0027 (11) 0.0039 (9) 0.0092 (9)

Geometric parameters (Å, º)

O1—C1 1.3599 (18) N1—C8 1.329 (2)
O1—H1 0.8200 N1—C12 1.331 (2)
O2—C7 1.2255 (19) N1—H1A 0.8600
O3—C7 1.2953 (19) C8—C9 1.369 (2)
C1—C2 1.381 (2) C8—H8 0.9300
C1—C6 1.389 (2) C9—C10 1.379 (2)
C2—C3 1.378 (2) C9—H9 0.9300
C2—H2 0.9300 C10—C11 1.379 (2)
C3—C4 1.384 (2) C10—C13 1.496 (2)
C3—H3 0.9300 C11—C12 1.370 (2)
C4—C5 1.389 (2) C11—H11 0.9300
C4—C7 1.487 (2) C12—H12 0.9300
C5—C6 1.376 (2) C13—H13A 0.9600
C5—H5 0.9300 C13—H13B 0.9600
C6—H6 0.9300 C13—H13C 0.9600
C1—O1—H1 109.5 C8—N1—H1A 120.8
O1—C1—C2 117.94 (13) C12—N1—H1A 120.8
O1—C1—C6 122.02 (14) N1—C8—C9 122.28 (16)
C2—C1—C6 120.05 (14) N1—C8—H8 118.9
C3—C2—C1 119.75 (14) C9—C8—H8 118.9
C3—C2—H2 120.1 C8—C9—C10 120.04 (15)
C1—C2—H2 120.1 C8—C9—H9 120.0
C2—C3—C4 120.93 (14) C10—C9—H9 120.0
C2—C3—H3 119.5 C11—C10—C9 117.07 (15)
C4—C3—H3 119.5 C11—C10—C13 121.95 (16)
C3—C4—C5 118.77 (13) C9—C10—C13 120.97 (16)
C3—C4—C7 121.46 (13) C12—C11—C10 120.06 (16)
C5—C4—C7 119.74 (13) C12—C11—H11 120.0
C6—C5—C4 120.85 (14) C10—C11—H11 120.0
C6—C5—H5 119.6 N1—C12—C11 122.17 (15)
C4—C5—H5 119.6 N1—C12—H12 118.9
C5—C6—C1 119.62 (14) C11—C12—H12 118.9
C5—C6—H6 120.2 C10—C13—H13A 109.5
C1—C6—H6 120.2 C10—C13—H13B 109.5
O2—C7—O3 122.48 (15) H13A—C13—H13B 109.5
O2—C7—C4 122.01 (14) C10—C13—H13C 109.5
O3—C7—C4 115.47 (13) H13A—C13—H13C 109.5
C8—N1—C12 118.37 (14) H13B—C13—H13C 109.5
O1—C1—C2—C3 178.41 (14) C5—C4—C7—O2 20.1 (2)
C6—C1—C2—C3 −1.7 (2) C3—C4—C7—O3 20.0 (2)
C1—C2—C3—C4 1.1 (2) C5—C4—C7—O3 −157.84 (15)
C2—C3—C4—C5 0.4 (2) C12—N1—C8—C9 −0.1 (2)
C2—C3—C4—C7 −177.46 (14) N1—C8—C9—C10 −0.7 (3)
C3—C4—C5—C6 −1.4 (2) C8—C9—C10—C11 1.2 (2)
C7—C4—C5—C6 176.54 (14) C8—C9—C10—C13 −178.06 (16)
C4—C5—C6—C1 0.8 (2) C9—C10—C11—C12 −0.9 (2)
O1—C1—C6—C5 −179.34 (14) C13—C10—C11—C12 178.39 (17)
C2—C1—C6—C5 0.7 (2) C8—N1—C12—C11 0.5 (2)
C3—C4—C7—O2 −162.01 (16) C10—C11—C12—N1 0.0 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1···O2i 0.82 1.85 2.6707 (19) 176
N1—H1A···O3ii 0.86 1.73 2.5889 (19) 173
C2—H2···O1iii 0.93 2.60 3.485 (2) 160

Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x+1, −y, −z+1; (iii) −x+1, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2392).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Butler, A. & Walker, J. V. (1993). Chem. Rev 93, 1937–1944.
  4. Roy, S. C., Guin, C., Rana, K. K. & Maiti, G. (2001). Tetrahedron Lett. 42, 6941–6942.
  5. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813001785/rk2392sup1.cif

e-69-0o279-sup1.cif (20.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813001785/rk2392Isup2.hkl

e-69-0o279-Isup2.hkl (123.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813001785/rk2392Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES