Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Jan 23;69(Pt 2):o282–o283. doi: 10.1107/S1600536813001839

rac-[2-(Dicyclohexylphosphanyl)phenyl](phenyl)phosphinic diisopropyl­amide–borane hemihydrate

Stephen J Evans a, C Alicia Renison a, D Bradley G Williams a,*,, Alfred Muller a
PMCID: PMC3569809  PMID: 23424555

Abstract

In the title compound, C30H48BNOP2·0.5H2O, the water molecule is disordered about an inversion centre. Both phospho­rus atoms shows distortions in their tetra­hedral environments with the cyclo­hexyl substituents disordered over two orientations in a 0.851 (3):0.149 (3) occupancy ratio. The crystal structure is assembled via O—H⋯O inter­actions between pairs of phosphininc amide mol­ecules and water molecules, creating hydrogen-bonded dimers with graph-set R 2 4(8) along [001]. Weak C—H⋯O inter­actions are also observed.

Related literature  

For background to the synthesis of ligands derived from phosphinic amides, see: Williams et al. (2009). For background to DoM technology, see: Snieckus (1990). For details of cone angles, see: Tolman (1977); Otto (2001). For graph-set notation, see: Bernstein et al. (1995).graphic file with name e-69-0o282-scheme1.jpg

Experimental  

Crystal data  

  • C30H48BNOP2·0.5H2O

  • M r = 1040.9

  • Triclinic, Inline graphic

  • a = 11.2480 (3) Å

  • b = 11.5240 (3) Å

  • c = 14.1640 (4) Å

  • α = 90.543 (2)°

  • β = 108.178 (1)°

  • γ = 118.826 (1)°

  • V = 1499.73 (7) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.17 mm−1

  • T = 100 K

  • 0.25 × 0.17 × 0.12 mm

Data collection  

  • Bruker X8 APEXII 4K KappaCCD diffractometer

  • 34539 measured reflections

  • 7448 independent reflections

  • 5330 reflections with I > 2σ(I)

  • R int = 0.053

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.050

  • wR(F 2) = 0.134

  • S = 1.04

  • 7448 reflections

  • 447 parameters

  • 314 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus and XPREP (Bruker, 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: publCIF (Westrip, 2010) and WinGX (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813001839/zq2191sup1.cif

e-69-0o282-sup1.cif (49.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813001839/zq2191Isup2.hkl

e-69-0o282-Isup2.hkl (357.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H7B⋯O1i 0.88 (7) 1.85 (7) 2.722 (4) 167 (6)
O2—H7A⋯O1 0.85 (5) 1.95 (5) 2.768 (4) 163 (5)
C51A—H51A⋯O1 1.00 2.28 3.083 (3) 136
C61A—H61A⋯O1 1.00 2.31 3.057 (5) 130

Symmetry code: (i) Inline graphic.

Acknowledgments

The University of the Free State is thanked for the use of their diffractometer. Financial assistance from Sasol, THRIP and the Research Fund of the University of Johannesburg is gratefully acknowledged.

supplementary crystallographic information

Comment

An expedient rapid synthesis of ligands derived from phosphinic amides that were found to be suitable for the Suzuki-Miyaura reactions at low palladium catalyst loadings was developed (Williams et al., 2009). The brief practical synthesis affords arylphosphine ligands resistant to oxidation and hydrolysis while maintaining high catalyst activity. The synthesis rests strongly on DoM technology (Snieckus, 1990) making use of a directing group that is highly underrepresented in this type of chemistry. We envisioned that the use of phosphinic amides as directing groups, together with phosphinous chloride (Cy2PCl) electrophiles would allow the synthesis of sterically hindered phosphines that are stable to hydrolysis and oxidation. The ortho-deprotonation of phosphinic amides with sec-butyl-lithium and quenching with dicyclohexylphosphinous chloride (Cy2PCl) allowed isolation of the desired ligand in good yields (45–60% yield), which are stable to air, liquid-liquid extraction, and chromatography without special exclusion of oxygen.

The title compound (Fig. 1) crystallizes in the triclinic space group P1 (Z = 2) with the asymmetric unit containing half a molecule of water as it is disordered over an inversion centre. Both the phosphorus centres show varying degrees of distortion in their tetrahedral environments, in particular towards the more bulky substituents, i.e. towards the amide for P1 [O1—P1—N4 = 117.44 (10)°] and (to lesser extend) towards one of the cyclohexyls for P2 [B1—P2—C61 = 112.59 (12)°].

The most common method used for determining the steric behaviour of a phosphane ligand is the Tolman cone angle (Tolman, 1977). We used the geometry from the title compound and adjusted the P═O and P—B distances to 2.28 Å (the average Ni—P distance used in the original Tolman model) to cancel the bias this may have on the calculated cone angle value. In this way we obtain effective cone angle (Otto, 2001) values of 231 and 181° for P1 and P2 respectively.

The structure is stabilized by strong intermolecular O—H···O hydrogen bonds formed between the phosphinic oxygen atom and the oxygen atom of the water molecule, creating head-to-head dimeric structures with the phosphinic amide molecules (Fig. 2) The graph set notation for this interaction is R24(8) (Bernstein et al., 1995) Additional weak C—H···O interactions are also observed and summarized in Table 1.

Experimental

Cyclohexylchloride (1 mL, 8.42 mmol) was added to a solution of diethyl ether (10 ml) and magnesium turnings (1.0 eq., 204 mg, 8.42 mmol) along with one crystal of iodine as an initiator and the mixture was heated under reflux until all the magnesium had been consumed. In a separate flask, PCl3 (3.24 mmol, 0.38 eq., 283 µL) was dissolved in diethyl ether (40 mL) and the solution cooled to -40 °C. The cyclohexylmagnesium chloride solution was added dropwise over 10 minutes and the solution was allowed to warm to room temperature over three hours. Once the reaction was complete the salts that formed were filtered through a pad of Celite. The resultant product was approximately 70% pure (as determined by 31P NMR spectroscopy) and was used without further manipulation, the reaction producing (2.27 mmol) of chloro-dicyclohexylphosphine.

N,N-Diisopropyldiphenylphosphinic amide (569 mg, 1.89 mmol) was weighed out in a Schlenk flask and THF (10 mL) was added. The solution was then cooled to -60 °C and sec-BuLi (1.1 eq., 1M) was added. The solution was allowed to stir for three hours between -40 and -70 °C after which it was cooled to -78 °C and the electrophile (1.2 eq.) dissolved in a small amount of THF was added. The reaction mixture was allowed to warm to room temperature over four hours and was stirred at room temperature overnight. All solvents were then removed in vacuo and the residue was extracted with EtOAc and H2O. The product was purified by column chromatography on flash silica.

Protection of the phosphine occurred by first dissolving the phosphine in THF (10 mL) cooling the mixture to 0 °C and adding an excess of BH3 in THF and the reaction stirred at room temperature for 5 h. All solvents were then removed in vacuo and the resulted residue was the desired product in 100% yield. Crystals were grown by dissolving the ligand in a minimal amount of DCM and then layering an excess of hexane on the DCM and allowing to stand in a refrigerator until the crystals were formed.

Yield: 51% (White solid).

1H NMR: (300 MHz, CDCl3) δH 7.94 — 7.87 (m, 1H, H3), 7.69 — 7.61 (m, 1H, H6), 7.60 (dd, 2H, H2` and H6`, J = 11.7 and 7.5 Hz), 7.50 — 7.33 (m, 5H, aromatic), 3.49 and 3.43 (2×sept, 2H, NCH(CH3)2, J = 6.6 Hz), 2.03 — 1.22 (m, 22H, aliphatic), 1.37 and 1.15 (2×d, 12H, NCH(CH3)2, J = 6.6 Hz). 13C NMR: (75 MHz, CDCl3) δC 140.0 (dd, 1 C, C2, J = 31.3 and 14.0 Hz), 140.8 (dd, 1 C, C1, J = 124.9 and 28.8 Hz), 137.2 (dd, 1 C, C1`, J = 121.8 and 1.1 Hz), 133.6 (d, 1 C, C3, J = 12.4 Hz), 132.6 (dd. 1 C, C6, J = 11.5 and 8.1 Hz), 131.5 (d, 2 C, C3` and C5`, J = 9.8 Hz), 130.0 (d, 1 C, C4, J = 2.6 Hz), 129.6 (d. 1 C, C4`, J = 2.6 Hz), 127.3 (d, 2 C, C2` and C6`, J = 12.7 Hz), 126.9 (d. 1 C, C5, J = 12.1 Hz), 46.8 (d, 2 C, NCH2(CH3)2, J = 4.6 Hz), 35.5 (dd, 1 C, C1``, J = 109.1 and 18.4 Hz), 30.3–23.3 (m, 1 C, aliphatic), 23.0 (d, 4 C, NCH(CH3)2, J = 2.0 Hz). 31P NMR: (121 MHz, CDCl3) δP 33.5 (d, 1P, P(O)N, J = 10.5 Hz), 5.0 (Br s, 1P, BH3—PCy2). IR: (CHCl3/cm-1) 3015, 2402, 1524, 722 CIMS: m/z 497 [(M—BH2), 10%], 414 [(M—C6H11—BH3), 100%].

Refinement

The aromatic, methine, methylene, methyl and BH3 hydrogen atoms were placed in geometrically idealized positions (C—H = 0.95–1.0 Å, B—H = 0.98 Å) O—H = 0.87 Å) and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C) for the aromatic, methine and methylene H and Uiso(H) = 1.5Ueq(C) for the methyl and B—H respectively. Locations of the methyl hydrogen atoms were initially obtained from a Fourier difference map and refined as a fixed rotor. Refinement of the oxygen atom of the water molecule showed large thermal vibration, and in subsequent refinement cycles the occupancy thereof was freed. This refined to nearly 50% and in the final refinement cycles the occupancy value was constrained to half. The hydrogen atoms of the water molecule were located from a Fourier difference map. Both of the cyclohexcyl substituents showed somewhat large thermal ellipsoids and were subsequently refined as disordered over two positions. Their geometries and ellipsoid sizes were kept reasonable by restraining with the appropriate refinement commands (SAME, SADI and SIMU). The occupancies were refined with a free variable that added to unity and a final ratio of 85:15 was obtained between the two components. Discrepant reflection 001 was removed in the final stages of refinement.

Figures

Fig. 1.

Fig. 1.

A view of the title complex, showing the atom-numbering scheme and 50% probability displacement ellipsoids. Hydrogen atoms (except for the water solvate) as well as the minor part of the disorder omitted for clarity.

Fig. 2.

Fig. 2.

Packing diagram showing the O—H···O hydrogen bonding interactions (indicated by green dashed lines).

Crystal data

C30H48BNOP2·0.5H2O Z = 1
Mr = 1040.9 F(000) = 566
Triclinic, P1 Dx = 1.153 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71069 Å
a = 11.2480 (3) Å Cell parameters from 5800 reflections
b = 11.5240 (3) Å θ = 2.2–25.8°
c = 14.1640 (4) Å µ = 0.17 mm1
α = 90.543 (2)° T = 100 K
β = 108.178 (1)° Prism, colourless
γ = 118.826 (1)° 0.25 × 0.17 × 0.12 mm
V = 1499.73 (7) Å3

Data collection

Bruker X8 APEXII 4K KappaCCD diffractometer 5330 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.053
Detector resolution: 8.4 pixels mm-1 θmax = 28.3°, θmin = 2.1°
φ and ω scans h = −14→15
34539 measured reflections k = −15→15
7448 independent reflections l = −18→18

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.058P)2 + 0.5817P] where P = (Fo2 + 2Fc2)/3
7448 reflections (Δ/σ)max = 0.001
447 parameters Δρmax = 0.55 e Å3
314 restraints Δρmin = −0.27 e Å3

Special details

Experimental. The intensity data was collected on a Bruker X8 APEXII 4 K KappaCCD diffractometer using an exposure time of 20 s/frame. A total of 2529 frames were collected with a frame width of 0.5° covering up to θ = 28.33° with 99.6% completeness accomplished.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
P1 0.73833 (5) 0.64726 (5) 0.78185 (4) 0.02098 (13)
P2 0.60597 (5) 0.28217 (5) 0.75649 (4) 0.02207 (13)
O1 0.63962 (15) 0.56005 (13) 0.68112 (10) 0.0288 (3)
N4 0.70251 (17) 0.75742 (16) 0.82270 (12) 0.0257 (4)
C3 0.5686 (2) 0.6994 (2) 0.84861 (16) 0.0308 (5)
H3 0.5525 0.6122 0.8701 0.037*
C4 0.7405 (2) 0.8879 (2) 0.78540 (16) 0.0304 (5)
H4 0.6723 0.9148 0.7952 0.036*
C11 0.7507 (2) 0.55277 (19) 0.88326 (14) 0.0241 (4)
C12 0.71675 (19) 0.41644 (18) 0.87099 (14) 0.0230 (4)
C13 0.7584 (2) 0.3688 (2) 0.95869 (15) 0.0288 (4)
H13 0.739 0.2786 0.9519 0.035*
C14 0.8263 (2) 0.4469 (2) 1.05460 (16) 0.0351 (5)
H14 0.8554 0.4114 1.1119 0.042*
C15 0.8515 (2) 0.5762 (2) 1.06664 (16) 0.0345 (5)
H15 0.8937 0.6294 1.1324 0.041*
C16 0.8147 (2) 0.6280 (2) 0.98160 (15) 0.0298 (4)
H16 0.8335 0.7179 0.9904 0.036*
C21 0.9236 (2) 0.7385 (2) 0.78428 (16) 0.0291 (4)
C22 1.0458 (2) 0.8007 (2) 0.87218 (18) 0.0355 (5)
H22 1.0346 0.8015 0.9359 0.043*
C23 1.1844 (2) 0.8617 (2) 0.8683 (2) 0.0426 (6)
H23 1.2675 0.9058 0.929 0.051*
C24 1.2010 (3) 0.8581 (2) 0.7754 (2) 0.0495 (7)
H24 1.2954 0.8977 0.7722 0.059*
C25 1.0792 (3) 0.7966 (2) 0.6878 (2) 0.0463 (6)
H25 1.0907 0.7961 0.6241 0.056*
C26 0.9422 (3) 0.7363 (2) 0.69121 (19) 0.0385 (5)
H26 0.8596 0.6928 0.6303 0.046*
C31 0.4312 (2) 0.6669 (2) 0.75826 (17) 0.0359 (5)
H31A 0.4402 0.7509 0.7379 0.054*
H31B 0.3458 0.6204 0.7779 0.054*
H31C 0.4201 0.6086 0.7014 0.054*
C32 0.5886 (3) 0.7900 (2) 0.93776 (17) 0.0403 (5)
H32A 0.6768 0.8101 0.9944 0.06*
H32B 0.5041 0.744 0.9585 0.06*
H32C 0.5977 0.8743 0.9179 0.06*
C41 0.7158 (3) 0.8768 (2) 0.67253 (17) 0.0390 (5)
H41A 0.7899 0.8638 0.6601 0.059*
H41B 0.7227 0.9598 0.6512 0.059*
H41C 0.619 0.7998 0.6339 0.059*
C42 0.8933 (2) 1.0017 (2) 0.84945 (19) 0.0377 (5)
H42A 0.9068 1.0037 0.9214 0.057*
H42B 0.9058 1.0881 0.8323 0.057*
H42C 0.9653 0.9865 0.8358 0.057*
C51A 0.4322 (2) 0.2804 (3) 0.7140 (2) 0.0250 (6) 0.851 (3)
H51A 0.4547 0.3739 0.7053 0.03* 0.851 (3)
C52A 0.3642 (3) 0.2451 (3) 0.7958 (2) 0.0300 (6) 0.851 (3)
H52A 0.3482 0.1558 0.8102 0.036* 0.851 (3)
H52B 0.4322 0.3129 0.859 0.036* 0.851 (3)
C53A 0.2193 (3) 0.2417 (3) 0.7622 (3) 0.0391 (6) 0.851 (3)
H53A 0.1755 0.2139 0.8147 0.047* 0.851 (3)
H53B 0.2367 0.3332 0.7545 0.047* 0.851 (3)
C54A 0.1149 (3) 0.1443 (3) 0.6627 (3) 0.0452 (8) 0.851 (3)
H54A 0.0227 0.145 0.6418 0.054* 0.851 (3)
H54B 0.0928 0.0517 0.6712 0.054* 0.851 (3)
C55A 0.1812 (3) 0.1839 (3) 0.5812 (2) 0.0443 (7) 0.851 (3)
H55A 0.1982 0.2745 0.5701 0.053* 0.851 (3)
H55B 0.1122 0.1189 0.5168 0.053* 0.851 (3)
C56A 0.3250 (3) 0.1857 (3) 0.6117 (2) 0.0343 (6) 0.851 (3)
H56A 0.3683 0.216 0.5592 0.041* 0.851 (3)
H56B 0.3066 0.0932 0.6164 0.041* 0.851 (3)
C51B 0.4299 (11) 0.2635 (18) 0.6799 (11) 0.033 (2) 0.149 (3)
H51B 0.4438 0.3364 0.6393 0.039* 0.149 (3)
C52B 0.3637 (15) 0.2733 (17) 0.7555 (13) 0.0363 (19) 0.149 (3)
H52C 0.4275 0.3627 0.8011 0.044* 0.149 (3)
H52D 0.3552 0.2032 0.7972 0.044* 0.149 (3)
C53B 0.2107 (14) 0.2536 (16) 0.6988 (14) 0.042 (2) 0.149 (3)
H53C 0.1644 0.2496 0.7487 0.05* 0.149 (3)
H53D 0.2227 0.3333 0.6677 0.05* 0.149 (3)
C54B 0.1124 (17) 0.131 (2) 0.6188 (14) 0.041 (2) 0.149 (3)
H54C 0.027 0.1357 0.5767 0.049* 0.149 (3)
H54D 0.077 0.0509 0.651 0.049* 0.149 (3)
C55B 0.1864 (14) 0.1125 (18) 0.5510 (11) 0.042 (2) 0.149 (3)
H55C 0.1206 0.0229 0.5057 0.051* 0.149 (3)
H55D 0.2032 0.1819 0.5081 0.051* 0.149 (3)
C56B 0.3309 (14) 0.1234 (16) 0.6109 (12) 0.035 (2) 0.149 (3)
H56C 0.3762 0.1125 0.5643 0.042* 0.149 (3)
H56D 0.3156 0.0521 0.6521 0.042* 0.149 (3)
C61A 0.6890 (3) 0.3241 (4) 0.65939 (19) 0.0264 (6) 0.851 (3)
H61A 0.664 0.3876 0.6226 0.032* 0.851 (3)
C62A 0.6305 (3) 0.1964 (3) 0.5823 (2) 0.0338 (6) 0.851 (3)
H62A 0.6542 0.1321 0.6174 0.041* 0.851 (3)
H62B 0.5234 0.1517 0.5498 0.041* 0.851 (3)
C63A 0.6999 (3) 0.2363 (3) 0.5022 (2) 0.0452 (7) 0.851 (3)
H63A 0.663 0.1545 0.4528 0.054* 0.851 (3)
H63B 0.6719 0.297 0.4653 0.054* 0.851 (3)
C64A 0.8652 (4) 0.3072 (4) 0.5497 (3) 0.0506 (8) 0.851 (3)
H64A 0.8939 0.2437 0.5809 0.061* 0.851 (3)
H64B 0.9075 0.3363 0.4966 0.061* 0.851 (3)
C65A 0.9237 (4) 0.4289 (3) 0.6295 (3) 0.0503 (8) 0.851 (3)
H65A 0.9062 0.4973 0.5963 0.06* 0.851 (3)
H65B 1.0301 0.4692 0.6632 0.06* 0.851 (3)
C66A 0.8532 (3) 0.3931 (3) 0.7089 (2) 0.0357 (7) 0.851 (3)
H66A 0.8793 0.3325 0.7476 0.043* 0.851 (3)
H66B 0.8902 0.4763 0.757 0.043* 0.851 (3)
C61B 0.7166 (16) 0.335 (3) 0.6756 (11) 0.030 (2) 0.149 (3)
H61B 0.7345 0.4276 0.6682 0.037* 0.149 (3)
C62B 0.6575 (16) 0.2600 (18) 0.5653 (11) 0.0366 (19) 0.149 (3)
H62C 0.632 0.1651 0.5667 0.044* 0.149 (3)
H62D 0.5666 0.2591 0.5275 0.044* 0.149 (3)
C63B 0.7597 (17) 0.318 (2) 0.5077 (11) 0.044 (2) 0.149 (3)
H63C 0.7678 0.4049 0.4923 0.053* 0.149 (3)
H63D 0.717 0.2559 0.4424 0.053* 0.149 (3)
C64B 0.9113 (18) 0.343 (2) 0.5639 (14) 0.045 (2) 0.149 (3)
H64C 0.9067 0.2551 0.5667 0.054* 0.149 (3)
H64D 0.9754 0.3933 0.5264 0.054* 0.149 (3)
C65B 0.9745 (17) 0.4207 (18) 0.6688 (13) 0.041 (2) 0.149 (3)
H65C 0.9963 0.5145 0.6662 0.049* 0.149 (3)
H65D 1.0669 0.424 0.7061 0.049* 0.149 (3)
C66B 0.8695 (18) 0.3561 (19) 0.7245 (13) 0.033 (2) 0.149 (3)
H66C 0.9147 0.4127 0.7928 0.039* 0.149 (3)
H66D 0.8592 0.2671 0.7338 0.039* 0.149 (3)
B1 0.5842 (3) 0.1134 (2) 0.79117 (19) 0.0307 (5)
H1A 0.5426 0.0925 0.8444 0.046*
H1B 0.6796 0.1205 0.8156 0.046*
H1C 0.5193 0.0412 0.7312 0.046*
O2 0.6069 (4) 0.5108 (4) 0.4803 (3) 0.0472 (9) 0.5
H7A 0.607 (5) 0.535 (5) 0.537 (4) 0.036 (14)* 0.5
H7B 0.520 (7) 0.477 (6) 0.432 (5) 0.068 (19)* 0.5

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
P1 0.0277 (2) 0.0175 (2) 0.0217 (3) 0.01398 (19) 0.00962 (19) 0.00457 (18)
P2 0.0256 (2) 0.0174 (2) 0.0231 (3) 0.01272 (19) 0.00571 (19) 0.00282 (18)
O1 0.0438 (8) 0.0212 (7) 0.0208 (7) 0.0187 (6) 0.0076 (6) 0.0038 (5)
N4 0.0326 (8) 0.0230 (8) 0.0288 (9) 0.0182 (7) 0.0130 (7) 0.0063 (7)
C3 0.0360 (10) 0.0287 (11) 0.0372 (12) 0.0202 (9) 0.0184 (9) 0.0117 (9)
C4 0.0336 (10) 0.0234 (10) 0.0405 (12) 0.0183 (8) 0.0148 (9) 0.0090 (9)
C11 0.0305 (9) 0.0214 (9) 0.0215 (10) 0.0151 (8) 0.0077 (7) 0.0041 (7)
C12 0.0275 (9) 0.0210 (9) 0.0229 (10) 0.0143 (7) 0.0086 (7) 0.0037 (7)
C13 0.0414 (11) 0.0223 (10) 0.0265 (11) 0.0199 (9) 0.0105 (9) 0.0064 (8)
C14 0.0529 (13) 0.0313 (11) 0.0234 (11) 0.0263 (10) 0.0083 (9) 0.0083 (9)
C15 0.0473 (12) 0.0341 (12) 0.0222 (11) 0.0242 (10) 0.0070 (9) 0.0029 (9)
C16 0.0396 (11) 0.0228 (10) 0.0270 (11) 0.0177 (9) 0.0090 (9) 0.0035 (8)
C21 0.0393 (11) 0.0240 (10) 0.0347 (11) 0.0209 (9) 0.0184 (9) 0.0110 (8)
C22 0.0380 (11) 0.0279 (11) 0.0481 (14) 0.0210 (9) 0.0176 (10) 0.0107 (10)
C23 0.0365 (11) 0.0267 (11) 0.0637 (17) 0.0161 (9) 0.0168 (11) 0.0135 (11)
C24 0.0471 (14) 0.0302 (12) 0.088 (2) 0.0218 (11) 0.0412 (14) 0.0166 (13)
C25 0.0608 (15) 0.0315 (12) 0.0611 (17) 0.0233 (11) 0.0400 (14) 0.0107 (12)
C26 0.0511 (13) 0.0276 (11) 0.0461 (14) 0.0215 (10) 0.0267 (11) 0.0099 (10)
C31 0.0355 (11) 0.0321 (11) 0.0387 (13) 0.0170 (9) 0.0120 (9) 0.0087 (9)
C32 0.0497 (13) 0.0486 (14) 0.0362 (13) 0.0320 (11) 0.0203 (10) 0.0098 (11)
C41 0.0516 (13) 0.0363 (12) 0.0416 (13) 0.0298 (11) 0.0193 (11) 0.0201 (10)
C42 0.0372 (11) 0.0193 (10) 0.0559 (15) 0.0154 (9) 0.0141 (10) 0.0043 (10)
C51A 0.0274 (10) 0.0239 (11) 0.0286 (13) 0.0158 (8) 0.0113 (9) 0.0094 (11)
C52A 0.0350 (11) 0.0291 (12) 0.0366 (14) 0.0199 (9) 0.0201 (10) 0.0118 (10)
C53A 0.0389 (12) 0.0375 (13) 0.0571 (17) 0.0247 (10) 0.0282 (12) 0.0198 (12)
C54A 0.0298 (11) 0.0462 (15) 0.0613 (18) 0.0201 (10) 0.0173 (13) 0.0224 (15)
C55A 0.0287 (11) 0.0478 (15) 0.0492 (16) 0.0189 (11) 0.0061 (11) 0.0128 (13)
C56A 0.0274 (10) 0.0370 (14) 0.0338 (12) 0.0153 (10) 0.0073 (9) 0.0064 (11)
C51B 0.029 (3) 0.031 (3) 0.035 (3) 0.015 (2) 0.009 (3) 0.010 (3)
C52B 0.035 (2) 0.032 (2) 0.044 (3) 0.018 (2) 0.015 (2) 0.010 (2)
C53B 0.032 (2) 0.042 (3) 0.057 (3) 0.025 (2) 0.016 (3) 0.012 (3)
C54B 0.029 (3) 0.044 (3) 0.052 (3) 0.021 (2) 0.013 (3) 0.012 (3)
C55B 0.030 (3) 0.043 (3) 0.045 (3) 0.015 (3) 0.008 (3) 0.010 (3)
C56B 0.027 (3) 0.035 (3) 0.038 (3) 0.015 (3) 0.007 (3) 0.008 (3)
C61A 0.0375 (13) 0.0288 (12) 0.0232 (12) 0.0243 (12) 0.0111 (10) 0.0051 (11)
C62A 0.0447 (13) 0.0281 (13) 0.0335 (13) 0.0209 (11) 0.0162 (10) 0.0003 (11)
C63A 0.0618 (16) 0.0385 (15) 0.0406 (14) 0.0247 (13) 0.0268 (12) −0.0010 (12)
C64A 0.0579 (18) 0.0484 (18) 0.0600 (17) 0.0282 (14) 0.0376 (15) 0.0018 (14)
C65A 0.0438 (15) 0.0472 (15) 0.0622 (19) 0.0167 (12) 0.0332 (13) −0.0007 (14)
C66A 0.0325 (12) 0.0349 (15) 0.0424 (15) 0.0172 (10) 0.0170 (11) 0.0013 (12)
C61B 0.040 (3) 0.030 (3) 0.032 (3) 0.025 (3) 0.014 (3) 0.004 (3)
C62B 0.046 (2) 0.034 (2) 0.035 (2) 0.024 (2) 0.016 (2) 0.004 (2)
C63B 0.052 (3) 0.042 (3) 0.044 (3) 0.022 (3) 0.027 (3) 0.003 (3)
C64B 0.046 (3) 0.042 (3) 0.053 (3) 0.021 (3) 0.027 (3) 0.005 (3)
C65B 0.039 (3) 0.038 (3) 0.046 (3) 0.017 (3) 0.022 (3) 0.005 (3)
C66B 0.035 (3) 0.031 (3) 0.037 (3) 0.019 (3) 0.016 (3) 0.005 (3)
B1 0.0381 (12) 0.0195 (11) 0.0349 (13) 0.0176 (9) 0.0089 (10) 0.0056 (9)
O2 0.053 (2) 0.063 (2) 0.0239 (18) 0.0325 (19) 0.0070 (16) 0.0043 (16)

Geometric parameters (Å, º)

P1—O1 1.4788 (14) C54A—H54B 0.99
P1—N4 1.6534 (16) C55A—C56A 1.529 (4)
P1—C21 1.814 (2) C55A—H55A 0.99
P1—C11 1.822 (2) C55A—H55B 0.99
P2—C61A 1.837 (2) C56A—H56A 0.99
P2—C51B 1.841 (5) C56A—H56B 0.99
P2—C61B 1.845 (5) C51B—C52B 1.512 (16)
P2—C51A 1.846 (2) C51B—C56B 1.536 (16)
P2—C12 1.8465 (19) C51B—H51B 1
P2—B1 1.929 (2) C52B—C53B 1.554 (15)
N4—C3 1.493 (3) C52B—H52C 0.99
N4—C4 1.503 (3) C52B—H52D 0.99
C3—C32 1.519 (3) C53B—C54B 1.479 (16)
C3—C31 1.538 (3) C53B—H53C 0.99
C3—H3 1 C53B—H53D 0.99
C4—C42 1.526 (3) C54B—C55B 1.524 (16)
C4—C41 1.528 (3) C54B—H54C 0.99
C4—H4 1 C54B—H54D 0.99
C11—C16 1.400 (3) C55B—C56B 1.523 (15)
C11—C12 1.421 (3) C55B—H55C 0.99
C12—C13 1.401 (3) C55B—H55D 0.99
C13—C14 1.380 (3) C56B—H56C 0.99
C13—H13 0.95 C56B—H56D 0.99
C14—C15 1.374 (3) C61A—C66A 1.516 (4)
C14—H14 0.95 C61A—C62A 1.542 (4)
C15—C16 1.386 (3) C61A—H61A 1
C15—H15 0.95 C62A—C63A 1.525 (4)
C16—H16 0.95 C62A—H62A 0.99
C21—C22 1.385 (3) C62A—H62B 0.99
C21—C26 1.400 (3) C63A—C64A 1.523 (4)
C22—C23 1.386 (3) C63A—H63A 0.99
C22—H22 0.95 C63A—H63B 0.99
C23—C24 1.389 (4) C64A—C65A 1.514 (4)
C23—H23 0.95 C64A—H64A 0.99
C24—C25 1.380 (4) C64A—H64B 0.99
C24—H24 0.95 C65A—C66A 1.522 (4)
C25—C26 1.369 (3) C65A—H65A 0.99
C25—H25 0.95 C65A—H65B 0.99
C26—H26 0.95 C66A—H66A 0.99
C31—H31A 0.98 C66A—H66B 0.99
C31—H31B 0.98 C61B—C66B 1.532 (17)
C31—H31C 0.98 C61B—C62B 1.550 (15)
C32—H32A 0.98 C61B—H61B 1
C32—H32B 0.98 C62B—C63B 1.514 (15)
C32—H32C 0.98 C62B—H62C 0.99
C41—H41A 0.98 C62B—H62D 0.99
C41—H41B 0.98 C63B—C64B 1.518 (16)
C41—H41C 0.98 C63B—H63C 0.99
C42—H42A 0.98 C63B—H63D 0.99
C42—H42B 0.98 C64B—C65B 1.489 (16)
C42—H42C 0.98 C64B—H64C 0.99
C51A—C56A 1.534 (3) C64B—H64D 0.99
C51A—C52A 1.534 (4) C65B—C66B 1.522 (15)
C51A—H51A 1 C65B—H65C 0.99
C52A—C53A 1.529 (3) C65B—H65D 0.99
C52A—H52A 0.99 C66B—H66C 0.99
C52A—H52B 0.99 C66B—H66D 0.99
C53A—C54A 1.513 (4) B1—H1A 0.98
C53A—H53A 0.99 B1—H1B 0.98
C53A—H53B 0.99 B1—H1C 0.98
C54A—C55A 1.521 (4) O2—H7A 0.85 (5)
C54A—H54A 0.99 O2—H7B 0.88 (7)
O1—P1—N4 117.42 (8) H55A—C55A—H55B 108
O1—P1—C21 109.44 (9) C55A—C56A—C51A 110.9 (2)
N4—P1—C21 108.16 (9) C55A—C56A—H56A 109.5
O1—P1—C11 113.32 (8) C51A—C56A—H56A 109.5
N4—P1—C11 104.61 (9) C55A—C56A—H56B 109.5
C21—P1—C11 102.77 (9) C51A—C56A—H56B 109.5
C61A—P2—C51B 97.4 (6) H56A—C56A—H56B 108
C51B—P2—C61B 105.8 (9) C52B—C51B—C56B 109.0 (13)
C61A—P2—C51A 110.78 (14) C52B—C51B—P2 105.3 (9)
C61B—P2—C51A 118.6 (7) C56B—C51B—P2 109.7 (9)
C61A—P2—C12 111.28 (12) C52B—C51B—H51B 110.9
C51B—P2—C12 116.4 (5) C56B—C51B—H51B 110.9
C61B—P2—C12 104.2 (7) P2—C51B—H51B 110.9
C51A—P2—C12 102.55 (11) C51B—C52B—C53B 109.9 (11)
C61A—P2—B1 109.57 (17) C51B—C52B—H52C 109.7
C51B—P2—B1 111.7 (6) C53B—C52B—H52C 109.7
C61B—P2—B1 108.3 (10) C51B—C52B—H52D 109.7
C51A—P2—B1 112.63 (12) C53B—C52B—H52D 109.7
C12—P2—B1 109.89 (10) H52C—C52B—H52D 108.2
C3—N4—C4 114.18 (15) C54B—C53B—C52B 114.1 (12)
C3—N4—P1 115.94 (13) C54B—C53B—H53C 108.7
C4—N4—P1 121.98 (13) C52B—C53B—H53C 108.7
N4—C3—C32 111.47 (17) C54B—C53B—H53D 108.7
N4—C3—C31 113.27 (17) C52B—C53B—H53D 108.7
C32—C3—C31 110.55 (18) H53C—C53B—H53D 107.6
N4—C3—H3 107.1 C53B—C54B—C55B 112.7 (14)
C32—C3—H3 107.1 C53B—C54B—H54C 109.1
C31—C3—H3 107.1 C55B—C54B—H54C 109.1
N4—C4—C42 112.22 (17) C53B—C54B—H54D 109.1
N4—C4—C41 114.47 (17) C55B—C54B—H54D 109.1
C42—C4—C41 111.57 (19) H54C—C54B—H54D 107.8
N4—C4—H4 105.9 C56B—C55B—C54B 112.7 (13)
C42—C4—H4 105.9 C56B—C55B—H55C 109.1
C41—C4—H4 105.9 C54B—C55B—H55C 109.1
C16—C11—C12 118.45 (18) C56B—C55B—H55D 109.1
C16—C11—P1 115.44 (14) C54B—C55B—H55D 109.1
C12—C11—P1 125.71 (14) H55C—C55B—H55D 107.8
C13—C12—C11 117.30 (17) C55B—C56B—C51B 107.5 (11)
C13—C12—P2 112.72 (14) C55B—C56B—H56C 110.2
C11—C12—P2 129.60 (14) C51B—C56B—H56C 110.2
C14—C13—C12 122.96 (19) C55B—C56B—H56D 110.2
C14—C13—H13 118.5 C51B—C56B—H56D 110.2
C12—C13—H13 118.5 H56C—C56B—H56D 108.5
C15—C14—C13 119.58 (19) C66A—C61A—C62A 110.0 (3)
C15—C14—H14 120.2 C66A—C61A—P2 109.94 (19)
C13—C14—H14 120.2 C62A—C61A—P2 111.0 (2)
C14—C15—C16 119.17 (19) C66A—C61A—H61A 108.6
C14—C15—H15 120.4 C62A—C61A—H61A 108.6
C16—C15—H15 120.4 P2—C61A—H61A 108.6
C15—C16—C11 122.38 (19) C63A—C62A—C61A 109.1 (2)
C15—C16—H16 118.8 C63A—C62A—H62A 109.9
C11—C16—H16 118.8 C61A—C62A—H62A 109.9
C22—C21—C26 118.8 (2) C63A—C62A—H62B 109.9
C22—C21—P1 124.06 (17) C61A—C62A—H62B 109.9
C26—C21—P1 116.97 (16) H62A—C62A—H62B 108.3
C21—C22—C23 120.8 (2) C64A—C63A—C62A 111.3 (3)
C21—C22—H22 119.6 C64A—C63A—H63A 109.4
C23—C22—H22 119.6 C62A—C63A—H63A 109.4
C22—C23—C24 119.7 (2) C64A—C63A—H63B 109.4
C22—C23—H23 120.2 C62A—C63A—H63B 109.4
C24—C23—H23 120.2 H63A—C63A—H63B 108
C25—C24—C23 119.5 (2) C65A—C64A—C63A 110.3 (3)
C25—C24—H24 120.2 C65A—C64A—H64A 109.6
C23—C24—H24 120.2 C63A—C64A—H64A 109.6
C26—C25—C24 121.0 (2) C65A—C64A—H64B 109.6
C26—C25—H25 119.5 C63A—C64A—H64B 109.6
C24—C25—H25 119.5 H64A—C64A—H64B 108.1
C25—C26—C21 120.2 (2) C64A—C65A—C66A 112.4 (3)
C25—C26—H26 119.9 C64A—C65A—H65A 109.1
C21—C26—H26 119.9 C66A—C65A—H65A 109.1
C3—C31—H31A 109.5 C64A—C65A—H65B 109.1
C3—C31—H31B 109.5 C66A—C65A—H65B 109.1
H31A—C31—H31B 109.5 H65A—C65A—H65B 107.9
C3—C31—H31C 109.5 C61A—C66A—C65A 110.6 (3)
H31A—C31—H31C 109.5 C61A—C66A—H66A 109.5
H31B—C31—H31C 109.5 C65A—C66A—H66A 109.5
C3—C32—H32A 109.5 C61A—C66A—H66B 109.5
C3—C32—H32B 109.5 C65A—C66A—H66B 109.5
H32A—C32—H32B 109.5 H66A—C66A—H66B 108.1
C3—C32—H32C 109.5 C66B—C61B—C62B 105.9 (14)
H32A—C32—H32C 109.5 C66B—C61B—P2 114.9 (12)
H32B—C32—H32C 109.5 C62B—C61B—P2 122.1 (11)
C4—C41—H41A 109.5 C66B—C61B—H61B 104
C4—C41—H41B 109.5 C62B—C61B—H61B 104
H41A—C41—H41B 109.5 P2—C61B—H61B 104
C4—C41—H41C 109.5 C63B—C62B—C61B 115.7 (11)
H41A—C41—H41C 109.5 C63B—C62B—H62C 108.3
H41B—C41—H41C 109.5 C61B—C62B—H62C 108.3
C4—C42—H42A 109.5 C63B—C62B—H62D 108.3
C4—C42—H42B 109.5 C61B—C62B—H62D 108.3
H42A—C42—H42B 109.5 H62C—C62B—H62D 107.4
C4—C42—H42C 109.5 C62B—C63B—C64B 114.0 (14)
H42A—C42—H42C 109.5 C62B—C63B—H63C 108.7
H42B—C42—H42C 109.5 C64B—C63B—H63C 108.7
C56A—C51A—C52A 111.3 (2) C62B—C63B—H63D 108.7
C56A—C51A—P2 112.73 (18) C64B—C63B—H63D 108.7
C52A—C51A—P2 110.16 (17) H63C—C63B—H63D 107.6
C56A—C51A—H51A 107.5 C65B—C64B—C63B 111.8 (14)
C52A—C51A—H51A 107.5 C65B—C64B—H64C 109.3
P2—C51A—H51A 107.5 C63B—C64B—H64C 109.3
C53A—C52A—C51A 111.3 (2) C65B—C64B—H64D 109.3
C53A—C52A—H52A 109.4 C63B—C64B—H64D 109.3
C51A—C52A—H52A 109.4 H64C—C64B—H64D 107.9
C53A—C52A—H52B 109.4 C64B—C65B—C66B 110.9 (14)
C51A—C52A—H52B 109.4 C64B—C65B—H65C 109.5
H52A—C52A—H52B 108 C66B—C65B—H65C 109.5
C54A—C53A—C52A 111.0 (2) C64B—C65B—H65D 109.5
C54A—C53A—H53A 109.4 C66B—C65B—H65D 109.5
C52A—C53A—H53A 109.4 H65C—C65B—H65D 108.1
C54A—C53A—H53B 109.4 C65B—C66B—C61B 117.4 (12)
C52A—C53A—H53B 109.4 C65B—C66B—H66C 107.9
H53A—C53A—H53B 108 C61B—C66B—H66C 107.9
C53A—C54A—C55A 110.3 (2) C65B—C66B—H66D 107.9
C53A—C54A—H54A 109.6 C61B—C66B—H66D 107.9
C55A—C54A—H54A 109.6 H66C—C66B—H66D 107.2
C53A—C54A—H54B 109.6 P2—B1—H1A 109.5
C55A—C54A—H54B 109.6 P2—B1—H1B 109.5
H54A—C54A—H54B 108.1 H1A—B1—H1B 109.5
C54A—C55A—C56A 110.9 (2) P2—B1—H1C 109.5
C54A—C55A—H55A 109.5 H1A—B1—H1C 109.5
C56A—C55A—H55A 109.5 H1B—B1—H1C 109.5
C54A—C55A—H55B 109.5 H7A—O2—H7B 112 (5)
C56A—C55A—H55B 109.5
O1—P1—N4—C3 69.09 (16) B1—P2—C51A—C52A 56.8 (2)
C21—P1—N4—C3 −166.52 (14) C56A—C51A—C52A—C53A −53.8 (3)
C11—P1—N4—C3 −57.50 (15) P2—C51A—C52A—C53A −179.52 (18)
O1—P1—N4—C4 −78.11 (16) C51A—C52A—C53A—C54A 56.1 (3)
C21—P1—N4—C4 46.27 (17) C52A—C53A—C54A—C55A −58.2 (3)
C11—P1—N4—C4 155.29 (14) C53A—C54A—C55A—C56A 58.5 (4)
C4—N4—C3—C32 −65.0 (2) C54A—C55A—C56A—C51A −56.4 (3)
P1—N4—C3—C32 145.22 (15) C52A—C51A—C56A—C55A 53.9 (3)
C4—N4—C3—C31 60.4 (2) P2—C51A—C56A—C55A 178.20 (19)
P1—N4—C3—C31 −89.35 (19) C61A—P2—C51B—C52B −162.1 (11)
C3—N4—C4—C42 122.81 (19) C61B—P2—C51B—C52B −159.1 (14)
P1—N4—C4—C42 −89.5 (2) C51A—P2—C51B—C52B −13.3 (17)
C3—N4—C4—C41 −108.7 (2) C12—P2—C51B—C52B −43.9 (13)
P1—N4—C4—C41 39.0 (2) B1—P2—C51B—C52B 83.4 (12)
O1—P1—C11—C16 −165.89 (15) C61A—P2—C51B—C56B 80.7 (12)
N4—P1—C11—C16 −36.79 (17) C61B—P2—C51B—C56B 83.8 (15)
C21—P1—C11—C16 76.12 (17) C51A—P2—C51B—C56B −130 (3)
O1—P1—C11—C12 21.5 (2) C12—P2—C51B—C56B −161.1 (10)
N4—P1—C11—C12 150.64 (16) B1—P2—C51B—C56B −33.8 (13)
C21—P1—C11—C12 −96.45 (18) C56B—C51B—C52B—C53B −60.3 (16)
C16—C11—C12—C13 −4.0 (3) P2—C51B—C52B—C53B −178.0 (11)
P1—C11—C12—C13 168.39 (15) C51B—C52B—C53B—C54B 52 (2)
C16—C11—C12—P2 168.39 (16) C52B—C53B—C54B—C55B −46 (2)
P1—C11—C12—P2 −19.2 (3) C53B—C54B—C55B—C56B 51 (2)
C61A—P2—C12—C13 −123.2 (2) C54B—C55B—C56B—C51B −58.9 (19)
C51B—P2—C12—C13 126.5 (7) C52B—C51B—C56B—C55B 64.2 (15)
C61B—P2—C12—C13 −117.5 (9) P2—C51B—C56B—C55B 179.0 (11)
C51A—P2—C12—C13 118.32 (17) C51B—P2—C61A—C66A 160.1 (6)
B1—P2—C12—C13 −1.66 (18) C61B—P2—C61A—C66A −1 (7)
C61A—P2—C12—C11 64.1 (2) C51A—P2—C61A—C66A 151.5 (3)
C51B—P2—C12—C11 −46.2 (7) C12—P2—C61A—C66A 38.0 (3)
C61B—P2—C12—C11 69.9 (9) B1—P2—C61A—C66A −83.7 (3)
C51A—P2—C12—C11 −54.3 (2) C51B—P2—C61A—C62A −78.0 (6)
B1—P2—C12—C11 −174.31 (18) C61B—P2—C61A—C62A 121 (7)
C11—C12—C13—C14 1.7 (3) C51A—P2—C61A—C62A −86.7 (3)
P2—C12—C13—C14 −171.94 (17) C12—P2—C61A—C62A 159.9 (2)
C12—C13—C14—C15 2.0 (3) B1—P2—C61A—C62A 38.2 (3)
C13—C14—C15—C16 −3.2 (3) C66A—C61A—C62A—C63A −59.3 (3)
C14—C15—C16—C11 0.8 (3) P2—C61A—C62A—C63A 178.9 (2)
C12—C11—C16—C15 2.9 (3) C61A—C62A—C63A—C64A 58.8 (3)
P1—C11—C16—C15 −170.28 (17) C62A—C63A—C64A—C65A −56.2 (4)
O1—P1—C21—C22 −162.56 (17) C63A—C64A—C65A—C66A 54.3 (4)
N4—P1—C21—C22 68.41 (19) C62A—C61A—C66A—C65A 57.7 (4)
C11—P1—C21—C22 −41.9 (2) P2—C61A—C66A—C65A −179.9 (2)
O1—P1—C21—C26 12.57 (19) C64A—C65A—C66A—C61A −55.8 (4)
N4—P1—C21—C26 −116.46 (17) C61A—P2—C61B—C66B −160 (8)
C11—P1—C21—C26 133.27 (17) C51B—P2—C61B—C66B −179.7 (17)
C26—C21—C22—C23 1.1 (3) C51A—P2—C61B—C66B 170.2 (14)
P1—C21—C22—C23 176.13 (17) C12—P2—C61B—C66B 57 (2)
C21—C22—C23—C24 −1.4 (3) B1—P2—C61B—C66B −59.9 (18)
C22—C23—C24—C25 1.6 (4) C61A—P2—C61B—C62B −30 (5)
C23—C24—C25—C26 −1.5 (4) C51B—P2—C61B—C62B −49 (2)
C24—C25—C26—C21 1.3 (4) C51A—P2—C61B—C62B −59 (2)
C22—C21—C26—C25 −1.0 (3) C12—P2—C61B—C62B −172.6 (18)
P1—C21—C26—C25 −176.41 (18) B1—P2—C61B—C62B 70 (2)
C61A—P2—C51A—C56A 55.0 (3) C66B—C61B—C62B—C63B −48 (2)
C51B—P2—C51A—C56A 22 (2) P2—C61B—C62B—C63B 178.0 (16)
C61B—P2—C51A—C56A 59.8 (9) C61B—C62B—C63B—C64B 51 (2)
C12—P2—C51A—C56A 173.8 (2) C62B—C63B—C64B—C65B −51 (2)
B1—P2—C51A—C56A −68.1 (2) C63B—C64B—C65B—C66B 51 (2)
C61A—P2—C51A—C52A 179.9 (2) C64B—C65B—C66B—C61B −56 (2)
C51B—P2—C51A—C52A 147 (2) C62B—C61B—C66B—C65B 52 (2)
C61B—P2—C51A—C52A −175.3 (9) P2—C61B—C66B—C65B −170.6 (14)
C12—P2—C51A—C52A −61.2 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O2—H7B···O1i 0.88 (7) 1.85 (7) 2.722 (4) 167 (6)
O2—H7A···O1 0.85 (5) 1.95 (5) 2.768 (4) 163 (5)
C51A—H51A···O1 1.00 2.28 3.083 (3) 136
C61A—H61A···O1 1.00 2.31 3.057 (5) 130

Symmetry code: (i) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZQ2191).

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Brandenburg, K. & Putz, H. (2005). DIAMOND Crystal Impact GbR, Bonn, Germany.
  4. Bruker (2004). SAINT-Plus and XPREP Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  7. Otto, S. (2001). Acta Cryst. C57, 793–795. [DOI] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Snieckus, V. (1990). Chem. Rev. 90, 879–933.
  10. Tolman, C. A. (1977). Chem. Rev. 77, 313–348.
  11. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  12. Williams, D. B. G., Evans, S. J., De Bod, H., Mokhadinyana, M. S. & Hughes, T. (2009). Synthesis, 18, 3106–3112.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813001839/zq2191sup1.cif

e-69-0o282-sup1.cif (49.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813001839/zq2191Isup2.hkl

e-69-0o282-Isup2.hkl (357.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES