Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Jan 23;69(Pt 2):o285–o286. doi: 10.1107/S1600536813001761

Benzyl 2-(benzylsulfanyl)benzoate

Zorica Leka a,*, Sladjana B Novaković b, Goran A Bogdanović b, Gordana P Radić c, Zoran R Ratković d
PMCID: PMC3569811  PMID: 23424557

Abstract

In the title compound, C21H18O2S, the central aromatic ring makes dihedral angles of 5.86 (12) and 72.02 (6)° with the rings of the terminal O-benzyl and S-benzyl groups, respectively. The dihedral angle between the peripheral phenyl rings is 66.16 (6)°. In the crystal, mol­ecules are linked by pairs of C—H⋯O hydrogen bonds, forming inversion dimers. These dimers are linked via C—H⋯π inter­actions, forming a three-dimensional network.

Related literature  

For related structures, see: Radić et al. (2012); Lucena et al. (1996); Sillanpää et al. (1994); Alhadi et al. (2010). For the biological activity of thio­salicylic acid derivatives, see: Bernardelli et al. (2005); Halaschek-Wiener et al. (2003); Sadao et al. (2000).graphic file with name e-69-0o285-scheme1.jpg

Experimental  

Crystal data  

  • C21H18O2S

  • M r = 334.41

  • Triclinic, Inline graphic

  • a = 5.6957 (3) Å

  • b = 12.1117 (11) Å

  • c = 13.0813 (11) Å

  • α = 72.748 (8)°

  • β = 86.477 (6)°

  • γ = 89.941 (6)°

  • V = 860.04 (12) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 1.74 mm−1

  • T = 293 K

  • 0.11 × 0.10 × 0.05 mm

Data collection  

  • Oxford Diffraction Xcalibur Gemini Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2012) T min = 0.944, T max = 1.000

  • 5368 measured reflections

  • 3299 independent reflections

  • 2554 reflections with I > 2σ(I)

  • R int = 0.018

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.113

  • S = 1.04

  • 3299 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2012); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012), PLATON (Spek, 2009) and PARST (Nardelli, 1995).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813001761/rz5036sup1.cif

e-69-0o285-sup1.cif (23.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813001761/rz5036Isup2.hkl

e-69-0o285-Isup2.hkl (158.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813001761/rz5036Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Geometry of hydrogen bonds and weak C—H⋯π interactions (Å, °).

Cg1, Cg2 and Cg3 are the centroids of the C2–C7, C9–C14 and C16–C21 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯O2i 0.93 2.63 3.408 (3) 142
C4—H4⋯Cg3ii 0.93 3.11 3.846 (3) 137
C13—H13⋯Cg3i 0.93 2.88 3.653 (3) 141
C18—H18⋯Cg1iii 0.93 3.20 3.820 (3) 126
C20—H20⋯Cg2iv 0.93 2.96 3.651 (3) 132

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

This work was supported by the Ministry of Education and Science of the Republic of Serbia (Project Nos. 172016, 172034, 172014 and 172035). We thank Professor V. Divjakovic, University of Novi Sad, for help with the X-ray data collection.

supplementary crystallographic information

Comment

Thiosalicylic acid and its derivatives find potential application in numerous disease treatments, in particular inflammatory, allergic and respiratory diseases (Bernardelli et al., 2005) as well as Ras tumor growth inhibitors (Halaschek-Wiener et al., 2003). Ketones derived from thiosalicylic acids have application as bile acid transport inhibitors (Sadao et al., 2000). In continuation of our work on structural and biological properties of thiosalicylic derivatives and their metal complexes (Radić et al., 2012) here we present the crystal structure of the novel ligand benzyl 2-(benzylsulfanyl)benzoate.

The bond lengths and angles in the title compound are within the expected ranges. The dihedral angle between aromatic rings of the central thiosalicylic and terminal O-benzyl group is 5.86 (12)° indicating a nearly co-planar orientation of these two fragments. On the other hand, the ring of the S-benzyl group is significantly twisted with respect to the central ring forming a dihedral angle of 72.02 (6)°. In the previously reported crystal structures with S-benzyl derivatives of thiosalicylic acid the analogue dihedral angle varies from 13.4 to 88.9°, suggesting the free rotation of the S-benzyl ring around the single bonds of the C3–S1–C15–C16 fragment. The specific property of the present compound is that the atoms S1, C15 are C16 all lie in the plane of the central ring within 0.03 Å. In the cases of similar uncoordinated (Sillanpää et al., 1994; Alhadi et al., 2010] as well as coordinated ligands (Radić et al., 2012; Lucena et al., 1996) the corresponding atom C16 is significantly out of the central ring plane (1.57 Å in average).

The pair of C14—H14···O2 interactions connects inversion related molecules into dimers (Table 1, Fig. 2). This connection is reinforced by means of C—H···π interactions involving the O-benzyl C13—H13 donor and the S-benzyl ring from an inversion-related molecule as acceptor (Table 1; Cg3 is the centroid of the S-benzyl ring). The S-benzyl ring also serves as a π-acceptor for C—H donors of a neighboring molecular pair; in that way the pairs of molecules further arrange into chain by C4— H4···Cg3 interactions (Table 1, Fig. 2). The molecules are further associated into a three-dimensional structure by C—H···π interactions which engage two remaining phenyl rings as π-acceptors (Table 1, Cg1 and Cg2 are centroids of central thiosalicylic and terminal O-benzyl rings, respectively).

Experimental

The thioacid ligand was prepared by alkylation of thiosalicylic acid by means of the corresponding alkyl halogenides in alkaline water-ethanol solution. Thiosalicylic acid (1 mmol) was added to a 100 cm3 round bottom flask containing 50 cm3 of a 30% solution of ethanol in water and stirred. A solution of NaOH (2 mmol in 5 cm3 of water) was added to the acid suspension, whereupon the solution became clear. The corresponding benzyl halogenide (2 mmol) was dissolved in 5 cm3 of ethanol and transferred to the stirred solution. The resulting mixture was kept overnight at 60°C. The reaction mixture was transffered into a beaker and ethanol was evaporated off on a water bath. Diluted hydrochloric acid (2 mol/dm3) was added to the resulting water solution and S-benzyl thiosalicylic acid was precipitated as a white powder. The obtained acid was filtered off and washed with plenty of distilled water. The product was dried under vacuum overnight. Crystals of the title compound suitable for X-ray determination were obtained by slow evaporation of a benzyl alcohol solution, which unexpectedly resulted in the esterification of the carboxylic group of thiosalicylic acid.

Refinement

H atoms bonded to C atoms were placed at geometrically calculated positions and refined using a riding model. C—H distances were fixed to 0.93 and 0.97 Å from aromatic and methylene C atoms, respectively. The Uiso(H) values were equal to 1.2 times Ueq of the corresponding aromatic C(sp2) and methylene C(sp3) atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with 40% probability displacement ellipsoids for non-H atoms.

Fig. 2.

Fig. 2.

Partial crystal packing of the title compound. The C14—H···O2 and C13—H···π connected pairs of molecules are linked into a chain by C4—H4···π interactions.

Crystal data

C21H18O2S Z = 2
Mr = 334.41 F(000) = 352
Triclinic, P1 Dx = 1.291 Mg m3
Hall symbol: -P 1 Cu Kα radiation, λ = 1.54180 Å
a = 5.6957 (3) Å Cell parameters from 2123 reflections
b = 12.1117 (11) Å θ = 3.5–72.3°
c = 13.0813 (11) Å µ = 1.74 mm1
α = 72.748 (8)° T = 293 K
β = 86.477 (6)° Prism, colourless
γ = 89.941 (6)° 0.11 × 0.10 × 0.05 mm
V = 860.04 (12) Å3

Data collection

Oxford Diffraction Xcalibur Gemini Sapphire3 diffractometer 3299 independent reflections
Radiation source: Enhance (Cu) X-ray Source 2554 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.018
Detector resolution: 16.3280 pixels mm-1 θmax = 72.4°, θmin = 3.6°
ω scans h = −5→7
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2012) k = −14→14
Tmin = 0.944, Tmax = 1.000 l = −16→15
5368 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0493P)2 + 0.0651P] where P = (Fo2 + 2Fc2)/3
3299 reflections (Δ/σ)max < 0.001
217 parameters Δρmax = 0.21 e Å3
0 restraints Δρmin = −0.21 e Å3

Special details

Experimental. IR (KBr, cm-1): 3414, 3061, 2920, 2648, 2559, 1674, 1584, 1562, 1463, 1412, 1317, 1272, 1255, 1154, 1062, 1046, 897, 743, 711, 652, 551. 1H NMR (200 MHz, CDCl3, δ p.p.m.): 4.11 (s, 2H, C15H2), 5.45 (s, 2H, C8H2), 7.00–7.93 (m, 17H, Ar and bz). 13C NMR (50 MHz, DMSO-d6, δ p.p.m.): 38.5 (C15H2), 68.3 (C8H2) 125.0; 126.3; 126.8; 127.0; 127.2; 127.5; 127.8; 127.9; 128.1; 128.3; 128.8; 128.9, 129.3; 130.2; 133.5; 139.5; 141.7; 142.3 (Ar and bz), 166.8 (COObz).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.60616 (9) 0.22258 (5) 0.48163 (4) 0.06178 (18)
O1 0.1278 (2) 0.47589 (12) 0.28903 (10) 0.0595 (4)
O2 0.2518 (3) 0.37675 (15) 0.44697 (11) 0.0859 (6)
C1 0.2696 (3) 0.40163 (17) 0.35128 (15) 0.0549 (5)
C2 0.4509 (3) 0.35644 (16) 0.28855 (14) 0.0519 (4)
C3 0.6149 (3) 0.27491 (16) 0.34054 (14) 0.0519 (4)
C4 0.7850 (4) 0.23806 (19) 0.27595 (16) 0.0632 (5)
H4 0.8945 0.1838 0.3081 0.076*
C5 0.7919 (4) 0.2808 (2) 0.16621 (17) 0.0728 (6)
H5 0.9072 0.2555 0.1253 0.087*
C6 0.6324 (4) 0.3601 (2) 0.11575 (17) 0.0743 (6)
H6 0.6388 0.3885 0.0413 0.089*
C7 0.4622 (4) 0.39694 (19) 0.17718 (15) 0.0650 (5)
H7 0.3525 0.4501 0.1433 0.078*
C8 −0.0440 (4) 0.53023 (19) 0.34328 (15) 0.0602 (5)
H8A 0.0348 0.5751 0.3817 0.072*
H8B −0.1426 0.4718 0.3946 0.072*
C9 −0.1923 (3) 0.60777 (16) 0.26112 (15) 0.0522 (4)
C10 −0.1380 (4) 0.6363 (2) 0.15204 (16) 0.0659 (6)
H10 −0.0031 0.6073 0.1264 0.079*
C11 −0.2821 (4) 0.7076 (2) 0.08082 (17) 0.0725 (6)
H11 −0.2437 0.7260 0.0075 0.087*
C12 −0.4810 (4) 0.7514 (2) 0.11702 (18) 0.0712 (6)
H12 −0.5780 0.7990 0.0686 0.085*
C13 −0.5362 (4) 0.7247 (2) 0.22537 (18) 0.0678 (6)
H13 −0.6698 0.7552 0.2505 0.081*
C14 −0.3935 (3) 0.65252 (18) 0.29709 (16) 0.0592 (5)
H14 −0.4332 0.6339 0.3703 0.071*
C15 0.8417 (4) 0.11867 (19) 0.50644 (16) 0.0637 (5)
H15A 0.8106 0.0571 0.4754 0.076*
H15B 0.9904 0.1561 0.4746 0.076*
C16 0.8515 (3) 0.07081 (16) 0.62584 (15) 0.0555 (5)
C17 0.6840 (4) −0.0071 (2) 0.68695 (18) 0.0715 (6)
H17 0.5632 −0.0315 0.6536 0.086*
C18 0.6927 (4) −0.0493 (2) 0.79649 (19) 0.0817 (7)
H18 0.5787 −0.1022 0.8364 0.098*
C19 0.8689 (4) −0.0138 (2) 0.84739 (19) 0.0757 (6)
H19 0.8743 −0.0418 0.9215 0.091*
C20 1.0364 (4) 0.0634 (2) 0.78757 (19) 0.0746 (6)
H20 1.1571 0.0872 0.8214 0.090*
C21 1.0283 (4) 0.10629 (19) 0.67754 (17) 0.0641 (5)
H21 1.1423 0.1594 0.6380 0.077*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0688 (3) 0.0641 (3) 0.0475 (3) 0.0269 (2) −0.0004 (2) −0.0098 (2)
O1 0.0647 (8) 0.0623 (8) 0.0502 (7) 0.0208 (7) −0.0064 (6) −0.0145 (6)
O2 0.0995 (12) 0.1023 (13) 0.0475 (8) 0.0567 (10) −0.0012 (7) −0.0103 (8)
C1 0.0607 (11) 0.0530 (11) 0.0481 (10) 0.0107 (9) −0.0047 (8) −0.0106 (8)
C2 0.0601 (11) 0.0465 (10) 0.0469 (10) 0.0058 (8) 0.0000 (8) −0.0111 (8)
C3 0.0570 (11) 0.0489 (10) 0.0483 (10) 0.0060 (8) 0.0028 (8) −0.0136 (8)
C4 0.0660 (12) 0.0638 (13) 0.0567 (11) 0.0154 (10) 0.0050 (9) −0.0152 (9)
C5 0.0790 (15) 0.0769 (15) 0.0615 (13) 0.0124 (12) 0.0148 (10) −0.0229 (11)
C6 0.0987 (17) 0.0748 (15) 0.0450 (11) 0.0102 (13) 0.0089 (11) −0.0139 (10)
C7 0.0794 (14) 0.0618 (13) 0.0501 (11) 0.0136 (11) −0.0039 (10) −0.0109 (9)
C8 0.0645 (12) 0.0638 (12) 0.0502 (11) 0.0173 (10) −0.0028 (9) −0.0138 (9)
C9 0.0542 (10) 0.0489 (10) 0.0523 (10) 0.0059 (8) −0.0050 (8) −0.0129 (8)
C10 0.0618 (12) 0.0783 (15) 0.0537 (11) 0.0165 (11) −0.0007 (9) −0.0142 (10)
C11 0.0755 (14) 0.0837 (16) 0.0506 (11) 0.0134 (12) −0.0052 (10) −0.0077 (10)
C12 0.0655 (13) 0.0764 (15) 0.0673 (14) 0.0172 (11) −0.0186 (10) −0.0120 (11)
C13 0.0591 (12) 0.0716 (14) 0.0738 (14) 0.0181 (10) −0.0061 (10) −0.0228 (11)
C14 0.0609 (12) 0.0636 (12) 0.0546 (11) 0.0099 (10) −0.0031 (9) −0.0202 (9)
C15 0.0637 (12) 0.0635 (12) 0.0621 (12) 0.0257 (10) −0.0048 (9) −0.0160 (10)
C16 0.0553 (11) 0.0490 (10) 0.0615 (12) 0.0180 (9) −0.0052 (9) −0.0150 (9)
C17 0.0682 (13) 0.0626 (13) 0.0766 (15) 0.0004 (11) −0.0176 (11) −0.0073 (11)
C18 0.0813 (16) 0.0699 (15) 0.0762 (16) −0.0043 (12) −0.0062 (12) 0.0059 (12)
C19 0.0878 (17) 0.0730 (15) 0.0603 (13) 0.0167 (13) −0.0134 (12) −0.0091 (11)
C20 0.0734 (15) 0.0783 (16) 0.0769 (15) 0.0095 (12) −0.0201 (12) −0.0272 (13)
C21 0.0563 (12) 0.0637 (13) 0.0717 (14) 0.0039 (10) −0.0022 (10) −0.0197 (10)

Geometric parameters (Å, º)

S1—C3 1.7623 (19) C10—H10 0.9300
S1—C15 1.8159 (18) C11—C12 1.368 (3)
O1—C1 1.331 (2) C11—H11 0.9300
O1—C8 1.444 (2) C12—C13 1.373 (3)
O2—C1 1.195 (2) C12—H12 0.9300
C1—C2 1.483 (3) C13—C14 1.382 (3)
C2—C7 1.390 (2) C13—H13 0.9300
C2—C3 1.410 (3) C14—H14 0.9300
C3—C4 1.405 (2) C15—C16 1.501 (3)
C4—C5 1.372 (3) C15—H15A 0.9700
C4—H4 0.9300 C15—H15B 0.9700
C5—C6 1.371 (3) C16—C17 1.379 (3)
C5—H5 0.9300 C16—C21 1.383 (3)
C6—C7 1.379 (3) C17—C18 1.375 (3)
C6—H6 0.9300 C17—H17 0.9300
C7—H7 0.9300 C18—C19 1.375 (3)
C8—C9 1.504 (2) C18—H18 0.9300
C8—H8A 0.9700 C19—C20 1.368 (3)
C8—H8B 0.9700 C19—H19 0.9300
C9—C10 1.380 (3) C20—C21 1.381 (3)
C9—C14 1.383 (3) C20—H20 0.9300
C10—C11 1.379 (3) C21—H21 0.9300
C3—S1—C15 103.19 (9) C12—C11—H11 119.7
C1—O1—C8 116.17 (14) C10—C11—H11 119.7
O2—C1—O1 122.68 (18) C11—C12—C13 119.5 (2)
O2—C1—C2 124.83 (17) C11—C12—H12 120.2
O1—C1—C2 112.48 (16) C13—C12—H12 120.2
C7—C2—C3 119.66 (17) C12—C13—C14 120.1 (2)
C7—C2—C1 119.51 (17) C12—C13—H13 120.0
C3—C2—C1 120.82 (16) C14—C13—H13 120.0
C4—C3—C2 117.65 (17) C13—C14—C9 120.71 (19)
C4—C3—S1 121.64 (15) C13—C14—H14 119.6
C2—C3—S1 120.71 (14) C9—C14—H14 119.6
C5—C4—C3 121.03 (19) C16—C15—S1 107.11 (13)
C5—C4—H4 119.5 C16—C15—H15A 110.3
C3—C4—H4 119.5 S1—C15—H15A 110.3
C6—C5—C4 121.3 (2) C16—C15—H15B 110.3
C6—C5—H5 119.4 S1—C15—H15B 110.3
C4—C5—H5 119.4 H15A—C15—H15B 108.5
C5—C6—C7 118.9 (2) C17—C16—C21 118.3 (2)
C5—C6—H6 120.5 C17—C16—C15 121.5 (2)
C7—C6—H6 120.5 C21—C16—C15 120.2 (2)
C6—C7—C2 121.5 (2) C18—C17—C16 121.0 (2)
C6—C7—H7 119.3 C18—C17—H17 119.5
C2—C7—H7 119.3 C16—C17—H17 119.5
O1—C8—C9 108.69 (15) C19—C18—C17 120.4 (2)
O1—C8—H8A 110.0 C19—C18—H18 119.8
C9—C8—H8A 110.0 C17—C18—H18 119.8
O1—C8—H8B 110.0 C20—C19—C18 119.1 (2)
C9—C8—H8B 110.0 C20—C19—H19 120.4
H8A—C8—H8B 108.3 C18—C19—H19 120.4
C10—C9—C14 118.49 (17) C19—C20—C21 120.8 (2)
C10—C9—C8 123.42 (17) C19—C20—H20 119.6
C14—C9—C8 118.09 (17) C21—C20—H20 119.6
C11—C10—C9 120.55 (19) C20—C21—C16 120.4 (2)
C11—C10—H10 119.7 C20—C21—H21 119.8
C9—C10—H10 119.7 C16—C21—H21 119.8
C12—C11—C10 120.6 (2)

Hydrogen-bond geometry (Å, º)

Cg1, Cg2 and Cg3 are the centroids of the C2–C7, C9–C14 and C16–C21 rings, respectively.

D—H···A D—H H···A D···A D—H···A
C14—H14···O2i 0.93 2.63 3.408 (3) 142
C4—H4···Cg3ii 0.93 3.11 3.846 (3) 137
C13—H13···Cg3i 0.93 2.88 3.653 (3) 141
C18—H18···Cg1iii 0.93 3.20 3.820 (3) 126
C20—H20···Cg2iv 0.93 2.96 3.651 (3) 132

Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+2, −y, −z+1; (iii) −x+1, −y, −z+1; (iv) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ5036).

References

  1. Alhadi, A. A., Khaledi, H., Mohd Ali, H. & Olmstead, M. M. (2010). Acta Cryst E66, o1787. [DOI] [PMC free article] [PubMed]
  2. Bernardelli, P., Cronin, A. M., Denis, A., Denton, S. M., Jacobelli, H., Kemp, M. I., Lorthiois, E., Rousseau, F., Serradeil-Civit, D. & Vergne, F. (2005). US Patent 20050267095.
  3. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  4. Halaschek-Wiener, J., Kloog, Y., Wacheck, V. & Jansen, B. (2003). J. Invest. Dermatol. 120, 109–115. [DOI] [PubMed]
  5. Lucena, N., Casabó, J., Escriche, L., Sánchez-Castelló, G., Teixidor, F., Kivekäs, R. & Sillanpää, R. (1996). Polyhedron, 15, 3009–3018.
  6. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  7. Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
  8. Oxford Diffraction (2012). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, England.
  9. Radić, G. P., Glodjović, V. V., Radojević, I. D., Stefanović, O. D., Čomić, Lj. R., Ratković, Z. R., Valkonen, A., Rissanen, K. & Trifunović, S. R. (2012). Polyhedron, 31, 69–76.
  10. Sadao, I., Fujio, S., Hidekazu, M. & Keita, K. (2000). Jpn Patent 2000-178188.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Sillanpää, R., Kivekäs, R., Escriche, L., Lucena, N., Teixidor, F. & Casabó, J. (1994). Acta Cryst. C50, 2049–2051.
  13. Spek, A. L. (2009). Acta Cryst D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813001761/rz5036sup1.cif

e-69-0o285-sup1.cif (23.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813001761/rz5036Isup2.hkl

e-69-0o285-Isup2.hkl (158.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813001761/rz5036Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES