Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Jan 23;69(Pt 2):o280. doi: 10.1107/S1600536813001876

rac-4a,10b-cis,10b,5c-trans-5-(7-Methyl-2-oxo-2H-chromen-4-yl)-3,4,4a,5,6,10b-hexa­hydro-2H-pyrano[3,2-c]quinoline

M Kayalvizhi a, G Vasuki a,*, Shriniwas D Samant b, Kailas K Sanap b
PMCID: PMC3569807  PMID: 23424553

Abstract

In the racemic title compound, C22H21NO3, the nitro­gen-containing ring of the pyran­oquinoline moiety adopts a slightly distorted half-chair conformation and the oxygen-containing ring adopts a slightly distorted chair conformation. The benzene rings make a dihedral angle of 84.97 (8)°. In the crystal, weak C—H⋯O inter­actions link the mol­ecules into chains extending along the a-axis direction.

Related literature  

For general background and related coumarin compounds, see: Aazam et al. (2006); Chinnakali et al. (2009); Du et al. (2010); Pereira Silva et al. (2010). For ring conformational analysis, see: Cremer & Pople (1975).graphic file with name e-69-0o280-scheme1.jpg

Experimental  

Crystal data  

  • C22H21NO3

  • M r = 347.40

  • Triclinic, Inline graphic

  • a = 7.7529 (4) Å

  • b = 11.2790 (7) Å

  • c = 11.7563 (11) Å

  • α = 117.232 (3)°

  • β = 98.475 (3)°

  • γ = 101.301 (2)°

  • V = 862.60 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.20 × 0.15 × 0.15 mm

Data collection  

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker 1999) T min = 0.984, T max = 0.987

  • 18945 measured reflections

  • 5009 independent reflections

  • 3544 reflections with I > 2σ(I)

  • R int = 0.030

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.055

  • wR(F 2) = 0.177

  • S = 1.03

  • 5009 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813001876/zs2247sup1.cif

e-69-0o280-sup1.cif (21.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813001876/zs2247Isup2.hkl

e-69-0o280-Isup2.hkl (245.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12A⋯O1i 0.97 2.59 3.307 (3) 131
C20—H20⋯O2ii 0.93 2.40 3.275 (2) 157

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank the Sophisticated Analytical Instrument Facility, IIT-Madras, Chennai, for the data collection.

supplementary crystallographic information

Comment

Coumarin is the simplest member of the group of oxygen heterocyclic compounds called benzo-2-pyrones. Coumarins are an important class of compound due to their presence in natural products as well as their medicinal applications, e.g. as anti-inflammatory, anti-viral, antioxidant, antibacterial, antifungal, anti-HIV and as anti-carcinogenic agents (Pereira Silva et al., 2010). Coumarin and its derivatives also have applications as fluorescent dyes for synthetic fibres and daylight fluorescent pigments (Aazam et al., 2006) and as cosmetics, optical brightening agents and laser dyes (Pereira Silva et al., 2010). The synthesis of pyranoquinoline derivatives has been the focus of great interest, because it was reported that these possess a broad spectrum of biological properties such as psychotropic activity and anti-allergenic activity and they are also used for the treatment of proliferative diseases, such as cancer (Du et al., 2010). Compounds containing pyranoquinolone motifs also exhibit antiproliferative and antitubulin activities and it includes antibacterial and antifungal activities. Some of the pyranoquinoline derivatives have been found to block acetylcholinesterase and cell calcium signals, and cause neuroprotection against calcium overload and free radicals (Chinnakali et al., 2009).

We report herein the crystal structure of the racemic title compound, a pyranoquinoline-substituted methyl coumarin derivative, C22H21NO3 (Fig. 1). The dihedral angle between the phenyl rings of the coumarin molecule and the pyranoquinoline moiety is 84.97 (8)° . The C15 atom of the carbonyl group has a distorted trigonal geometry with O2—C15—O1 [117.36 (14)°] and O2—C15—C14 [125.26 (16)°], deviating significantly from the ideal sp2 value of 120°, which is consistent with the values observed in a related structure (Pereira Silva et al., 2010). In the crystal, weak intermolecular C20—H···O2ii hydrogen bonds together with C12—H···O1i hydrogen bonds between inversion-related molecules (Table 1), give one-dimensional chain structures which extend along the a axis (Fig. 2). Present also in the crystal packing are C5—H···π ring interactions [minimum C···Cg separation, 3.910 (3) Å] (for symmetry codes, see Table 1). The substituent ring defined by (N1, C1, C6–C9) adopts a slightly distorted half-chair conformation with Q = 0.4852 (18) Å, θ = 48.0 (2)° and φ = 259.3 (3)° while the ring defined by (O3, C7–C12) adopts a slightly distorted chair conformation with Q = 0.548 (2) Å, θ = 2.8 (2)° and φ = 300 (5)° (Cremer & Pople, 1975).

Experimental

7-Methylcoumarin-4-azadiene (0.263 g, 1 mmol) and ZnCl2 (0.136 g, 1 mmol) were stirred in dichloroethane (5 ml) for 15 minutes and dihydropyran (0.252 g, 3 mmol) was added slowly at room temperature. The solution was heated till complete consumption of the coumarin reagent. The solution was cooled to room temperature, quenched with water and the product was extracted with chloroform. The extract was dried over anhydrous Na2SO4 and the solvent evaporated to obtain a sticky mass which was purified by column chromatography on silica gel using chloroform.

Refinement

All the H atoms were positioned geometrically and treated as riding on their parent atoms, with N—H = 0.86 Å, C—H = 0.93 Å (aromatic), 0.96 Å (methyl) and 0.97 Å (methylene), and refined using a riding model with Uiso(H) = 1.2Ueq or 1.5 Ueq (parent atom).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound showing atom numbering, with displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

A view of the crystal packing of the title compound looking down the a axis, showing C—H···O interactions as dashed lines.

Crystal data

C22H21NO3 Z = 2
Mr = 347.40 F(000) = 368
Triclinic, P1 Dx = 1.338 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.7529 (4) Å Cell parameters from 6950 reflections
b = 11.2790 (7) Å θ = 2.1–30.2°
c = 11.7563 (11) Å µ = 0.09 mm1
α = 117.232 (3)° T = 296 K
β = 98.475 (3)° Block, colourless
γ = 101.301 (2)° 0.20 × 0.15 × 0.15 mm
V = 862.60 (11) Å3

Data collection

Bruker Kappa APEXII CCD diffractometer 5009 independent reflections
Radiation source: fine-focus sealed tube 3544 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.030
ω and φ scan θmax = 30.2°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker 1999) h = −10→10
Tmin = 0.984, Tmax = 0.987 k = −15→15
18945 measured reflections l = −16→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.177 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0832P)2 + 0.3474P] where P = (Fo2 + 2Fc2)/3
5009 reflections (Δ/σ)max = 0.001
235 parameters Δρmax = 0.41 e Å3
0 restraints Δρmin = −0.27 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.69639 (15) 0.63713 (13) 0.02296 (11) 0.0385 (3)
C13 0.9273 (2) 0.64223 (15) −0.13810 (14) 0.0305 (3)
C21 1.0013 (2) 0.66621 (15) −0.00600 (14) 0.0306 (3)
N1 0.95359 (19) 0.59869 (13) −0.35976 (12) 0.0343 (3)
H1 0.9425 0.5149 −0.4199 0.041*
C16 0.8806 (2) 0.66458 (16) 0.07070 (15) 0.0321 (3)
C14 0.7463 (2) 0.61512 (17) −0.18120 (16) 0.0363 (3)
H14 0.6982 0.5978 −0.2665 0.044*
C9 1.0532 (2) 0.65038 (16) −0.22402 (14) 0.0320 (3)
H9 1.1325 0.5922 −0.2253 0.038*
C1 0.8757 (2) 0.68235 (16) −0.39430 (14) 0.0315 (3)
C17 0.9383 (2) 0.69114 (17) 0.19930 (16) 0.0377 (3)
H17 0.8538 0.6898 0.2476 0.045*
C18 1.1206 (2) 0.71958 (17) 0.25613 (16) 0.0375 (3)
C19 1.2429 (2) 0.71608 (18) 0.17925 (17) 0.0394 (4)
H19 1.3659 0.7322 0.2154 0.047*
C20 1.1850 (2) 0.68931 (18) 0.05130 (16) 0.0372 (3)
H20 1.2691 0.6865 0.0020 0.045*
O3 1.16897 (19) 1.03131 (13) −0.12889 (13) 0.0526 (4)
C8 1.1758 (2) 0.80019 (17) −0.16807 (15) 0.0363 (3)
H8 1.2389 0.8366 −0.0748 0.044*
O2 0.45952 (18) 0.58805 (17) −0.13623 (15) 0.0564 (4)
C15 0.6228 (2) 0.61153 (18) −0.10156 (17) 0.0377 (3)
C7 1.0589 (2) 0.89261 (16) −0.17287 (16) 0.0384 (4)
H7 0.9858 0.9001 −0.1100 0.046*
C6 0.9262 (2) 0.82680 (16) −0.30839 (16) 0.0359 (3)
C10 1.3203 (2) 0.8037 (2) −0.24303 (18) 0.0419 (4)
H10A 1.4040 0.7555 −0.2280 0.050*
H10B 1.2614 0.7557 −0.3376 0.050*
C2 0.7472 (2) 0.62255 (19) −0.51719 (17) 0.0415 (4)
H2 0.7121 0.5264 −0.5744 0.050*
C22 1.1856 (3) 0.7542 (2) 0.39765 (18) 0.0518 (5)
H22A 1.3155 0.7709 0.4209 0.078*
H22B 1.1263 0.6775 0.4072 0.078*
H22C 1.1566 0.8365 0.4553 0.078*
C12 1.2970 (3) 1.03446 (19) −0.2043 (2) 0.0537 (5)
H12A 1.3662 1.1307 −0.1712 0.064*
H12B 1.2311 0.9952 −0.2965 0.064*
C5 0.8472 (3) 0.9065 (2) −0.3492 (2) 0.0514 (5)
H5 0.8796 1.0026 −0.2928 0.062*
C4 0.7226 (3) 0.8466 (3) −0.4707 (3) 0.0616 (6)
H4 0.6724 0.9019 −0.4964 0.074*
C3 0.6725 (3) 0.7046 (2) −0.5542 (2) 0.0542 (5)
H3 0.5874 0.6638 −0.6362 0.065*
C11 1.4262 (3) 0.9538 (2) −0.1964 (2) 0.0541 (5)
H11A 1.5002 0.9976 −0.1055 0.065*
H11B 1.5073 0.9547 −0.2517 0.065*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0341 (6) 0.0493 (7) 0.0405 (6) 0.0154 (5) 0.0186 (5) 0.0257 (5)
C13 0.0329 (7) 0.0325 (7) 0.0300 (7) 0.0116 (6) 0.0133 (6) 0.0168 (6)
C21 0.0330 (7) 0.0326 (7) 0.0307 (7) 0.0112 (6) 0.0127 (6) 0.0179 (6)
N1 0.0461 (8) 0.0300 (6) 0.0254 (6) 0.0145 (5) 0.0118 (5) 0.0110 (5)
C16 0.0333 (8) 0.0330 (7) 0.0347 (7) 0.0117 (6) 0.0140 (6) 0.0188 (6)
C14 0.0354 (8) 0.0440 (9) 0.0344 (8) 0.0131 (6) 0.0123 (6) 0.0221 (7)
C9 0.0336 (8) 0.0388 (8) 0.0285 (7) 0.0134 (6) 0.0134 (6) 0.0185 (6)
C1 0.0342 (8) 0.0345 (7) 0.0290 (7) 0.0109 (6) 0.0135 (6) 0.0166 (6)
C17 0.0450 (9) 0.0409 (8) 0.0358 (8) 0.0145 (7) 0.0202 (7) 0.0227 (7)
C18 0.0469 (9) 0.0359 (8) 0.0328 (7) 0.0104 (7) 0.0119 (6) 0.0202 (6)
C19 0.0349 (8) 0.0485 (9) 0.0399 (8) 0.0119 (7) 0.0084 (6) 0.0270 (8)
C20 0.0350 (8) 0.0480 (9) 0.0387 (8) 0.0145 (7) 0.0162 (6) 0.0270 (7)
O3 0.0595 (8) 0.0312 (6) 0.0472 (7) 0.0018 (5) 0.0232 (6) 0.0061 (5)
C8 0.0350 (8) 0.0436 (9) 0.0263 (7) 0.0046 (6) 0.0087 (6) 0.0170 (6)
O2 0.0334 (7) 0.0876 (11) 0.0619 (9) 0.0234 (7) 0.0187 (6) 0.0447 (8)
C15 0.0333 (8) 0.0444 (9) 0.0429 (8) 0.0150 (6) 0.0142 (6) 0.0253 (7)
C7 0.0426 (9) 0.0307 (7) 0.0318 (7) 0.0051 (6) 0.0161 (6) 0.0082 (6)
C6 0.0373 (8) 0.0332 (8) 0.0372 (8) 0.0117 (6) 0.0148 (6) 0.0158 (6)
C10 0.0372 (9) 0.0538 (10) 0.0450 (9) 0.0143 (7) 0.0179 (7) 0.0307 (8)
C2 0.0387 (9) 0.0463 (9) 0.0346 (8) 0.0095 (7) 0.0088 (7) 0.0179 (7)
C22 0.0595 (12) 0.0614 (12) 0.0362 (9) 0.0124 (9) 0.0112 (8) 0.0287 (9)
C12 0.0603 (12) 0.0368 (9) 0.0536 (11) 0.0000 (8) 0.0229 (9) 0.0179 (8)
C5 0.0519 (11) 0.0411 (9) 0.0682 (13) 0.0204 (8) 0.0198 (9) 0.0294 (9)
C4 0.0565 (13) 0.0700 (14) 0.0808 (15) 0.0291 (11) 0.0165 (11) 0.0524 (13)
C3 0.0425 (10) 0.0737 (14) 0.0523 (11) 0.0169 (9) 0.0072 (8) 0.0381 (11)
C11 0.0416 (10) 0.0625 (12) 0.0491 (10) −0.0022 (8) 0.0143 (8) 0.0271 (9)

Geometric parameters (Å, º)

O1—C15 1.362 (2) C8—C7 1.523 (2)
O1—C16 1.3720 (19) C8—C10 1.529 (2)
C13—C14 1.342 (2) C8—H8 0.9800
C13—C21 1.451 (2) O2—C15 1.207 (2)
C13—C9 1.5237 (19) C7—C6 1.511 (2)
C21—C16 1.3948 (19) C7—H7 0.9800
C21—C20 1.401 (2) C6—C5 1.391 (2)
N1—C1 1.386 (2) C10—C11 1.522 (3)
N1—C9 1.4463 (19) C10—H10A 0.9700
N1—H1 0.8600 C10—H10B 0.9700
C16—C17 1.382 (2) C2—C3 1.373 (3)
C14—C15 1.442 (2) C2—H2 0.9300
C14—H14 0.9300 C22—H22A 0.9600
C9—C8 1.536 (2) C22—H22B 0.9600
C9—H9 0.9800 C22—H22C 0.9600
C1—C2 1.398 (2) C12—C11 1.499 (3)
C1—C6 1.398 (2) C12—H12A 0.9700
C17—C18 1.377 (2) C12—H12B 0.9700
C17—H17 0.9300 C5—C4 1.373 (3)
C18—C19 1.397 (2) C5—H5 0.9300
C18—C22 1.502 (2) C4—C3 1.372 (3)
C19—C20 1.374 (2) C4—H4 0.9300
C19—H19 0.9300 C3—H3 0.9300
C20—H20 0.9300 C11—H11A 0.9700
O3—C12 1.431 (2) C11—H11B 0.9700
O3—C7 1.4316 (19)
C15—O1—C16 121.40 (12) O1—C15—C14 117.37 (14)
C14—C13—C21 118.25 (13) O3—C7—C6 112.52 (14)
C14—C13—C9 121.18 (13) O3—C7—C8 111.57 (14)
C21—C13—C9 120.56 (13) C6—C7—C8 111.58 (12)
C16—C21—C20 116.62 (13) O3—C7—H7 106.9
C16—C21—C13 117.98 (13) C6—C7—H7 106.9
C20—C21—C13 125.39 (13) C8—C7—H7 106.9
C1—N1—C9 120.93 (12) C5—C6—C1 118.48 (16)
C1—N1—H1 119.5 C5—C6—C7 121.39 (15)
C9—N1—H1 119.5 C1—C6—C7 120.10 (14)
O1—C16—C17 115.72 (13) C11—C10—C8 110.52 (15)
O1—C16—C21 121.83 (13) C11—C10—H10A 109.5
C17—C16—C21 122.45 (15) C8—C10—H10A 109.5
C13—C14—C15 123.12 (14) C11—C10—H10B 109.5
C13—C14—H14 118.4 C8—C10—H10B 109.5
C15—C14—H14 118.4 H10A—C10—H10B 108.1
N1—C9—C13 112.47 (12) C3—C2—C1 120.53 (17)
N1—C9—C8 108.27 (12) C3—C2—H2 119.7
C13—C9—C8 112.04 (12) C1—C2—H2 119.7
N1—C9—H9 108.0 C18—C22—H22A 109.5
C13—C9—H9 108.0 C18—C22—H22B 109.5
C8—C9—H9 108.0 H22A—C22—H22B 109.5
N1—C1—C2 119.91 (14) C18—C22—H22C 109.5
N1—C1—C6 120.76 (14) H22A—C22—H22C 109.5
C2—C1—C6 119.33 (15) H22B—C22—H22C 109.5
C18—C17—C16 120.12 (14) O3—C12—C11 111.81 (16)
C18—C17—H17 119.9 O3—C12—H12A 109.3
C16—C17—H17 119.9 C11—C12—H12A 109.3
C17—C18—C19 118.40 (14) O3—C12—H12B 109.3
C17—C18—C22 120.50 (15) C11—C12—H12B 109.3
C19—C18—C22 121.10 (16) H12A—C12—H12B 107.9
C20—C19—C18 121.31 (15) C4—C5—C6 121.58 (18)
C20—C19—H19 119.3 C4—C5—H5 119.2
C18—C19—H19 119.3 C6—C5—H5 119.2
C19—C20—C21 120.98 (14) C3—C4—C5 119.68 (18)
C19—C20—H20 119.5 C3—C4—H4 120.2
C21—C20—H20 119.5 C5—C4—H4 120.2
C12—O3—C7 112.87 (13) C4—C3—C2 120.39 (18)
C7—C8—C10 110.95 (13) C4—C3—H3 119.8
C7—C8—C9 109.85 (13) C2—C3—H3 119.8
C10—C8—C9 111.42 (13) C12—C11—C10 110.22 (15)
C7—C8—H8 108.2 C12—C11—H11A 109.6
C10—C8—H8 108.2 C10—C11—H11A 109.6
C9—C8—H8 108.2 C12—C11—H11B 109.6
O2—C15—O1 117.36 (14) C10—C11—H11B 109.6
O2—C15—C14 125.26 (16) H11A—C11—H11B 108.1
C14—C13—C21—C16 −2.2 (2) C13—C9—C8—C10 171.57 (13)
C9—C13—C21—C16 176.72 (13) C16—O1—C15—O2 179.89 (15)
C14—C13—C21—C20 176.89 (15) C16—O1—C15—C14 −0.3 (2)
C9—C13—C21—C20 −4.2 (2) C13—C14—C15—O2 179.75 (18)
C15—O1—C16—C17 178.94 (14) C13—C14—C15—O1 0.0 (2)
C15—O1—C16—C21 −0.7 (2) C12—O3—C7—C6 −68.9 (2)
C20—C21—C16—O1 −177.22 (14) C12—O3—C7—C8 57.39 (19)
C13—C21—C16—O1 2.0 (2) C10—C8—C7—O3 −52.89 (17)
C20—C21—C16—C17 3.2 (2) C9—C8—C7—O3 −176.54 (12)
C13—C21—C16—C17 −177.65 (14) C10—C8—C7—C6 73.92 (16)
C21—C13—C14—C15 1.3 (2) C9—C8—C7—C6 −49.72 (16)
C9—C13—C14—C15 −177.63 (14) N1—C1—C6—C5 178.45 (15)
C1—N1—C9—C13 81.22 (17) C2—C1—C6—C5 −0.5 (2)
C1—N1—C9—C8 −43.13 (18) N1—C1—C6—C7 −3.5 (2)
C14—C13—C9—N1 −11.8 (2) C2—C1—C6—C7 177.48 (14)
C21—C13—C9—N1 169.30 (13) O3—C7—C6—C5 −33.6 (2)
C14—C13—C9—C8 110.44 (17) C8—C7—C6—C5 −159.93 (15)
C21—C13—C9—C8 −68.46 (18) O3—C7—C6—C1 148.42 (14)
C9—N1—C1—C2 −165.72 (14) C8—C7—C6—C1 22.1 (2)
C9—N1—C1—C6 15.3 (2) C7—C8—C10—C11 51.00 (19)
O1—C16—C17—C18 179.88 (14) C9—C8—C10—C11 173.74 (14)
C21—C16—C17—C18 −0.5 (2) N1—C1—C2—C3 −178.30 (15)
C16—C17—C18—C19 −2.1 (2) C6—C1—C2—C3 0.7 (2)
C16—C17—C18—C22 177.53 (16) C7—O3—C12—C11 −59.8 (2)
C17—C18—C19—C20 2.0 (3) C1—C6—C5—C4 −0.1 (3)
C22—C18—C19—C20 −177.66 (16) C7—C6—C5—C4 −178.11 (18)
C18—C19—C20—C21 0.8 (3) C6—C5—C4—C3 0.7 (3)
C16—C21—C20—C19 −3.3 (2) C5—C4—C3—C2 −0.5 (3)
C13—C21—C20—C19 177.62 (15) C1—C2—C3—C4 −0.2 (3)
N1—C9—C8—C7 59.54 (15) O3—C12—C11—C10 56.8 (2)
C13—C9—C8—C7 −65.06 (16) C8—C10—C11—C12 −52.7 (2)
N1—C9—C8—C10 −63.82 (17)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C10—H10B···N1 0.97 2.58 2.947 (2) 103
C12—H12A···O1i 0.97 2.59 3.307 (3) 131
C14—H14···N1 0.93 2.40 2.789 (2) 105
C20—H20···O2ii 0.93 2.40 3.275 (2) 157
C5—H5···Cg5iii 0.93 2.98 3.910 (3) 173

Symmetry codes: (i) −x+2, −y+2, −z; (ii) x+1, y, z; (iii) −x+2, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2247).

References

  1. Aazam, E. S., Fawazy, A. & Hitchcock, P. B. (2006). Acta Cryst. E62, o4285–o4287.
  2. Bruker (1999). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2004). APEX2 SAINT and XPREP Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Chinnakali, K., Sudha, D., Jayagobi, M., Raghunathan, R. & Fun, H.-K. (2009). Acta Cryst. E65, o2099–o2100. [DOI] [PMC free article] [PubMed]
  5. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  6. Du, B.-X., Zhou, J., Li, Y.-L. & Wang, X.-S. (2010). Acta Cryst. E66, o1622. [DOI] [PMC free article] [PubMed]
  7. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  8. Pereira Silva, P. S., Parveen, M., Khanam, Z., Ali, A. & Ramos Silva, M. (2010). Acta Cryst. E66, o988. [DOI] [PMC free article] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813001876/zs2247sup1.cif

e-69-0o280-sup1.cif (21.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813001876/zs2247Isup2.hkl

e-69-0o280-Isup2.hkl (245.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES