Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Jan 26;69(Pt 2):o295–o296. doi: 10.1107/S1600536813002134

4-[5-(4-Chloro­phen­yl)-3-methyl-1H-pyrazol-1-yl]benzene­sulfonamide

Muhammad A Farrukh a, Shaaban K Mohamed b,c, Maqsood Ahmed a,*, Adel A Marzouk d, Samir M El-Moghazy e
PMCID: PMC3569817  PMID: 23424563

Abstract

In the title compound, C16H14ClN3O2S, the dihedral angle between the benzene and pyrazole rings is 52.75 (2)°, while that between the pyrazole and 4-chloro­phenyl rings is 54.0 (3)°. The terminal sulfonamide group adopts an approximately tetra­hedral geometry about the S atom with a C—S—N angle of 108.33 (10)°. In the crystal, pairs of N—H⋯N hydrogen bonds lead to the formation of inversion dimers. These dimers are linked via a second pair of N—H⋯N hydrogen bonds and C—H⋯O interactions, forming a two-dimensional network lying parallel to the bc plane. The two-dimensional networks are linked via C—H⋯Cl interactions, forming a three-dimensional structure.

Related literature  

For the use of pyrazoles in metal-organic chemistry, see: Mukherjee (2000); Halcrow (2009). For the synthesis and pharmaceutical applications of pyrazole compounds, see, for example: Ranatunge et al. (2004); Szabo et al. (2008); Bekhit & Abdel-Aziem (2004); Bekhit et al. (2006); Rostom et al. (2003); Gökhan-Kelekçi et al. (2007); Lin et al. (2007); El-Moghazy et al. (2012); Sakya et al. (2008); Shen et al. (2004).graphic file with name e-69-0o295-scheme1.jpg

Experimental  

Crystal data  

  • C16H14ClN3O2S

  • M r = 347.81

  • Monoclinic, Inline graphic

  • a = 15.878 (5) Å

  • b = 8.209 (5) Å

  • c = 12.953 (5) Å

  • β = 91.016 (5)°

  • V = 1688.1 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 296 K

  • 0.33 × 0.32 × 0.18 mm

Data collection  

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: analytical (SADABS; Bruker, 2009) T min = 0.890, T max = 0.938

  • 17257 measured reflections

  • 3462 independent reflections

  • 2594 reflections with I > 2σ(I)

  • R int = 0.030

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.115

  • S = 1.03

  • 3462 reflections

  • 217 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.33 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global_Publ_Block. DOI: 10.1107/S1600536813002134/sj5296sup1.cif

e-69-0o295-sup1.cif (23.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813002134/sj5296Isup2.hkl

e-69-0o295-Isup2.hkl (169.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813002134/sj5296Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H2N1⋯N3i 0.82 (2) 2.20 (2) 3.010 (3) 169 (2)
N1—H1N1⋯N3ii 0.84 (3) 2.33 (3) 3.157 (3) 167 (3)
C5—H5⋯O2iii 0.93 2.48 3.169 131
C3—H3⋯Cl1iv 0.93 2.93 3.602 130

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

GC University is gratefully acknowledged for use of the X-ray diffraction facility. The authors are also thankful to Manchester Metropolitan University and Alazhar University for supporting this study.

supplementary crystallographic information

Comment

Pyrazoles and related compounds are common molecules used in coordination or organometallic chemistry as bridging ligands, utilizing the ring positions of the two N atoms (Mukherjee, 2000; Halcrow, 2009). In addition, pyrazole derivatives represent an important class of biologically and pharmacologically active molecules. Several pyrazole compounds have been reported to be potential therapeutic agents for the treatment of inflammation (Ranatunge et al., 2004; Szabo et al., 2008; Bekhit & Abdel-Aziem 2004; Bekhit et al., 2006) including the marketed selective COX-2 drug, Celecoxib, that have been shown to be well tolerated with reduced gastrointestinal side effects (Sakya et al., 2008). Moreover, various substituted pyrazoles were reported to possess antitumor properties (Rostom et al., 2003; Lin et al., 2007). Other pyrazoles were used for treating Alzheimer's disease (Gökhan-Kelekçi et al., 2007) and acquired immunodeficiency syndrome (AIDS) (Shen et al., 2004; El-Moghazy et al., 2012).

The molecular assembly is built on the basis of intermolecular N—H···N type hydrogen bonds. The N3 atom on one side accepts a H1N1 atom from a neighbouring atom at a distance of 2.33 (3) Å and also accepts a H2N1 atom from a molecule on the opposite side at a distance of 2.20 (2) Å. There is a weak C–H···O type intermolecular hydrogen bond where the C5 atom donates its H atom to the O2 of the sulfonamide group at a distance of 2.48 Å and C—H—O angle of 130.8°. The molecule is also involved in the formation of a pair of weak intermolecular inversion related C3—H3···Cl1 hydrogen bonds where in one case the Cl1 atom accepts a H atom from a neighbouring molecule while in return, the C3 atom donates its H3 atom to the same molecule. The C–H···Cl distance in both cases is 2.93 Å and C—H—Cl angle is 130.0°.

Experimental

A mixture of 1 mmol (197 mg) 1-(4-chlorophenyl)butane-1,3-dione, 1 mmol (224 mg) 4-hydrazinylbenzenesulfonamide hydrochloride, 82 mg sodium acetate and 60 mg glacial acetic acid in 50 ml e thanol was stirred at room temperature for 24 h. The mixture was filtered off and the filtrate was concentrated under vacuum to deposit the solid product which was collected, dried and recrystallized from ethanol to afford a very good yield (80%) of high quality crystals suitable for X-ray diffraction (498 – 499 K).

Refinement

The H atoms attached to N1 were located in a difference map and were refined freely. All the H atoms attached to aromatic carbon atoms were initially located in the difference map but subsequently refined with a distance restraint of 0.93 Å and Uiso(H) = 1.2Ueq(C). The H atoms attached to C10 atom were positioned geometrically at idealized positions for methyl and were refined with C—H distance of 0.96 Å and Uiso(H) = 1.5Ueq(C).

Figures

Fig. 1.

Fig. 1.

An ORTEPIII diagram of the molecule showing the atom numbering scheme and thermal ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

A view of the molecular packing along the a axis.

Fig. 3.

Fig. 3.

A trimer of molecules formed by intermolecular N–H···N hydrogen bonds. Symmetry codes: (i) x, -y + 3/2, z - 1/2; (ii) -x + 1, -y + 1, -z

Fig. 4.

Fig. 4.

Image showing the intermolecular C–H···O and C–H···Cl hydrogen bonds. The H atoms not involved in any interaction have been omitted for clarity. Symmetry codes: (i) 2 - x, 1 - y, -z; (ii) x, 1/2 - y,1/2 + z]

Crystal data

C16H14ClN3O2S F(000) = 720
Mr = 347.81 Dx = 1.369 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 133 reflections
a = 15.878 (5) Å θ = 2.7–26.0°
b = 8.209 (5) Å µ = 0.36 mm1
c = 12.953 (5) Å T = 296 K
β = 91.016 (5)° Block, colourless
V = 1688.1 (13) Å3 0.33 × 0.32 × 0.18 mm
Z = 4

Data collection

Bruker Kappa APEXII CCD diffractometer 3462 independent reflections
Radiation source: fine-focus sealed tube 2594 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.030
ω and φ scans θmax = 26.4°, θmin = 2.8°
Absorption correction: analytical (SADABS; Bruker, 2009) h = −19→19
Tmin = 0.890, Tmax = 0.938 k = −10→10
17257 measured reflections l = −16→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0506P)2 + 0.8701P] where P = (Fo2 + 2Fc2)/3
3462 reflections (Δ/σ)max < 0.001
217 parameters Δρmax = 0.34 e Å3
0 restraints Δρmin = −0.33 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.62888 (4) 0.52544 (6) −0.26035 (4) 0.03590 (16)
Cl1 1.07396 (5) 0.23198 (14) 0.03417 (10) 0.1065 (4)
O1 0.70283 (10) 0.5918 (2) −0.30442 (11) 0.0545 (5)
N1 0.55446 (14) 0.6528 (2) −0.27978 (14) 0.0381 (4)
N3 0.62419 (11) 0.5109 (2) 0.25734 (12) 0.0338 (4)
O2 0.59721 (12) 0.37105 (18) −0.29389 (11) 0.0551 (5)
N2 0.68811 (10) 0.4740 (2) 0.19252 (12) 0.0327 (4)
C1 0.64780 (13) 0.5101 (2) −0.12544 (14) 0.0316 (4)
C3 0.72856 (14) 0.5768 (3) 0.02534 (16) 0.0434 (5)
H3 0.7738 0.6306 0.0567 0.052*
C6 0.59263 (14) 0.4216 (3) −0.06641 (15) 0.0383 (5)
H6 0.5465 0.3703 −0.0975 0.046*
C4 0.67440 (13) 0.4873 (2) 0.08368 (14) 0.0311 (4)
C11 0.83783 (14) 0.3838 (3) 0.19450 (17) 0.0467 (6)
C2 0.71592 (14) 0.5872 (3) −0.08065 (16) 0.0429 (5)
H2 0.7532 0.6457 −0.1210 0.051*
C5 0.60608 (13) 0.4095 (3) 0.03862 (15) 0.0372 (5)
H5 0.5694 0.3493 0.0788 0.045*
C9 0.65766 (15) 0.4978 (3) 0.35195 (16) 0.0403 (5)
C10 0.60555 (18) 0.5323 (3) 0.44406 (17) 0.0550 (7)
H10A 0.5507 0.5687 0.4219 0.082*
H10B 0.6322 0.6156 0.4851 0.082*
H10C 0.6002 0.4349 0.4844 0.082*
C7 0.76017 (14) 0.4366 (3) 0.24501 (16) 0.0415 (5)
C16 0.83766 (17) 0.2553 (4) 0.1266 (3) 0.0688 (8)
H16 0.7877 0.1994 0.1130 0.083*
C8 0.74152 (15) 0.4516 (3) 0.34751 (17) 0.0506 (6)
H8 0.7781 0.4341 0.4033 0.061*
C14 0.98314 (17) 0.2900 (4) 0.0978 (3) 0.0676 (8)
C12 0.91258 (18) 0.4628 (4) 0.2135 (3) 0.0808 (10)
H12 0.9143 0.5492 0.2599 0.097*
C15 0.91033 (19) 0.2080 (4) 0.0784 (3) 0.0800 (10)
H15 0.9095 0.1204 0.0329 0.096*
C13 0.98526 (19) 0.4160 (5) 0.1648 (3) 0.0943 (12)
H13 1.0355 0.4710 0.1781 0.113*
H2N1 0.5670 (16) 0.747 (3) −0.266 (2) 0.050 (8)*
H1N1 0.5061 (18) 0.620 (4) −0.265 (2) 0.061 (9)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0498 (3) 0.0367 (3) 0.0213 (2) 0.0057 (2) 0.0010 (2) −0.0004 (2)
Cl1 0.0537 (5) 0.1252 (8) 0.1417 (9) 0.0173 (5) 0.0359 (5) 0.0154 (7)
O1 0.0500 (10) 0.0833 (12) 0.0304 (8) 0.0055 (9) 0.0090 (7) 0.0095 (8)
N1 0.0445 (12) 0.0344 (10) 0.0352 (10) −0.0008 (9) −0.0052 (8) 0.0011 (8)
N3 0.0408 (10) 0.0353 (9) 0.0254 (8) 0.0006 (7) 0.0019 (7) 0.0009 (7)
O2 0.0967 (14) 0.0358 (8) 0.0324 (8) 0.0054 (9) −0.0079 (8) −0.0078 (7)
N2 0.0359 (9) 0.0379 (9) 0.0241 (8) −0.0004 (7) −0.0012 (7) 0.0010 (7)
C1 0.0395 (11) 0.0323 (10) 0.0229 (9) 0.0057 (9) 0.0007 (8) 0.0003 (8)
C3 0.0409 (12) 0.0568 (14) 0.0322 (11) −0.0150 (10) −0.0038 (9) 0.0033 (10)
C6 0.0434 (12) 0.0406 (11) 0.0305 (10) −0.0086 (10) −0.0058 (9) 0.0012 (9)
C4 0.0369 (11) 0.0330 (10) 0.0235 (9) 0.0028 (8) −0.0006 (8) 0.0011 (8)
C11 0.0370 (12) 0.0625 (15) 0.0405 (12) 0.0009 (11) −0.0062 (10) 0.0068 (11)
C2 0.0423 (12) 0.0556 (14) 0.0309 (11) −0.0108 (11) 0.0035 (9) 0.0075 (10)
C5 0.0419 (12) 0.0399 (11) 0.0297 (10) −0.0081 (9) 0.0004 (9) 0.0046 (9)
C9 0.0529 (14) 0.0426 (12) 0.0255 (10) −0.0081 (10) −0.0005 (9) 0.0010 (9)
C10 0.0704 (17) 0.0659 (16) 0.0290 (11) −0.0104 (13) 0.0082 (11) −0.0044 (11)
C7 0.0388 (12) 0.0524 (13) 0.0331 (11) −0.0018 (10) −0.0069 (9) 0.0033 (10)
C16 0.0398 (14) 0.078 (2) 0.089 (2) −0.0038 (13) 0.0061 (14) −0.0206 (17)
C8 0.0510 (14) 0.0721 (17) 0.0284 (11) −0.0033 (12) −0.0110 (10) 0.0048 (11)
C14 0.0388 (14) 0.083 (2) 0.081 (2) 0.0101 (14) 0.0075 (14) 0.0159 (17)
C12 0.0460 (16) 0.102 (2) 0.095 (2) −0.0116 (16) −0.0052 (16) −0.027 (2)
C15 0.0517 (18) 0.088 (2) 0.100 (3) 0.0071 (16) 0.0087 (17) −0.0284 (19)
C13 0.0375 (16) 0.111 (3) 0.134 (3) −0.0149 (17) 0.0036 (18) −0.018 (3)

Geometric parameters (Å, º)

S1—O1 1.4229 (17) C11—C16 1.373 (4)
S1—O2 1.4284 (18) C11—C7 1.471 (3)
S1—N1 1.594 (2) C2—H2 0.9300
S1—C1 1.772 (2) C5—H5 0.9300
Cl1—C14 1.740 (3) C9—C8 1.387 (3)
N1—H2N1 0.82 (3) C9—C10 1.491 (3)
N1—H1N1 0.84 (3) C10—H10A 0.9600
N3—C9 1.331 (3) C10—H10B 0.9600
N3—N2 1.363 (2) C10—H10C 0.9600
N2—C7 1.356 (3) C7—C8 1.371 (3)
N2—C4 1.427 (2) C16—C15 1.378 (4)
C1—C2 1.373 (3) C16—H16 0.9300
C1—C6 1.380 (3) C8—H8 0.9300
C3—C4 1.369 (3) C14—C13 1.351 (5)
C3—C2 1.387 (3) C14—C15 1.357 (4)
C3—H3 0.9300 C12—C13 1.379 (4)
C6—C5 1.377 (3) C12—H12 0.9300
C6—H6 0.9300 C15—H15 0.9300
C4—C5 1.380 (3) C13—H13 0.9300
C11—C12 1.371 (4)
O1—S1—O2 120.40 (11) C6—C5—H5 120.3
O1—S1—N1 107.47 (12) C4—C5—H5 120.3
O2—S1—N1 106.13 (12) N3—C9—C8 110.59 (19)
O1—S1—C1 107.23 (10) N3—C9—C10 120.2 (2)
O2—S1—C1 106.82 (9) C8—C9—C10 129.2 (2)
N1—S1—C1 108.33 (10) C9—C10—H10A 109.5
S1—N1—H2N1 114.2 (18) C9—C10—H10B 109.5
S1—N1—H1N1 116 (2) H10A—C10—H10B 109.5
H2N1—N1—H1N1 118 (3) C9—C10—H10C 109.5
C9—N3—N2 105.06 (17) H10A—C10—H10C 109.5
C7—N2—N3 111.87 (16) H10B—C10—H10C 109.5
C7—N2—C4 128.71 (18) N2—C7—C8 105.7 (2)
N3—N2—C4 119.31 (16) N2—C7—C11 123.38 (19)
C2—C1—C6 120.78 (18) C8—C7—C11 130.8 (2)
C2—C1—S1 120.16 (16) C11—C16—C15 121.0 (3)
C6—C1—S1 119.06 (15) C11—C16—H16 119.5
C4—C3—C2 119.88 (19) C15—C16—H16 119.5
C4—C3—H3 120.1 C7—C8—C9 106.77 (19)
C2—C3—H3 120.1 C7—C8—H8 126.6
C5—C6—C1 119.78 (19) C9—C8—H8 126.6
C5—C6—H6 120.1 C13—C14—C15 120.7 (3)
C1—C6—H6 120.1 C13—C14—Cl1 120.2 (2)
C3—C4—C5 120.80 (18) C15—C14—Cl1 119.2 (3)
C3—C4—N2 120.02 (18) C11—C12—C13 121.0 (3)
C5—C4—N2 119.18 (18) C11—C12—H12 119.5
C12—C11—C16 118.0 (3) C13—C12—H12 119.5
C12—C11—C7 120.7 (2) C14—C15—C16 119.6 (3)
C16—C11—C7 121.3 (2) C14—C15—H15 120.2
C1—C2—C3 119.3 (2) C16—C15—H15 120.2
C1—C2—H2 120.4 C14—C13—C12 119.7 (3)
C3—C2—H2 120.4 C14—C13—H13 120.2
C6—C5—C4 119.44 (19) C12—C13—H13 120.2
C9—N3—N2—C7 0.7 (2) N2—N3—C9—C10 179.11 (19)
C9—N3—N2—C4 −175.84 (17) N3—N2—C7—C8 −0.5 (2)
O1—S1—C1—C2 12.9 (2) C4—N2—C7—C8 175.7 (2)
O2—S1—C1—C2 143.19 (18) N3—N2—C7—C11 176.7 (2)
N1—S1—C1—C2 −102.9 (2) C4—N2—C7—C11 −7.2 (3)
O1—S1—C1—C6 −167.96 (17) C12—C11—C7—N2 126.0 (3)
O2—S1—C1—C6 −37.6 (2) C16—C11—C7—N2 −53.5 (4)
N1—S1—C1—C6 76.33 (19) C12—C11—C7—C8 −57.6 (4)
C2—C1—C6—C5 −0.3 (3) C16—C11—C7—C8 122.9 (3)
S1—C1—C6—C5 −179.52 (16) C12—C11—C16—C15 −0.5 (5)
C2—C3—C4—C5 −1.3 (3) C7—C11—C16—C15 179.0 (3)
C2—C3—C4—N2 178.9 (2) N2—C7—C8—C9 0.1 (3)
C7—N2—C4—C3 −48.5 (3) C11—C7—C8—C9 −176.8 (2)
N3—N2—C4—C3 127.4 (2) N3—C9—C8—C7 0.4 (3)
C7—N2—C4—C5 131.7 (2) C10—C9—C8—C7 −179.3 (2)
N3—N2—C4—C5 −52.5 (3) C16—C11—C12—C13 0.8 (5)
C6—C1—C2—C3 −0.7 (3) C7—C11—C12—C13 −178.7 (3)
S1—C1—C2—C3 178.52 (18) C13—C14—C15—C16 0.9 (6)
C4—C3—C2—C1 1.5 (4) Cl1—C14—C15—C16 −178.5 (3)
C1—C6—C5—C4 0.5 (3) C11—C16—C15—C14 −0.3 (5)
C3—C4—C5—C6 0.3 (3) C15—C14—C13—C12 −0.5 (6)
N2—C4—C5—C6 −179.87 (19) Cl1—C14—C13—C12 178.9 (3)
N2—N3—C9—C8 −0.6 (2) C11—C12—C13—C14 −0.3 (6)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H2N1···N3i 0.82 (2) 2.20 (2) 3.010 (3) 169 (2)
N1—H1N1···N3ii 0.84 (3) 2.33 (3) 3.157 (3) 167 (3)
C5—H5···O2iii 0.93 2.48 3.169 131
C3—H3···Cl1iv 0.93 2.93 3.602 130

Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) −x+1, −y+1, −z; (iii) x, −y+1/2, z+1/2; (iv) −x+2, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5296).

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
  2. Bekhit, A. A. & Abdel-Aziem, T. (2004). Bioorg. Med. Chem. 12, 1935–1945. [DOI] [PubMed]
  3. Bekhit, A. A., Abdel-Rahman, H. M. & Guemel, A. A. (2006). Arch. Pharm. Chem. Life Sci. 339, 81–87. [DOI] [PubMed]
  4. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  5. El-Moghazy, S. M., Barsoum, F. F., Abdel-Rahman, H. M. & Marzouk, A. A. (2012). Med. Chem. Res. 21, 1722–1733.
  6. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  7. Gökhan-Kelekçi, N., Yabanoğlu, S., Küpeli, E., Salgin, U., Özgen, Ö., Uçar, G., Yeşilada, E., Kendi, E., Yeşilada, A. & Bilgin, A. A. (2007). Bioorg. Med. Chem. 15, 5775–5786. [DOI] [PubMed]
  8. Halcrow, M. A. (2009). Dalton Trans. pp. 2059–2073. [DOI] [PubMed]
  9. Lin, R., Chiu, G., Yu, Y., Connolly, P. J., Li, S., Lu, Y., Adams, M., Fuentes-Pesquera, A. R., Emanuel, S. L. & Greenberger, L. M. (2007). Bioorg. Med. Chem. Lett. 17, 4557–4561. [DOI] [PubMed]
  10. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  11. Mukherjee, R. (2000). Coord. Chem. Rev. 203, 151–218.
  12. Ranatunge, R. R., Earl, R. A., Garvey, D. S., Janero, D. R., Letts, L. G., Martino, A. M., Murty, M. G., Richardson, S. K., Schwalb, D. J., Young, D. V. & Zemtseva, I. S. (2004). Bioorg. Med. Chem. Lett. 14, 6049–6052. [DOI] [PubMed]
  13. Rostom, S. A. F., Shalaby, M. A. & El-Demellawy, M. A. (2003). Eur. J. Med. Chem. 38, 959–974. [DOI] [PubMed]
  14. Sakya, S. M., Shavnya, A., Cheng, H., Rast, C. L. B., Li, J., Koss, D. A., Jaynes, B. H., Mann, D. W., Petras, C. F., Seibel, S. B., Haven, M. L. & Lynch, M. P. (2008). Bioorg. Med. Chem. Lett. 18, 1042–1045. [DOI] [PubMed]
  15. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  16. Shen, D. M., Shu, M., Mills, S. G., Chapman, K. T., Malkowitz, L., Springer, M. S., Gould, S. L., DeMartino, J. A., Siciliano, S. J., Kwei, G. Y., Carella, A., Carver, G., Holmes, K., Schleif, W. A., Danzeisen, R., Hazuda, D., Kessler, J., Lineberger, J., Miller, M. D. & Emini, E. A. (2004). Bioorg. Med. Chem. Lett. 14, 935–939.
  17. Szabo, G., Fischer, J., Kis-Varga, A. & Gyires, K. (2008). J. Med. Chem. 51, 142–147. [DOI] [PubMed]
  18. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global_Publ_Block. DOI: 10.1107/S1600536813002134/sj5296sup1.cif

e-69-0o295-sup1.cif (23.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813002134/sj5296Isup2.hkl

e-69-0o295-Isup2.hkl (169.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813002134/sj5296Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES