Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Jan 23;69(Pt 2):o284. doi: 10.1107/S1600536812051872

(Z)-3-(1-Hy­droxy-3-oxobut-1-en­yl)-6-nitro-2H-chromen-2-one

Nishith Saurav Topno a, Venkataswamy Tangeti b, H Surya Prakash Rao b,, R Krishna a,*
PMCID: PMC3569810  PMID: 23424556

Abstract

In the title compound, C13H9NO6, the coumarin system has the benzene ring aligned at 0.61 (18)° with respect to the pyrone ring. An intra­molecular O—H⋯O hydrogen bond stabilizes the mol­ecular conformation and a C—H⋯O contact also occurs. In the crystal, weak C—H⋯O inter­actions link the mol­ecules, forming inversion dimers.

Related literature  

For the biological importance of flavinoids and coumarins, see: Murry et al. (1982); Andersen et al. (2006); Murakami et al. (2001); Wu et al. (2003). For their use as fluorescent probes and triplet sensitisers, see: Wagner (2009); Takadate et al. (1995). For a related structure, see: Da & Quan (2010).graphic file with name e-69-0o284-scheme1.jpg

Experimental  

Crystal data  

  • C13H9NO6

  • M r = 275.21

  • Triclinic, Inline graphic

  • a = 7.4591 (13) Å

  • b = 8.2178 (19) Å

  • c = 10.0087 (18) Å

  • α = 85.202 (17)°

  • β = 77.346 (15)°

  • γ = 89.278 (17)°

  • V = 596.5 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 293 K

  • 0.4 × 0.32 × 0.2 mm

Data collection  

  • Oxford Diffraction Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) T min = 0.917, T max = 1.000

  • 4789 measured reflections

  • 2093 independent reflections

  • 1395 reflections with I > 2σ(I)

  • R int = 0.033

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.048

  • wR(F 2) = 0.170

  • S = 0.93

  • 2093 reflections

  • 183 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812051872/sj5289sup1.cif

e-69-0o284-sup1.cif (22.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812051872/sj5289Isup2.hkl

e-69-0o284-Isup2.hkl (102.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812051872/sj5289Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O4 0.82 1.78 2.510 (2) 147
C11—H11⋯O2 0.93 2.24 2.870 (3) 125
C3—H3⋯O5i 0.93 2.58 3.308 (3) 136
C7—H7⋯O4ii 0.93 2.39 3.304 (3) 166

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

RK thanks the Department of Biotechnology and the Department of Information Technology, Government of India, New Delhi, for their financial support of the Centre for Bioinformatics, Pondicherry University, Puducherry. NST [No. F. 14–2(ST)/2010 (SA-III)] thanks the UGC for a Rajiv Gandhi National Fellowship to pursue his PhD degree. HSPR and VT thank the Council for Scientific and Industrial Research (CSIR), New Delhi, for financial support.

supplementary crystallographic information

Comment

Coumarins are heterocyclic compounds belonging to the benzopyrone chemical class, well known to exhibit varied biological activities (Murry et al., 1982; Andersen et al., 2006). In the technological and medicinal fields, coumarins and flavones, independently, find extensive use (Murakami et al., 2001) (Wu et al., 2003), with activities reported for anti-HIV, anti-tumor, anti-cancer, anti-hypertension, anti-arrhythmia, anti-inflammatory, anti-osteoporosis, antiseptic, and analgesic uses. They are also known to be used as fluorescent probes and as triplet sensitizers, especially those having electronic push-pull characteristics (Wagner, 2009; Takadate et al., 1995). Considering the importance of coumarin derivatives, we report here the structure of the title compound. A structure related to the title compound has also been reported (Da & Quan, 2010).

The molecular structure of the title compound is shown in Fig.1. The pyrone ring and the benzene ring are essentially co-planar with a dihedral angle of 0.61 (18)° between them. The benzene ring orients in a (-)-anti-periplanar conformation with respect to the pyrone ring. The crystal packing is stabilized by intermolecular C3—H3···O5, C3—H3···O5 and C7—H7···O4 bonds as shown in Fig.2 and Fig.3.

Experimental

A solution of 4-hydroxy-6-methyl-3-(2-(methylamino)-3,6-dinitro-4H-chromen-4-yl)-2H-pyran-2-one (0.010 g, 0.266 mmol) in ethanol (15 ml) was heated to reflux for 25 min by which time the reaction was complete (TLC; hexanes: EtOAc, 6:4). The compound was crystallized and separated by filtration with the help of cold ethanol (5 ml) to yield 93% of the product, a yellow crystalline solid, mp 121.6 °C; IR (KBr) υmax cm-1; 1H NMR (400 MHz, DMSO-D6) δ 15.71 (s, 1H), 8.70 (s, 1H), 8.58 (s, 1H), 8.49 (d, J = 9.0 Hz, 1H), 7.51 (d, J = 9.12 Hz, 1H), 6.98 (s, 1H), 2.29 (s, 3H) p.p.m.; 13C NMR (100 MHz, DMSO-D6) δ 200.2, 171.1, 157.5, 153.3, 144.0, 136.6, 131.6, 121.8, 120.1, 118.4, 117.6, 102.0, 27.8 p.p.m..

Refinement

All hydrogen atoms were placed in calculated positions, with C—H = 0.93Å for aromatic and 0.96Å for methyl and 0.82Å for hydroxyl H atoms and were included in the refinement using a riding model with Uiso(H) = x Ueq(C/O), where x = 1.5 for methyl and OH and 1.2 for all other atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), showing the atom-numbering scheme with displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

View showing the weak C–H···O intermolecular interactions in compound (I).

Fig. 3.

Fig. 3.

Packing diagram of the title compound (I).

Crystal data

C13H9NO6 Z = 2
Mr = 275.21 F(000) = 284
Triclinic, P1 Dx = 1.532 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.4591 (13) Å Cell parameters from 2257 reflections
b = 8.2178 (19) Å θ = 3.1–29.1°
c = 10.0087 (18) Å µ = 0.12 mm1
α = 85.202 (17)° T = 293 K
β = 77.346 (15)° Plate, colorless
γ = 89.278 (17)° 0.4 × 0.32 × 0.2 mm
V = 596.5 (2) Å3

Data collection

Oxford Diffraction Xcalibur Eos diffractometer 2093 independent reflections
Radiation source: fine-focus sealed tube 1395 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.033
Detector resolution: 15.9821 pixels mm-1 θmax = 25.0°, θmin = 3.1°
ω scans h = −8→8
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) k = −9→8
Tmin = 0.917, Tmax = 1.000 l = −11→11
4789 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.170 H-atom parameters constrained
S = 0.93 w = 1/[σ2(Fo2) + (0.1P)2] where P = (Fo2 + 2Fc2)/3
2093 reflections (Δ/σ)max < 0.001
183 parameters Δρmax = 0.18 e Å3
0 restraints Δρmin = −0.20 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.25449 (19) 0.17075 (18) 0.16604 (16) 0.0422 (5)
C4 0.5804 (3) 0.1391 (2) 0.1024 (2) 0.0306 (5)
C2 0.4261 (3) 0.3162 (2) −0.0432 (2) 0.0318 (5)
C5 0.7376 (3) 0.0665 (2) 0.1335 (2) 0.0350 (6)
H5 0.8525 0.0887 0.0766 0.042*
C3 0.5812 (3) 0.2510 (2) −0.0161 (2) 0.0329 (5)
H3 0.6927 0.2791 −0.0757 0.040*
C9 0.4119 (3) 0.1020 (3) 0.1911 (2) 0.0337 (5)
O3 0.6017 (2) 0.4703 (2) −0.23192 (17) 0.0497 (5)
H3A 0.5984 0.5364 −0.2974 0.075*
O4 0.4619 (3) 0.6406 (2) −0.40237 (18) 0.0584 (6)
C11 0.2837 (3) 0.4849 (3) −0.2152 (2) 0.0417 (6)
H11 0.1660 0.4551 −0.1668 0.050*
C6 0.7191 (3) −0.0382 (3) 0.2494 (2) 0.0367 (6)
C8 0.3959 (3) −0.0051 (3) 0.3076 (2) 0.0402 (6)
H8 0.2815 −0.0284 0.3648 0.048*
O2 0.1007 (2) 0.3272 (2) 0.04475 (19) 0.0620 (6)
C10 0.4319 (3) 0.4287 (2) −0.1671 (2) 0.0344 (6)
N1 0.8848 (3) −0.1149 (2) 0.2826 (2) 0.0474 (6)
C7 0.5514 (3) −0.0762 (3) 0.3373 (2) 0.0393 (6)
H7 0.5444 −0.1485 0.4149 0.047*
C1 0.2494 (3) 0.2775 (3) 0.0523 (2) 0.0394 (6)
O6 0.8773 (3) −0.1692 (3) 0.3998 (2) 0.0900 (8)
O5 1.0203 (2) −0.1232 (2) 0.1907 (2) 0.0639 (6)
C13 0.1405 (4) 0.6402 (4) −0.3939 (3) 0.0728 (9)
H13A 0.1784 0.6891 −0.4863 0.109*
H13B 0.0716 0.7180 −0.3369 0.109*
H13C 0.0651 0.5462 −0.3932 0.109*
C12 0.3071 (4) 0.5893 (3) −0.3397 (3) 0.0474 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0340 (9) 0.0494 (10) 0.0382 (10) 0.0047 (7) −0.0036 (7) 0.0134 (7)
C4 0.0345 (12) 0.0279 (12) 0.0291 (12) −0.0022 (8) −0.0071 (9) 0.0012 (8)
C2 0.0367 (12) 0.0279 (12) 0.0297 (13) −0.0012 (9) −0.0064 (10) 0.0017 (9)
C5 0.0315 (12) 0.0373 (13) 0.0348 (13) −0.0012 (9) −0.0054 (10) 0.0014 (10)
C3 0.0332 (12) 0.0324 (12) 0.0302 (12) −0.0031 (9) −0.0022 (9) 0.0024 (9)
C9 0.0344 (12) 0.0354 (12) 0.0308 (12) 0.0018 (9) −0.0076 (9) 0.0013 (9)
O3 0.0494 (11) 0.0562 (12) 0.0381 (11) −0.0036 (8) −0.0053 (8) 0.0177 (8)
O4 0.0770 (13) 0.0554 (12) 0.0395 (11) −0.0030 (9) −0.0123 (9) 0.0143 (8)
C11 0.0491 (15) 0.0397 (14) 0.0365 (14) 0.0011 (10) −0.0135 (11) 0.0062 (10)
C6 0.0406 (13) 0.0361 (13) 0.0363 (13) 0.0046 (9) −0.0156 (10) −0.0016 (9)
C8 0.0383 (13) 0.0486 (14) 0.0295 (13) −0.0025 (10) −0.0022 (10) 0.0068 (10)
O2 0.0348 (10) 0.0816 (14) 0.0625 (13) 0.0106 (8) −0.0080 (8) 0.0261 (10)
C10 0.0436 (13) 0.0297 (12) 0.0287 (12) −0.0019 (9) −0.0059 (10) 0.0003 (9)
N1 0.0478 (13) 0.0527 (13) 0.0445 (13) 0.0056 (9) −0.0198 (10) 0.0041 (10)
C7 0.0482 (14) 0.0403 (13) 0.0283 (13) 0.0022 (10) −0.0089 (10) 0.0049 (9)
C1 0.0409 (13) 0.0405 (14) 0.0342 (13) 0.0030 (10) −0.0066 (10) 0.0065 (10)
O6 0.0764 (15) 0.142 (2) 0.0506 (13) 0.0326 (14) −0.0257 (11) 0.0264 (13)
O5 0.0431 (11) 0.0806 (14) 0.0632 (14) 0.0153 (9) −0.0091 (9) 0.0125 (10)
C13 0.090 (2) 0.078 (2) 0.0564 (19) 0.0096 (16) −0.0389 (17) 0.0148 (15)
C12 0.0694 (18) 0.0401 (14) 0.0362 (14) 0.0019 (12) −0.0209 (13) 0.0022 (11)

Geometric parameters (Å, º)

O1—C9 1.360 (3) C11—C12 1.432 (3)
O1—C1 1.385 (3) C11—H11 0.9300
C4—C9 1.391 (3) C6—C7 1.384 (3)
C4—C5 1.392 (3) C6—N1 1.470 (3)
C4—C3 1.438 (3) C8—C7 1.370 (3)
C2—C3 1.341 (3) C8—H8 0.9300
C2—C1 1.470 (3) O2—O2 0.0000
C2—C10 1.476 (3) O2—C1 1.192 (3)
C5—C6 1.368 (3) N1—O6 1.210 (3)
C5—H5 0.9300 N1—O5 1.214 (2)
C3—H3 0.9300 C7—H7 0.9300
C9—C8 1.385 (3) C1—O2 1.192 (3)
O3—C10 1.325 (3) C13—C12 1.502 (4)
O3—H3A 0.8200 C13—H13A 0.9600
O4—O4 0.000 (5) C13—H13B 0.9600
O4—C12 1.247 (3) C13—H13C 0.9600
C11—C10 1.361 (3) C12—O4 1.247 (3)
C9—O1—C1 123.35 (17) O3—C10—C11 121.5 (2)
C9—C4—C5 118.4 (2) O3—C10—C2 112.69 (18)
C9—C4—C3 117.68 (19) C11—C10—C2 125.8 (2)
C5—C4—C3 123.93 (19) O6—N1—O5 123.5 (2)
C3—C2—C1 119.73 (19) O6—N1—C6 118.0 (2)
C3—C2—C10 120.49 (19) O5—N1—C6 118.4 (2)
C1—C2—C10 119.77 (18) C8—C7—C6 118.7 (2)
C6—C5—C4 118.5 (2) C8—C7—H7 120.7
C6—C5—H5 120.8 C6—C7—H7 120.7
C4—C5—H5 120.8 O2—C1—O2 0.00 (18)
C2—C3—C4 121.97 (19) O2—C1—O1 115.3 (2)
C2—C3—H3 119.0 O2—C1—O1 115.3 (2)
C4—C3—H3 119.0 O2—C1—C2 128.1 (2)
O1—C9—C8 117.09 (19) O2—C1—C2 128.1 (2)
O1—C9—C4 120.68 (19) O1—C1—C2 116.55 (18)
C8—C9—C4 122.2 (2) C12—C13—H13A 109.5
C10—O3—H3A 109.5 C12—C13—H13B 109.5
O4—O4—C12 0 (10) H13A—C13—H13B 109.5
C10—C11—C12 120.7 (2) C12—C13—H13C 109.5
C10—C11—H11 119.7 H13A—C13—H13C 109.5
C12—C11—H11 119.7 H13B—C13—H13C 109.5
C5—C6—C7 123.2 (2) O4—C12—O4 0.0 (2)
C5—C6—N1 118.6 (2) O4—C12—C11 121.4 (2)
C7—C6—N1 118.2 (2) O4—C12—C11 121.4 (2)
C7—C8—C9 119.0 (2) O4—C12—C13 119.6 (2)
C7—C8—H8 120.5 O4—C12—C13 119.6 (2)
C9—C8—H8 120.5 C11—C12—C13 119.0 (3)
O2—O2—C1 0 (10)
C9—C4—C5—C6 0.2 (3) C7—C6—N1—O6 −20.2 (4)
C3—C4—C5—C6 180.0 (2) C5—C6—N1—O5 −21.4 (3)
C1—C2—C3—C4 2.1 (3) C7—C6—N1—O5 158.3 (2)
C10—C2—C3—C4 −179.02 (19) C9—C8—C7—C6 0.0 (4)
C9—C4—C3—C2 −1.2 (3) C5—C6—C7—C8 −0.4 (4)
C5—C4—C3—C2 178.94 (19) N1—C6—C7—C8 179.8 (2)
C1—O1—C9—C8 −178.8 (2) O2—O2—C1—O1 0.00 (3)
C1—O1—C9—C4 1.2 (3) O2—O2—C1—C2 0.00 (10)
C5—C4—C9—O1 179.40 (19) C9—O1—C1—O2 179.87 (19)
C3—C4—C9—O1 −0.4 (3) C9—O1—C1—O2 179.87 (19)
C5—C4—C9—C8 −0.6 (3) C9—O1—C1—C2 −0.4 (3)
C3—C4—C9—C8 179.6 (2) C3—C2—C1—O2 178.4 (2)
C4—C5—C6—C7 0.3 (4) C10—C2—C1—O2 −0.5 (4)
C4—C5—C6—N1 −179.93 (18) C3—C2—C1—O2 178.4 (2)
O1—C9—C8—C7 −179.48 (18) C10—C2—C1—O2 −0.5 (4)
C4—C9—C8—C7 0.5 (4) C3—C2—C1—O1 −1.2 (3)
C12—C11—C10—O3 1.0 (4) C10—C2—C1—O1 179.84 (19)
C12—C11—C10—C2 −177.7 (2) O4—O4—C12—C11 0.00 (14)
C3—C2—C10—O3 −8.2 (3) O4—O4—C12—C13 0.00 (10)
C1—C2—C10—O3 170.69 (19) C10—C11—C12—O4 −4.9 (4)
C3—C2—C10—C11 170.6 (2) C10—C11—C12—O4 −4.9 (4)
C1—C2—C10—C11 −10.5 (3) C10—C11—C12—C13 176.3 (2)
C5—C6—N1—O6 160.0 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O3—H3A···O4 0.82 1.78 2.510 (2) 147
C11—H11···O2 0.93 2.24 2.870 (3) 125
C3—H3···O5i 0.93 2.58 3.308 (3) 136
C7—H7···O4ii 0.93 2.39 3.304 (3) 166

Symmetry codes: (i) −x+2, −y, −z; (ii) x, y−1, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5289).

References

  1. Andersen, M. & Markham, K. R. (2006). In Flavonoids: Chemistry, Biochemistry and Applications Boca Raton: CRC Press.
  2. Da, Y.-X. & Quan, Z.-J. (2010). Acta Cryst. E66, o2872. [DOI] [PMC free article] [PubMed]
  3. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  4. Murakami, A., Yamayoshi, A., Iwase, R., Nishida, J., Yamaoka, T. & Wake, N. (2001). Eur. J. Pharm. Sci. 13, 25–34. [DOI] [PubMed]
  5. Murry, R. D. H., Mendez, J. & Brown, S. A. (1982). In The Natural Coumarins: Occurrence, Chemistry and Biochemistry New York: John Wiley & Sons.
  6. Oxford Diffraction (2009). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, England.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  9. Takadate, A., Masuda, T., Murata, C., Tanaka, T., Irikura, M. & Goya, S. (1995). Anal. Sci. 11, 97–101.
  10. Wagner, B. D. (2009). Molecules, 14, 210–237. [DOI] [PMC free article] [PubMed]
  11. Wu, J. Y., Fong, W. F., Zhang, J. X., Leung, C. H., Kwong, H. L. & Yang, M. S. (2003). Eur. J. Pharmacol. 473, 9–17. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812051872/sj5289sup1.cif

e-69-0o284-sup1.cif (22.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812051872/sj5289Isup2.hkl

e-69-0o284-Isup2.hkl (102.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812051872/sj5289Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES