Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Jan 31;69(Pt 2):o308. doi: 10.1107/S1600536813002390

2-[3-(Naphthalen-2-yl)phen­yl]naph­thal­ene1

Mark L Wolfenden a, Raj K Dhar a, Frank R Fronczek a,*, Steven F Watkins a
PMCID: PMC3569827  PMID: 23424573

Abstract

The title compound, C26H18, consists of a benzene ring with meta-substituted 2-naphthalene substituents, which are essentially planar [r.m.s. deviations = 0.022 (1) and 0.003 (1) Å]. The conformation is syn, with equivalent torsion angles about the benzene–naphthalene bonds of −36.04 (13) and +34.14 (13)°. The mol­ecule has quasi-C s mol­ecular symmetry.

Related literature  

For properties of oligophenyls, see: Bocchinfuso et al. (2009) and for their synthesis, see: Marcinow & Rabideau (1990); Du et al. (1986); Woods et al. (1951). For similar structures, see: Baker et al. (1990); Lin & Williams (1975); Bart (1968); Tummala et al. (2013). For conformational calculations with GAUSSIAN09, see: Frisch et al. (2009).graphic file with name e-69-0o308-scheme1.jpg

Experimental  

Crystal data  

  • C26H18

  • M r = 330.4

  • Orthorhombic, Inline graphic

  • a = 25.9304 (3) Å

  • b = 8.9300 (1) Å

  • c = 14.9377 (2) Å

  • V = 3458.95 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 100 K

  • 0.40 × 0.27 × 0.22 mm

Data collection  

  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997) T min = 0.972, T max = 0.984

  • 37425 measured reflections

  • 6240 independent reflections

  • 4993 reflections with I > 2σ(I)

  • R int = 0.023

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.125

  • S = 1.02

  • 6240 reflections

  • 289 parameters

  • Only H-atom coordinates refined

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: COLLECT (Nonius 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813002390/pv2619sup1.cif

e-69-0o308-sup1.cif (19.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813002390/pv2619Isup2.hkl

e-69-0o308-Isup2.hkl (299.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813002390/pv2619Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The purchase of the diffractometer was made possible by grant No. LEQSF(1999–2000)-ESH-TR-13, administered by the Louisiana Board of Regents.

supplementary crystallographic information

Comment

The crystal and molecular structures of p-oligophenyls have been well investigated (Baker et al., 1990, and references therein), but relatively few studies have appeared concerning the conformational preferences of m-oligophenyls. Two interesting papers were reported, one by Lin & Williams (1975) about the crystal structure of 1,3,5 triphenyl, which serves as a model for m-polyphenyls, showing substituted phenyl groups being twisted about the formal single bonds by +40.7, -37.2, and +36.1° out of the plane of the central ring. The crystal structure of one of the polymorphic forms of hexaphenyl benzene, reported by Bart (1968), has shown that the peripheral rings are not perpendicular to the central ring, but are twisted by about 25°. The molecule was found to be highly distorted as a result of out-of-plane bending of the exocyclic bonds. Therefore, we have studied the structure of 1,3-bis(2-naphthyl)benzene for comparison of its conformation with the previous results.

Title compound I is of quasi-Cs symmetry and consists of a benzene ring with meta-substituted 2-naphthalenes. The benzene ring is nearly planar (C-atoms only, δr.m.s. = 0.005 (1) Å), as are the two naphthalenes (δr.m.s. = 0.022 (1) and 0.003 (1) Å). The benzene plane and both naphthalene planes are bent with respect to the benzene-naphthalene (BN) bonds: C8 and C18 lie above the benzene plane by 0.039 (2) and 0.040 (1) Å respectively, while C1 lies above its proximate naphthalene plane by 0.016 (1) Å, and C3 lies above its proximate naphthalene plane by 0.085 (1) Å. The naphthalene ring planes are also twisted about the BN bonds with equivalent torsion angles of -36.04 (13)° (C6–C1–C8–C7) and +34.14 (13)° (C4–C3–C18–C17). An isolated and optimized Cs model (Gaussian09; Frisch et al., 2009; DFT:b3lyp/3–21 g) shows a small amount of bending about the BN bonds, with equivalent distances from mean planes C8/C18 = 0.020 Å and C1/C3 = 0.004 Å, and BN torsion angles of ± 43°.

Experimental

Compound I was prepared after Du et al. (1986) and recrystallized from petroleum ether.

Refinement

The positional parameters of all H atoms were refined, but Uiso(H) was set to 1.2Ueq of the attached C atom. The range of C–H distances is 0.959 (14) - 1.020 (14) Å.

Figures

Fig. 1.

Fig. 1.

View of (I) (50% probability displacement ellipsoids)

Crystal data

C26H18 Dx = 1.269 Mg m3
Mr = 330.4 Melting point: 143.5(5) K
Orthorhombic, Pbcn Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2ab Cell parameters from 6568 reflections
a = 25.9304 (3) Å θ = 2.6–32.6°
b = 8.9300 (1) Å µ = 0.07 mm1
c = 14.9377 (2) Å T = 100 K
V = 3458.95 (7) Å3 Prism, colourless
Z = 8 0.40 × 0.27 × 0.22 mm
F(000) = 1392

Data collection

Nonius KappaCCD diffractometer 6240 independent reflections
Radiation source: fine-focus sealed tube 4993 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.023
Detector resolution: 9 pixels mm-1 θmax = 32.6°, θmin = 2.7°
φ and ω scans h = −39→39
Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997) k = −13→13
Tmin = 0.972, Tmax = 0.984 l = −22→22
37425 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125 Only H-atom coordinates refined
S = 1.02 w = 1/[σ2(Fo2) + (0.0658P)2 + 0.9158P] where P = (Fo2 + 2Fc2)/3
6240 reflections (Δ/σ)max = 0.001
289 parameters Δρmax = 0.38 e Å3
0 restraints Δρmin = −0.22 e Å3
0 constraints

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.63414 (3) 0.65124 (10) 0.39203 (6) 0.01689 (17)
C2 0.62992 (3) 0.71392 (10) 0.30628 (6) 0.01694 (16)
H2 0.6484 (5) 0.8056 (15) 0.2934 (8) 0.02*
C3 0.59837 (3) 0.65068 (10) 0.24032 (6) 0.01660 (16)
C4 0.57139 (4) 0.51927 (11) 0.26073 (6) 0.01896 (17)
H4 0.5494 (5) 0.4704 (15) 0.2136 (8) 0.023*
C5 0.57577 (4) 0.45461 (11) 0.34519 (6) 0.02072 (18)
H5 0.5574 (5) 0.3638 (16) 0.3575 (8) 0.025*
C6 0.60671 (4) 0.51962 (11) 0.41055 (6) 0.01975 (18)
H6 0.6101 (5) 0.4717 (15) 0.4700 (9) 0.024*
C7 0.65216 (4) 0.72652 (11) 0.55034 (6) 0.01811 (17)
H7 0.6193 (5) 0.6799 (15) 0.5698 (8) 0.022*
C8 0.66657 (3) 0.72466 (10) 0.46121 (6) 0.01701 (16)
C9 0.71347 (4) 0.79654 (11) 0.43622 (6) 0.01953 (17)
H9 0.7242 (5) 0.7931 (15) 0.3721 (8) 0.023*
C10 0.74404 (4) 0.86589 (11) 0.49847 (6) 0.02031 (18)
H10 0.7772 (5) 0.9160 (15) 0.4807 (8) 0.024*
C11 0.72952 (4) 0.86948 (10) 0.59028 (6) 0.01801 (17)
C12 0.76011 (4) 0.94138 (11) 0.65616 (7) 0.02206 (19)
H12 0.7930 (5) 0.9933 (16) 0.6373 (9) 0.026*
C13 0.74530 (4) 0.94171 (12) 0.74436 (7) 0.0246 (2)
H13 0.7680 (5) 0.9909 (16) 0.7903 (9) 0.03*
C14 0.69902 (4) 0.87049 (13) 0.77044 (6) 0.0248 (2)
H14 0.6888 (5) 0.8669 (17) 0.8349 (9) 0.03*
C15 0.66831 (4) 0.80109 (12) 0.70813 (6) 0.02236 (19)
H15 0.6365 (5) 0.7517 (16) 0.7256 (9) 0.027*
C16 0.68280 (4) 0.79842 (10) 0.61631 (6) 0.01787 (17)
C17 0.54718 (3) 0.72005 (10) 0.10483 (6) 0.01746 (17)
H17 0.5158 (5) 0.6693 (15) 0.1293 (8) 0.021*
C18 0.59332 (3) 0.72319 (10) 0.15125 (6) 0.01630 (16)
C19 0.63624 (3) 0.79954 (11) 0.11308 (6) 0.01800 (17)
H19 0.6705 (5) 0.8014 (15) 0.1453 (8) 0.022*
C20 0.63221 (3) 0.86852 (11) 0.03141 (6) 0.01788 (17)
H20 0.6622 (5) 0.9217 (15) 0.0055 (8) 0.021*
C21 0.58490 (3) 0.86835 (10) −0.01638 (6) 0.01625 (16)
C22 0.57913 (4) 0.94470 (11) −0.09892 (6) 0.01963 (18)
H22 0.6099 (5) 0.9976 (15) −0.1227 (9) 0.024*
C23 0.53253 (4) 0.94754 (12) −0.14213 (6) 0.02269 (19)
H23 0.5289 (5) 1.0075 (16) −0.1999 (9) 0.027*
C24 0.48948 (4) 0.87247 (12) −0.10533 (6) 0.02300 (19)
H24 0.4556 (5) 0.8770 (16) −0.1362 (9) 0.028*
C25 0.49393 (4) 0.79656 (11) −0.02576 (6) 0.02032 (18)
H25 0.4636 (5) 0.7474 (16) 0.0014 (8) 0.024*
C26 0.54175 (3) 0.79277 (10) 0.02090 (6) 0.01655 (16)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0171 (4) 0.0180 (4) 0.0155 (4) 0.0020 (3) 0.0003 (3) −0.0006 (3)
C2 0.0186 (4) 0.0168 (4) 0.0154 (4) 0.0002 (3) 0.0008 (3) 0.0003 (3)
C3 0.0170 (4) 0.0177 (4) 0.0151 (3) 0.0020 (3) 0.0006 (3) −0.0004 (3)
C4 0.0204 (4) 0.0185 (4) 0.0180 (4) −0.0005 (3) −0.0009 (3) 0.0001 (3)
C5 0.0237 (4) 0.0183 (4) 0.0202 (4) −0.0023 (3) −0.0001 (3) 0.0023 (3)
C6 0.0232 (4) 0.0189 (4) 0.0172 (4) 0.0007 (3) 0.0001 (3) 0.0028 (3)
C7 0.0170 (4) 0.0212 (4) 0.0161 (4) −0.0001 (3) −0.0001 (3) 0.0021 (3)
C8 0.0179 (4) 0.0172 (4) 0.0159 (4) 0.0016 (3) −0.0009 (3) 0.0010 (3)
C9 0.0195 (4) 0.0220 (4) 0.0171 (4) −0.0002 (3) 0.0018 (3) 0.0009 (3)
C10 0.0186 (4) 0.0221 (4) 0.0202 (4) −0.0011 (3) 0.0012 (3) 0.0015 (3)
C11 0.0171 (4) 0.0182 (4) 0.0187 (4) 0.0019 (3) −0.0011 (3) 0.0009 (3)
C12 0.0209 (4) 0.0212 (4) 0.0241 (4) 0.0006 (3) −0.0031 (3) −0.0015 (3)
C13 0.0251 (5) 0.0265 (5) 0.0224 (4) 0.0049 (4) −0.0058 (4) −0.0052 (4)
C14 0.0256 (5) 0.0319 (5) 0.0169 (4) 0.0058 (4) −0.0019 (3) −0.0024 (4)
C15 0.0218 (4) 0.0288 (5) 0.0165 (4) 0.0020 (4) 0.0005 (3) 0.0010 (3)
C16 0.0175 (4) 0.0205 (4) 0.0156 (4) 0.0022 (3) −0.0013 (3) 0.0011 (3)
C17 0.0168 (4) 0.0187 (4) 0.0169 (4) −0.0013 (3) 0.0012 (3) 0.0002 (3)
C18 0.0181 (4) 0.0161 (4) 0.0146 (3) −0.0001 (3) 0.0004 (3) −0.0010 (3)
C19 0.0161 (4) 0.0211 (4) 0.0168 (4) −0.0011 (3) −0.0007 (3) −0.0007 (3)
C20 0.0175 (4) 0.0193 (4) 0.0168 (4) −0.0024 (3) 0.0004 (3) −0.0003 (3)
C21 0.0179 (4) 0.0157 (4) 0.0152 (4) 0.0001 (3) 0.0000 (3) −0.0016 (3)
C22 0.0235 (4) 0.0189 (4) 0.0165 (4) 0.0001 (3) 0.0009 (3) 0.0011 (3)
C23 0.0271 (5) 0.0234 (4) 0.0176 (4) 0.0038 (4) −0.0022 (3) 0.0019 (3)
C24 0.0208 (4) 0.0269 (5) 0.0213 (4) 0.0036 (4) −0.0047 (3) −0.0001 (4)
C25 0.0173 (4) 0.0235 (4) 0.0201 (4) 0.0008 (3) −0.0014 (3) −0.0009 (3)
C26 0.0170 (4) 0.0172 (4) 0.0154 (4) 0.0009 (3) 0.0000 (3) −0.0013 (3)

Geometric parameters (Å, º)

C1—C6 1.4014 (13) C13—C14 1.4129 (16)
C1—C2 1.4022 (12) C13—H13 1.005 (14)
C1—C8 1.4850 (12) C14—C15 1.3729 (14)
C2—C3 1.3995 (12) C14—H14 0.999 (13)
C2—H2 0.968 (13) C15—C16 1.4224 (13)
C3—C4 1.3999 (13) C15—H15 0.970 (14)
C3—C18 1.4856 (12) C17—C18 1.3830 (12)
C4—C5 1.3922 (13) C17—C26 1.4190 (12)
C4—H4 1.005 (13) C17—H17 1.000 (13)
C5—C6 1.3907 (13) C18—C19 1.4243 (12)
C5—H5 0.959 (14) C19—C20 1.3707 (12)
C6—H6 0.989 (13) C19—H19 1.012 (13)
C7—C8 1.3829 (12) C20—C21 1.4193 (12)
C7—C16 1.4193 (13) C20—H20 0.990 (13)
C7—H7 0.991 (13) C21—C22 1.4168 (12)
C8—C9 1.4250 (13) C21—C26 1.4204 (12)
C9—C10 1.3698 (13) C22—C23 1.3702 (14)
C9—H9 0.997 (13) C22—H22 0.994 (13)
C10—C11 1.4226 (13) C23—C24 1.4136 (14)
C10—H10 1.006 (13) C23—H23 1.020 (14)
C11—C12 1.4178 (13) C24—C25 1.3731 (13)
C11—C16 1.4217 (13) C24—H24 0.992 (13)
C12—C13 1.3723 (14) C25—C26 1.4229 (13)
C12—H12 1.010 (13) C25—H25 0.987 (13)
C6—C1—C2 118.39 (8) C15—C14—C13 120.59 (9)
C6—C1—C8 121.35 (8) C15—C14—H14 118.9 (8)
C2—C1—C8 120.25 (8) C13—C14—H14 120.4 (8)
C3—C2—C1 121.85 (8) C14—C15—C16 120.54 (9)
C3—C2—H2 119.4 (7) C14—C15—H15 121.1 (8)
C1—C2—H2 118.7 (7) C16—C15—H15 118.4 (8)
C2—C3—C4 118.50 (8) C7—C16—C11 119.27 (8)
C2—C3—C18 120.41 (8) C7—C16—C15 121.95 (9)
C4—C3—C18 121.08 (8) C11—C16—C15 118.78 (8)
C5—C4—C3 120.28 (8) C18—C17—C26 121.30 (8)
C5—C4—H4 120.1 (7) C18—C17—H17 121.9 (7)
C3—C4—H4 119.7 (7) C26—C17—H17 116.7 (7)
C6—C5—C4 120.68 (9) C17—C18—C19 119.01 (8)
C6—C5—H5 120.4 (8) C17—C18—C3 121.10 (8)
C4—C5—H5 119.0 (8) C19—C18—C3 119.88 (8)
C5—C6—C1 120.28 (8) C20—C19—C18 120.78 (8)
C5—C6—H6 120.0 (8) C20—C19—H19 118.9 (7)
C1—C6—H6 119.7 (8) C18—C19—H19 120.3 (7)
C8—C7—C16 121.51 (9) C19—C20—C21 120.87 (8)
C8—C7—H7 120.6 (7) C19—C20—H20 120.2 (7)
C16—C7—H7 117.9 (7) C21—C20—H20 118.9 (7)
C7—C8—C9 118.52 (8) C22—C21—C20 121.90 (8)
C7—C8—C1 121.48 (8) C22—C21—C26 119.12 (8)
C9—C8—C1 120.00 (8) C20—C21—C26 118.96 (8)
C10—C9—C8 121.31 (8) C23—C22—C21 120.80 (9)
C10—C9—H9 120.3 (8) C23—C22—H22 122.1 (7)
C8—C9—H9 118.4 (8) C21—C22—H22 117.1 (7)
C9—C10—C11 120.75 (9) C22—C23—C24 120.30 (9)
C9—C10—H10 121.1 (7) C22—C23—H23 119.3 (7)
C11—C10—H10 118.1 (7) C24—C23—H23 120.4 (7)
C12—C11—C16 119.28 (8) C25—C24—C23 120.29 (9)
C12—C11—C10 122.08 (9) C25—C24—H24 119.8 (8)
C16—C11—C10 118.64 (8) C23—C24—H24 119.9 (8)
C13—C12—C11 120.71 (9) C24—C25—C26 120.60 (9)
C13—C12—H12 120.2 (8) C24—C25—H25 120.5 (8)
C11—C12—H12 119.1 (8) C26—C25—H25 118.8 (8)
C12—C13—C14 120.10 (9) C17—C26—C21 119.06 (8)
C12—C13—H13 119.4 (8) C17—C26—C25 122.01 (8)
C14—C13—H13 120.4 (8) C21—C26—C25 118.89 (8)
C6—C1—C2—C3 1.51 (13) C10—C11—C16—C7 −0.07 (13)
C8—C1—C2—C3 −177.83 (8) C12—C11—C16—C15 −0.31 (13)
C1—C2—C3—C4 −1.46 (13) C10—C11—C16—C15 179.66 (9)
C1—C2—C3—C18 177.73 (8) C14—C15—C16—C7 179.43 (9)
C2—C3—C4—C5 0.54 (13) C14—C15—C16—C11 −0.28 (15)
C18—C3—C4—C5 −178.65 (9) C26—C17—C18—C19 −0.81 (14)
C3—C4—C5—C6 0.30 (14) C26—C17—C18—C3 178.19 (8)
C4—C5—C6—C1 −0.24 (15) C2—C3—C18—C17 −145.04 (9)
C2—C1—C6—C5 −0.64 (14) C4—C3—C18—C17 34.14 (13)
C8—C1—C6—C5 178.69 (9) C2—C3—C18—C19 33.95 (12)
C16—C7—C8—C9 0.27 (14) C4—C3—C18—C19 −146.87 (9)
C16—C7—C8—C1 −179.14 (8) C17—C18—C19—C20 −0.30 (14)
C6—C1—C8—C7 −36.04 (13) C3—C18—C19—C20 −179.31 (8)
C2—C1—C8—C7 143.28 (9) C18—C19—C20—C21 1.32 (14)
C6—C1—C8—C9 144.56 (9) C19—C20—C21—C22 177.04 (9)
C2—C1—C8—C9 −36.12 (13) C19—C20—C21—C26 −1.24 (14)
C7—C8—C9—C10 0.22 (14) C20—C21—C22—C23 −177.55 (9)
C1—C8—C9—C10 179.64 (9) C26—C21—C22—C23 0.72 (14)
C8—C9—C10—C11 −0.64 (15) C21—C22—C23—C24 −0.75 (15)
C9—C10—C11—C12 −179.48 (9) C22—C23—C24—C25 0.27 (15)
C9—C10—C11—C16 0.55 (14) C23—C24—C25—C26 0.23 (15)
C16—C11—C12—C13 0.59 (14) C18—C17—C26—C21 0.87 (13)
C10—C11—C12—C13 −179.38 (9) C18—C17—C26—C25 −177.02 (9)
C11—C12—C13—C14 −0.27 (15) C22—C21—C26—C17 −178.18 (8)
C12—C13—C14—C15 −0.34 (16) C20—C21—C26—C17 0.15 (13)
C13—C14—C15—C16 0.61 (16) C22—C21—C26—C25 −0.22 (13)
C8—C7—C16—C11 −0.34 (14) C20—C21—C26—C25 178.10 (8)
C8—C7—C16—C15 179.94 (9) C24—C25—C26—C17 177.64 (9)
C12—C11—C16—C7 179.96 (9) C24—C25—C26—C21 −0.25 (14)

Footnotes

1

CAS 103068–17–3.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2619).

References

  1. Baker, K. N., Fratini, A. V. & Adams, W. W. (1990). Polymer, 31, 1623–1631.
  2. Bart, J. C. J. (1968). Acta Cryst. B24, 1277–1287.
  3. Bocchinfuso, G., Mazzuca, C., Palleschi, A., Pizzoferrato, R. & Tagliatesta, P. (2009). J. Phys. Chem. A, 113, 14887–14895. [DOI] [PubMed]
  4. Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.
  5. Du, C. J. F., Hart, H. & Ng, K. K. D. (1986). J. Org. Chem. 51, 3162–3165.
  6. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  7. Frisch, M. J., et al. (2009). GAUSSIAN09 Gaussian, Inc., Wallingford, CT, USA.
  8. Lin, Y. C. & Williams, D. E. (1975). Acta Cryst. B31, 318–320.
  9. Marcinow, Z. & Rabideau, P. (1990). J. Org. Chem. 55, 3812–3816.
  10. Nonius (2000). COLLECT Nonius BV, Delft, The Netherlands.
  11. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Tummala, M., Dhar, R. K., Fronczek, F. R. & Watkins, S. F. (2013). Acta Cryst. E69, o307. [DOI] [PMC free article] [PubMed]
  14. Woods, G. F., Reed, F. T., Arthur, T. E. & Ezekiel, H. (1951). J. Am. Chem. Soc. 73, 3854–3856.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813002390/pv2619sup1.cif

e-69-0o308-sup1.cif (19.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813002390/pv2619Isup2.hkl

e-69-0o308-Isup2.hkl (299.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813002390/pv2619Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES