Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Jan 31;69(Pt 2):o305. doi: 10.1107/S1600536813002055

Phenyl acridine-9-carboxyl­ate

Michał Wera a, Damian Trzybiński a, Karol Krzymiński a, Jerzy Błażejowski a,*
PMCID: PMC3569824  PMID: 23424570

Abstract

The acridine ring system and the benzene ring in the title compound, C20H13NO2, are oriented at a dihedral angle of 6.4 (2)°. The carboxyl group is twisted at an angle of 83.6 (2)° relative to the acridine skeleton. The mol­ecules in the crystal are arranged in stacks along the b axis, with two of the acridine rings involved in multiple π–π inter­actions [centroid–centroid distances in the range 3.536 (2)–3.894 (2) Å]. Stacks arranged parallel are linked via C—H⋯π inter­actions, forming layers in the ac plane that are in contact with adjacent, inversely oriented layers via other C—H⋯π inter­actions, giving rise to double layers. The inversely oriented double layers inter­act dispersively. The acridine units are parallel within the parallel-oriented stacks, but inclined at an angle of 79.6 (2)° in the inversely oriented stacks.

Related literature  

For general background to the applications of the title compound, see: Krzymiński et al. (2011); Natrajan et al. (2012); Trzybiński et al. (2010). For related structures, see: Trzybiński et al. (2013). For inter­molecular inter­actions, see: Hunter et al. (2001); Takahashi et al. (2001). For the synthesis, see: Sato (1996); Trzybiński et al. (2010).graphic file with name e-69-0o305-scheme1.jpg

Experimental  

Crystal data  

  • C20H13NO2

  • M r = 299.31

  • Monoclinic, Inline graphic

  • a = 17.094 (2) Å

  • b = 5.4175 (7) Å

  • c = 16.310 (2) Å

  • β = 95.545 (11)°

  • V = 1503.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 295 K

  • 0.6 × 0.2 × 0.1 mm

Data collection  

  • Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008) T min = 0.354, T max = 0.986

  • 9221 measured reflections

  • 2651 independent reflections

  • 1560 reflections with I > 2σ(I)

  • R int = 0.068

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.073

  • wR(F 2) = 0.203

  • S = 1.04

  • 2651 reflections

  • 209 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813002055/xu5671sup1.cif

e-69-0o305-sup1.cif (24.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813002055/xu5671Isup2.hkl

e-69-0o305-Isup2.hkl (130.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813002055/xu5671Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg2 and Cg4 denote the centroids of the C1–C4/C11/C12 and C18–C23 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯Cg2i 0.93 2.98 3.712 (3) 137
C7—H7⋯Cg4ii 0.93 2.84 3.646 (3) 145

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This study was financed by the State Funds for Scientific Research through National Center for Science grant No. N N204 375 740 (contract No. 3757/B/H03/2011/40).

supplementary crystallographic information

Comment

Phenyl acridine-9-carboxylates are the precursors of 9-(phenoxycarbonyl)-10-methylacridinium salts, whose cations exhibit a chemiluminogenic ability that can be utilized analytically (Natrajan et al., 2012). Here we present the structure of phenyl acridine-9-carboxylate, the precursor of a basic chemiluminogen in this group of compounds, whose structure (Trzybiński et al., 2010) and chemiluminogenic features (Krzymiński et al., 2011) have recently been investigated.

The bond lengths and angles characterizing the geometry of the acridine and phenyl moieties of the title compound (Fig. 1) are similar to those found in phenyl acridine-9-carboxylates alkyl-substituted at the benzene ring, investigated earlier (Trzybiński et al., 2013, and references cited therein). With respective average deviations from planarity of 0.0143 (3) Å and 0.0037 (3) Å, the acridine ring system and the benzene ring are oriented at a dihedral angle of 6.4 (2)° [this angle varies between 30.0 (2)° – 37.7 (1)°, as indicated by the data for phenyl acridine-9-carboxylates alkyl-substituted at the benzene ring, investigated earlier (Trzybiński et al., 2013, and the references cited therein)]. The carboxyl group is twisted at an angle of 83.6 (2)° relative to the acridine skeleton [this angle varies between 58.0 (2)° – 68.1 (2)° as indicated by the data for phenyl acridine-9-carboxylates alkyl-substituted at the benzene ring, investigated earlier (Trzybiński et al., 2013, and the references cited therein)].

The search for intermolecular interactions in the crystal using PLATON (Spek, 2009) has shown that the parallel oriented molecules of the title compound (Fig. 2) are arranged in stacks along the b axis (Fig. 3) in which two of the acridine rings are involved in multiple π–π interactions (Table 2, Fig. 2) of an attractive nature (Hunter et al., 2001). The stacks arranged parallel linked via C–H···π interactions, of an attractive nature (Takahashi et al., 2001), form layers in the ac plane that are in contact with adjacent, inversely-oriented such layers via other C–H···π interactons giving rise to double layers (Table 1, Figs. 2 and 3). The inversely oriented double layers interact dispersively. The acridine moieties are parallel within the stacks oriented in parallel, but inclined at an angle of 79.6 (2)° in the inversely oriented stacks. This interesting crystal architecture to some extent resembles the crystal structure of 2,6-dimethylphenyl acridine-9-carboxylate (Trzybiński et al., 2013).

Experimental

Phenyl acridine-9-carboxylate was synthesized by the esterification of 9-(chlorocarbonyl)acridine (obtained in the reaction of acridine-9-carboxylic acid with a tenfold molar excess of thionyl chloride) with phenol in anhydrous dichloromethane in the presence of N,N-diethylethanamine and a catalytic amount of N,N-dimethyl-4-pyridinamine (room temperature, 15 h) (Sato, 1996; Trzybiński et al., 2010). The product was purified chromatographically (SiO2, cyclohexane/ethyl acetate, 3/2 v/v). Pale-yellow crystals suitable for X-ray investigations were grown from cyclohexane (m.p. 463–464 K).

Refinement

H atoms were positioned geometrically, with C–H = 0.93 Å, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 25% probability level and H atoms are shown as small spheres of arbitrary radius. Cg1, Cg2, Cg3 and Cg4 denote the ring centroids.

Fig. 2.

Fig. 2.

The arrangement of the molecules in the crystal structure. The C–H···π interactions are represented by dashed lines, the π–π contacts by dotted lines. H atoms not involved in the interactions have been omitted. [Symmetry codes: (i) –x, y – 1/2, –z + 1/2; (ii) x, –y + 3/2, z + 1/2; (iii) x, y + 1, z; (iv) x, y – 1, z.]

Fig. 3.

Fig. 3.

Molecular stacks in the crystal structure, viewed along the b axis. The C–H···π interactions are represented by dashed lines. H atoms not involved in the interactions have been omitted.

Crystal data

C20H13NO2 F(000) = 624
Mr = 299.31 Dx = 1.322 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2651 reflections
a = 17.094 (2) Å θ = 3.3–25.0°
b = 5.4175 (7) Å µ = 0.09 mm1
c = 16.310 (2) Å T = 295 K
β = 95.545 (11)° Needle, pale-yellow
V = 1503.3 (3) Å3 0.6 × 0.2 × 0.1 mm
Z = 4

Data collection

Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer 2651 independent reflections
Radiation source: Enhanced (Mo) X-ray Source 1560 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.068
Detector resolution: 10.4002 pixels mm-1 θmax = 25.0°, θmin = 3.3°
ω scans h = −17→20
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008) k = −5→6
Tmin = 0.354, Tmax = 0.986 l = −16→19
9221 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.073 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.203 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.1073P)2] where P = (Fo2 + 2Fc2)/3
2651 reflections (Δ/σ)max < 0.001
209 parameters Δρmax = 0.29 e Å3
0 restraints Δρmin = −0.34 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.15883 (16) −0.0807 (5) 0.28634 (16) 0.0564 (7)
H1 0.2005 −0.0842 0.2537 0.068*
C2 0.09977 (17) −0.2461 (5) 0.27301 (17) 0.0602 (8)
H2 0.1012 −0.3623 0.2312 0.072*
C3 0.03597 (17) −0.2442 (5) 0.32180 (18) 0.0622 (8)
H3 −0.0042 −0.3592 0.3118 0.075*
C4 0.03260 (16) −0.0781 (5) 0.38254 (17) 0.0573 (7)
H4 −0.0098 −0.0801 0.4142 0.069*
C5 0.13817 (18) 0.5964 (5) 0.54258 (17) 0.0621 (8)
H5 0.0945 0.5900 0.5724 0.075*
C6 0.1938 (2) 0.7688 (5) 0.56161 (18) 0.0690 (8)
H6 0.1877 0.8807 0.6038 0.083*
C7 0.26132 (19) 0.7811 (5) 0.51795 (19) 0.0673 (8)
H7 0.2996 0.9000 0.5318 0.081*
C8 0.27029 (17) 0.6208 (5) 0.45642 (17) 0.0581 (7)
H8 0.3149 0.6312 0.4281 0.070*
C9 0.21784 (14) 0.2683 (4) 0.36980 (15) 0.0473 (7)
N10 0.08713 (13) 0.2595 (4) 0.46103 (13) 0.0548 (6)
C11 0.15783 (14) 0.0982 (4) 0.34973 (15) 0.0451 (6)
C12 0.09280 (15) 0.1001 (4) 0.39897 (15) 0.0489 (7)
C13 0.21349 (14) 0.4373 (4) 0.43382 (15) 0.0479 (7)
C14 0.14481 (15) 0.4254 (4) 0.47830 (15) 0.0506 (7)
C15 0.29032 (16) 0.2631 (5) 0.32487 (17) 0.0552 (7)
O16 0.28060 (10) 0.3857 (3) 0.25400 (11) 0.0581 (6)
O17 0.34884 (13) 0.1610 (5) 0.34906 (14) 0.1104 (10)
C18 0.34637 (15) 0.3952 (5) 0.20676 (15) 0.0486 (7)
C19 0.39837 (17) 0.5859 (5) 0.21985 (17) 0.0603 (8)
H19 0.3919 0.7045 0.2599 0.072*
C20 0.46112 (17) 0.5984 (6) 0.1720 (2) 0.0695 (9)
H20 0.4975 0.7259 0.1801 0.083*
C21 0.46958 (17) 0.4238 (6) 0.11312 (19) 0.0695 (9)
H21 0.5119 0.4321 0.0814 0.083*
C22 0.41592 (19) 0.2364 (6) 0.10059 (19) 0.0699 (9)
H22 0.4216 0.1193 0.0599 0.084*
C23 0.35334 (17) 0.2201 (5) 0.14809 (18) 0.0613 (8)
H23 0.3169 0.0927 0.1401 0.074*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0505 (18) 0.0670 (17) 0.0530 (16) 0.0065 (13) 0.0117 (13) 0.0049 (14)
C2 0.060 (2) 0.0634 (17) 0.0577 (17) 0.0004 (14) 0.0095 (14) −0.0044 (14)
C3 0.0557 (19) 0.0651 (17) 0.0657 (19) −0.0119 (13) 0.0046 (15) 0.0053 (16)
C4 0.0440 (17) 0.0697 (17) 0.0600 (17) −0.0022 (13) 0.0151 (13) 0.0072 (15)
C5 0.065 (2) 0.0662 (17) 0.0579 (17) 0.0055 (15) 0.0196 (14) −0.0019 (15)
C6 0.083 (2) 0.0668 (18) 0.0567 (18) 0.0026 (16) 0.0038 (16) −0.0074 (15)
C7 0.071 (2) 0.0649 (18) 0.0643 (19) −0.0087 (15) −0.0035 (16) 0.0059 (16)
C8 0.0508 (18) 0.0667 (17) 0.0565 (17) −0.0039 (13) 0.0045 (13) 0.0079 (14)
C9 0.0397 (15) 0.0578 (15) 0.0460 (14) 0.0069 (11) 0.0123 (11) 0.0092 (12)
N10 0.0488 (15) 0.0625 (13) 0.0561 (14) −0.0013 (11) 0.0202 (11) 0.0040 (11)
C11 0.0348 (14) 0.0565 (14) 0.0453 (14) 0.0046 (11) 0.0111 (11) 0.0059 (13)
C12 0.0427 (16) 0.0568 (15) 0.0479 (15) 0.0019 (12) 0.0081 (12) 0.0084 (13)
C13 0.0415 (16) 0.0553 (15) 0.0477 (15) 0.0028 (11) 0.0077 (12) 0.0083 (12)
C14 0.0478 (17) 0.0557 (15) 0.0496 (15) 0.0049 (12) 0.0108 (12) 0.0071 (13)
C15 0.0421 (17) 0.0687 (17) 0.0564 (17) 0.0071 (13) 0.0132 (13) 0.0141 (14)
O16 0.0396 (11) 0.0788 (12) 0.0590 (11) 0.0076 (8) 0.0204 (8) 0.0163 (10)
O17 0.0564 (16) 0.182 (2) 0.0990 (18) 0.0486 (15) 0.0378 (13) 0.0715 (17)
C18 0.0376 (15) 0.0609 (15) 0.0493 (15) 0.0022 (12) 0.0140 (11) 0.0099 (13)
C19 0.0558 (18) 0.0657 (17) 0.0615 (17) −0.0029 (14) 0.0169 (14) −0.0034 (14)
C20 0.051 (2) 0.0773 (19) 0.082 (2) −0.0141 (14) 0.0167 (16) 0.0079 (18)
C21 0.0485 (19) 0.096 (2) 0.0667 (19) 0.0011 (16) 0.0220 (15) 0.0150 (18)
C22 0.071 (2) 0.080 (2) 0.0629 (19) 0.0036 (16) 0.0253 (16) −0.0085 (16)
C23 0.0560 (19) 0.0645 (17) 0.0662 (18) −0.0090 (13) 0.0193 (14) −0.0021 (15)

Geometric parameters (Å, º)

C1—C2 1.352 (4) C9—C15 1.500 (4)
C1—C11 1.418 (3) N10—C12 1.341 (3)
C1—H1 0.9300 N10—C14 1.344 (3)
C2—C3 1.411 (4) C11—C12 1.433 (3)
C2—H2 0.9300 C13—C14 1.440 (3)
C3—C4 1.343 (4) C15—O17 1.177 (3)
C3—H3 0.9300 C15—O16 1.329 (3)
C4—C12 1.418 (4) O16—C18 1.424 (3)
C4—H4 0.9300 C18—C23 1.361 (4)
C5—C6 1.347 (4) C18—C19 1.366 (4)
C5—C14 1.412 (3) C19—C20 1.387 (4)
C5—H5 0.9300 C19—H19 0.9300
C6—C7 1.415 (4) C20—C21 1.366 (4)
C6—H6 0.9300 C20—H20 0.9300
C7—C8 1.347 (4) C21—C22 1.370 (4)
C7—H7 0.9300 C21—H21 0.9300
C8—C13 1.413 (4) C22—C23 1.383 (4)
C8—H8 0.9300 C22—H22 0.9300
C9—C11 1.394 (3) C23—H23 0.9300
C9—C13 1.396 (3)
C2—C1—C11 120.6 (3) N10—C12—C4 118.5 (2)
C2—C1—H1 119.7 N10—C12—C11 123.0 (2)
C11—C1—H1 119.7 C4—C12—C11 118.5 (2)
C1—C2—C3 120.7 (3) C9—C13—C8 124.9 (2)
C1—C2—H2 119.6 C9—C13—C14 116.9 (2)
C3—C2—H2 119.6 C8—C13—C14 118.2 (2)
C4—C3—C2 120.8 (3) N10—C14—C5 119.0 (2)
C4—C3—H3 119.6 N10—C14—C13 122.8 (2)
C2—C3—H3 119.6 C5—C14—C13 118.2 (2)
C3—C4—C12 120.9 (3) O17—C15—O16 123.8 (2)
C3—C4—H4 119.6 O17—C15—C9 124.1 (2)
C12—C4—H4 119.6 O16—C15—C9 112.1 (2)
C6—C5—C14 121.4 (3) C15—O16—C18 116.72 (19)
C6—C5—H5 119.3 C23—C18—C19 122.5 (2)
C14—C5—H5 119.3 C23—C18—O16 118.9 (2)
C5—C6—C7 120.5 (3) C19—C18—O16 118.6 (2)
C5—C6—H6 119.7 C18—C19—C20 118.4 (3)
C7—C6—H6 119.7 C18—C19—H19 120.8
C8—C7—C6 120.1 (3) C20—C19—H19 120.8
C8—C7—H7 119.9 C21—C20—C19 120.1 (3)
C6—C7—H7 119.9 C21—C20—H20 119.9
C7—C8—C13 121.5 (3) C19—C20—H20 119.9
C7—C8—H8 119.2 C20—C21—C22 120.2 (3)
C13—C8—H8 119.2 C20—C21—H21 119.9
C11—C9—C13 121.2 (2) C22—C21—H21 119.9
C11—C9—C15 119.8 (2) C21—C22—C23 120.4 (3)
C13—C9—C15 118.9 (2) C21—C22—H22 119.8
C12—N10—C14 118.9 (2) C23—C22—H22 119.8
C9—C11—C1 124.2 (2) C18—C23—C22 118.3 (3)
C9—C11—C12 117.2 (2) C18—C23—H23 120.8
C1—C11—C12 118.6 (2) C22—C23—H23 120.8
C11—C1—C2—C3 0.0 (4) C7—C8—C13—C14 0.2 (4)
C1—C2—C3—C4 0.0 (4) C12—N10—C14—C5 178.8 (2)
C2—C3—C4—C12 0.3 (4) C12—N10—C14—C13 −1.1 (4)
C14—C5—C6—C7 −0.8 (4) C6—C5—C14—N10 −179.0 (3)
C5—C6—C7—C8 0.4 (4) C6—C5—C14—C13 0.8 (4)
C6—C7—C8—C13 −0.2 (4) C9—C13—C14—N10 0.8 (4)
C13—C9—C11—C1 −179.1 (2) C8—C13—C14—N10 179.3 (2)
C15—C9—C11—C1 −2.1 (4) C9—C13—C14—C5 −179.1 (2)
C13—C9—C11—C12 −1.7 (3) C8—C13—C14—C5 −0.5 (3)
C15—C9—C11—C12 175.4 (2) C11—C9—C15—O17 −95.7 (4)
C2—C1—C11—C9 177.2 (2) C13—C9—C15—O17 81.4 (4)
C2—C1—C11—C12 −0.2 (4) C11—C9—C15—O16 83.7 (3)
C14—N10—C12—C4 178.5 (2) C13—C9—C15—O16 −99.2 (3)
C14—N10—C12—C11 −0.1 (3) O17—C15—O16—C18 −1.4 (4)
C3—C4—C12—N10 −179.1 (2) C9—C15—O16—C18 179.2 (2)
C3—C4—C12—C11 −0.5 (4) C15—O16—C18—C23 92.5 (3)
C9—C11—C12—N10 1.4 (4) C15—O16—C18—C19 −90.1 (3)
C1—C11—C12—N10 179.0 (2) C23—C18—C19—C20 −0.9 (4)
C9—C11—C12—C4 −177.1 (2) O16—C18—C19—C20 −178.2 (2)
C1—C11—C12—C4 0.4 (3) C18—C19—C20—C21 0.5 (4)
C11—C9—C13—C8 −177.8 (2) C19—C20—C21—C22 0.4 (4)
C15—C9—C13—C8 5.1 (4) C20—C21—C22—C23 −0.9 (5)
C11—C9—C13—C14 0.6 (3) C19—C18—C23—C22 0.5 (4)
C15—C9—C13—C14 −176.4 (2) O16—C18—C23—C22 177.7 (2)
C7—C8—C13—C9 178.6 (2) C21—C22—C23—C18 0.4 (4)

Hydrogen-bond geometry (Å, º)

Cg2 and Cg4 denote the centroids of the C1–C4/C11/C12 and C18–C23 rings, respectively.

D—H···A D—H H···A D···A D—H···A
C3—H3···Cg2i 0.93 2.98 3.712 (3) 137
C7—H7···Cg4ii 0.93 2.84 3.646 (3) 145

Symmetry codes: (i) −x, y−1/2, −z+1/2; (ii) x, −y+3/2, z+1/2.

π–π interactions (Å,°).

I J CgI···CgJ Dihedral angle CgI_Perp CgI_Offset
1 2iii 3.894 (2) 1.7 (2) 3.451 (1) 1.804 (1)
1 3iv 3.893 (2) 1.4 (2) 3.454 (1) 1.796 (1)
2 1iv 3.894 (2) 1.7 (2) 3.498 (2) 1.711 (2)
2 3iv 3.536 (2) 1.1 (2) 3.482 (2) 0.616 (2)
3 1iii 3.893 (2) 1.4 (2) 3.496 (2) 1.713 (2)
3 2iii 3.536 (2) 1.1 (2) 3.481 (2) 0.621 (2)

Symmetry codes: (iii) x, y + 1, z; (iv) x, y – 1, z.Cg1, Cg2 and Cg3 are the centroids of the C9/N10/C11–C14, C1–C4/C11/C12 and C5–C8/C13/C14 rings, respectively. CgI···CgJ is the distance between ring centroids. The dihedral angle is that between the planes of the rings I and J. CgI_Perp is the perpendicular distance of CgI from ring J. CgI_Offset is the distance between CgI and perpendicular projection of CgJ on ring I.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5671).

References

  1. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  2. Hunter, C. A., Lawson, K. R., Perkins, J. & Urch, C. J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 651–669.
  3. Krzymiński, K., Ożóg, A., Malecha, P., Roshal, A. D., Wróblewska, A., Zadykowicz, B. & Blazejowski, J. (2011). J. Org. Chem. 76, 1072–1085. [DOI] [PubMed]
  4. Natrajan, A., Sharpe, D. & Wen, D. (2012). Org. Biomol. Chem. 10, 3432–3447. [DOI] [PubMed]
  5. Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  6. Sato, N. (1996). Tetrahedron Lett. 37, 8519–8522.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  9. Takahashi, O., Kohno, Y., Iwasaki, S., Saito, K., Iwaoka, M., Tomada, S., Umezawa, Y., Tsuboyama, S. & Nishio, M. (2001). Bull. Chem. Soc. Jpn, 74, 2421–2430.
  10. Trzybiński, D., Krzymiński, K., Sikorski, A. & Błażejowski, J. (2010). Acta Cryst. E66, o906–o907. [DOI] [PMC free article] [PubMed]
  11. Trzybiński, D., Wera, M., Krzymiński, K. & Błażejowski, J. (2013). Acta Cryst. E69, o166. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813002055/xu5671sup1.cif

e-69-0o305-sup1.cif (24.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813002055/xu5671Isup2.hkl

e-69-0o305-Isup2.hkl (130.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813002055/xu5671Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES