Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Jan 31;69(Pt 2):o313. doi: 10.1107/S1600536813002493

3β-Acet­oxy-19-hy­droxy-Δ5-pregnen-20-one

Aike Meier zu Greffen a, Darius P Kranz a, Jörg-M Neudörfl a, Hans-Günther Schmalz a,*
PMCID: PMC3569832  PMID: 23424578

Abstract

In the title compound, C23H34O4, the C/D and D/E rings are trans fused and the A/B ring possesses an anti fusion. The two cyclo­hexane rings adopt a chair conformation while the cyclo­hexene ring exhibits a half-chair conformation. The cyclo­pentane ring displays an envelope conformation with the C atom bearing the methyl group as the flap. In the crystal, the mol­ecules are linked by O—H⋯O hydrogen bonds, forming chains along the b axis.

Related literature  

For an overview of steroids as biologically important mol­ecules, see: Fieser & Fieser (1961); Hanson (2010). For examples of steroids possessing a rearranged A/B-ring system, see: Du et al. (2008); Aoki et al. (2006); Flyer et al. (2010). For related C-19-functionalized steroids, see: El Sheikh et al. (2007); Shenvi et al. (2008). For an overview of remote functionalization, see: Reese (2001); Heusler & Kalvoda (1964). For the first synthesis of the title compound, see: Halpern et al. (1963). For examples of the title compound as an inter­mediate for rearranged A/B-ring systems, see: Knox et al. (1965); Kranz et al. (2011). For a description of the Cambridge Structural Database, see: Allen (2002).graphic file with name e-69-0o313-scheme1.jpg

Experimental  

Crystal data  

  • C23H34O4

  • M r = 374.50

  • Orthorhombic, Inline graphic

  • a = 8.6960 (6) Å

  • b = 12.3708 (4) Å

  • c = 18.3303 (10) Å

  • V = 1971.91 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.3 × 0.3 × 0.3 mm

Data collection  

  • Nonius KappaCCD diffractometer

  • 9889 measured reflections

  • 2457 independent reflections

  • 1943 reflections with I > 2σ(I)

  • R int = 0.044

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.079

  • S = 0.99

  • 2457 reflections

  • 247 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: COLLECT (Hooft 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SCHAKAL99 (Keller, 1999); software used to prepare material for publication: PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813002493/lr2076sup1.cif

e-69-0o313-sup1.cif (30.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813002493/lr2076Isup2.hkl

e-69-0o313-Isup2.hkl (120.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O2i 0.84 2.19 2.9305 (19) 147

Symmetry code: (i) Inline graphic.

supplementary crystallographic information

Comment

The structural diversity of steroids as well as their unsurpassed biological potential qualify them as challenging targets for chemical synthesis and as lead structures for pharmacological research (Fieser & Fieser, 1961; Hanson, 2010). In recent years, some unusual steroids displaying a rearranged A/B-ring system with promising biological properties have been reported (Du et al., 2008; Aoki et al., 2006; Flyer et al., 2010). Important intermediates for the synthesis of such rearranged derivatives are C-19 functionalized steroids (El Sheikh et al., 2007; Shenvi et al., 2008). The functionalization of the unactivated angular C-10 methyl group is achieved by remote functionalization (Heusler et al., 1964; Reese, 2001). During our synthesis of diverse B-homo-steroids the C-19-hydroxy-steroid (I) was isolated as an intermediate (Kranz et al., 2011). The C/D and D/E rings in C23H34O4 are trans fused and the A/B ring possesses an anti fusion. The A ring and the C ring adopt a chair conformation, while the other six membered B ring displays a half chair conformation (Fig. 1). In the five membered ring, the atoms show an envelope conformation and C14/C15/C16/C17 are nearly coplanar while the C13 deviates from the plane by 0.726 (2) Å. The C(5)–C(10)–C(19)–O(3) torsion angle is -165.71 (16)° and the torsion angles C(4)–C(5)–C(10)–C(1) with -45.0 (2)°, C(1)–C(10)–C(9)–C(11) with 68.3 (2)° and C(8)–C(14)–C(13)–C(12) with -58.9 (2)° are within the average range (Allen, 2002). The molecules are linked by O–H···O hydrogen bonds between the C19 hydroxy group of one steroid to the ester carbonyl oxygen of the next steroid, forming chain networks along the b axis. These chain networks generate layer structures parallel to the c axis (Fig. 2).

Experimental

The title compound C23H34O4 was prepared in 3 steps starting from commercial pregnenolone-acetate (Kranz et al., 2011).

Refinement

All hydrogen atoms were placed in geometrically idealized positions and refined with using riding model with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) for CH, C—H = 0.99 Å and Uiso(H) = 1.2Ueq(C) for CH2, C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C) for CH3 and OH.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Plot of the unit cell; the b axis is perpendicular to the plane of the paper and the a and c axes are horizontal and vertical, respectively.

Crystal data

C23H34O4 F(000) = 816
Mr = 374.50 Dx = 1.261 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 9889 reflections
a = 8.6960 (6) Å θ = 2.0–27.0°
b = 12.3708 (4) Å µ = 0.08 mm1
c = 18.3303 (10) Å T = 100 K
V = 1971.91 (18) Å3 Prism, colourless
Z = 4 0.3 × 0.3 × 0.3 mm

Data collection

Nonius KappaCCD diffractometer 1943 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.044
Graphite monochromator θmax = 27.0°, θmin = 2.0°
Phi/ω–Scans scans h = −6→11
9889 measured reflections k = −12→15
2457 independent reflections l = −21→23

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079 H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0425P)2] where P = (Fo2 + 2Fc2)/3
2457 reflections (Δ/σ)max < 0.001
247 parameters Δρmax = 0.23 e Å3
0 restraints Δρmin = −0.23 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 −0.03545 (17) 0.54114 (10) 0.67613 (8) 0.0195 (3)
O2 −0.13591 (19) 0.70584 (11) 0.65410 (8) 0.0267 (4)
O3 0.20344 (19) 0.38623 (10) 0.94444 (8) 0.0246 (4)
H3A 0.1481 0.3467 0.9180 0.037*
O4 −0.0183 (2) 0.54920 (11) 1.30301 (9) 0.0360 (5)
C1 −0.0748 (2) 0.47261 (15) 0.87606 (11) 0.0170 (5)
H1A −0.0708 0.4021 0.9016 0.020*
H1B −0.1789 0.5030 0.8836 0.020*
C2 −0.0516 (3) 0.45275 (14) 0.79398 (11) 0.0182 (5)
H2A 0.0481 0.4161 0.7856 0.022*
H2B −0.1345 0.4055 0.7752 0.022*
C3 −0.0541 (3) 0.55950 (14) 0.75430 (11) 0.0180 (5)
H3 −0.1547 0.5964 0.7634 0.022*
C4 0.0760 (3) 0.63061 (15) 0.78170 (11) 0.0188 (5)
H4A 0.1758 0.5953 0.7713 0.023*
H4B 0.0738 0.7007 0.7557 0.023*
C5 0.0611 (2) 0.64986 (15) 0.86293 (11) 0.0165 (5)
C6 0.0610 (3) 0.75048 (15) 0.88802 (11) 0.0172 (5)
H6 0.0682 0.8072 0.8532 0.021*
C7 0.0504 (3) 0.78158 (14) 0.96614 (11) 0.0172 (5)
H7A −0.0510 0.8155 0.9751 0.021*
H7B 0.1306 0.8360 0.9769 0.021*
C8 0.0700 (3) 0.68595 (14) 1.01773 (11) 0.0160 (5)
H8 0.1819 0.6683 1.0216 0.019*
C9 −0.0163 (2) 0.58588 (14) 0.98836 (11) 0.0165 (5)
H9 −0.1252 0.6093 0.9807 0.020*
C10 0.0442 (2) 0.54967 (14) 0.91196 (11) 0.0161 (5)
C11 −0.0222 (3) 0.49458 (14) 1.04593 (11) 0.0193 (5)
H20A −0.0894 0.4359 1.0277 0.023*
H20B 0.0825 0.4644 1.0522 0.023*
C12 −0.0822 (3) 0.53265 (15) 1.12077 (11) 0.0185 (5)
H12A −0.1904 0.5564 1.1159 0.022*
H12B −0.0793 0.4716 1.1556 0.022*
C13 0.0157 (2) 0.62660 (15) 1.15054 (11) 0.0158 (5)
C14 0.0106 (3) 0.71672 (14) 1.09252 (11) 0.0154 (5)
H14 −0.1005 0.7351 1.0859 0.018*
C15 0.0832 (3) 0.81413 (15) 1.13106 (11) 0.0191 (5)
H15A 0.0457 0.8828 1.1098 0.023*
H15B 0.1967 0.8119 1.1274 0.023*
C16 0.0306 (3) 0.80233 (14) 1.21114 (11) 0.0216 (5)
H16A −0.0408 0.8614 1.2246 0.026*
H16B 0.1201 0.8042 1.2445 0.026*
C17 −0.0521 (3) 0.69056 (14) 1.21538 (11) 0.0173 (5)
H17 −0.1627 0.7040 1.2035 0.021*
C18 0.1795 (3) 0.58958 (16) 1.16724 (12) 0.0232 (5)
H18A 0.1764 0.5277 1.2006 0.035*
H18B 0.2366 0.6489 1.1900 0.035*
H18C 0.2306 0.5683 1.1218 0.035*
C19 0.2043 (2) 0.49419 (15) 0.91585 (12) 0.0199 (5)
H19A 0.2488 0.4924 0.8661 0.024*
H19B 0.2728 0.5391 0.9466 0.024*
C20 −0.0486 (3) 0.64326 (16) 1.29112 (11) 0.0219 (5)
C21 −0.0887 (3) 0.71767 (17) 1.35354 (11) 0.0293 (6)
H21A 0.0035 0.7569 1.3691 0.044*
H21B −0.1286 0.6750 1.3944 0.044*
H21C −0.1672 0.7694 1.3376 0.044*
C22 −0.0763 (3) 0.62330 (17) 0.63230 (12) 0.0221 (5)
C23 −0.0378 (3) 0.60069 (18) 0.55382 (12) 0.0315 (6)
H23A 0.0720 0.6136 0.5456 0.047*
H23B −0.0981 0.6485 0.5223 0.047*
H23C −0.0622 0.5252 0.5424 0.047*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0238 (9) 0.0196 (7) 0.0151 (8) 0.0004 (7) 0.0002 (7) −0.0013 (6)
O2 0.0370 (10) 0.0199 (8) 0.0232 (9) 0.0036 (7) −0.0009 (8) 0.0023 (7)
O3 0.0298 (10) 0.0191 (7) 0.0248 (9) 0.0059 (7) −0.0058 (8) −0.0034 (6)
O4 0.0604 (13) 0.0203 (8) 0.0274 (10) 0.0038 (9) 0.0007 (9) 0.0066 (6)
C1 0.0157 (11) 0.0153 (10) 0.0200 (11) −0.0005 (9) −0.0012 (9) 0.0014 (8)
C2 0.0176 (12) 0.0158 (10) 0.0213 (12) 0.0008 (9) −0.0014 (10) −0.0024 (8)
C3 0.0208 (12) 0.0187 (10) 0.0145 (11) 0.0006 (10) 0.0020 (10) −0.0025 (8)
C4 0.0200 (12) 0.0184 (10) 0.0180 (11) −0.0006 (9) 0.0025 (10) 0.0005 (9)
C5 0.0117 (11) 0.0207 (11) 0.0171 (12) −0.0011 (9) 0.0000 (9) 0.0013 (8)
C6 0.0175 (12) 0.0184 (10) 0.0156 (11) −0.0014 (9) −0.0013 (10) 0.0030 (8)
C7 0.0180 (12) 0.0136 (10) 0.0199 (11) −0.0022 (9) 0.0004 (10) −0.0003 (8)
C8 0.0148 (11) 0.0144 (10) 0.0188 (12) −0.0007 (9) 0.0010 (10) 0.0018 (8)
C9 0.0179 (12) 0.0151 (10) 0.0166 (11) −0.0003 (9) −0.0002 (9) 0.0008 (8)
C10 0.0151 (11) 0.0149 (10) 0.0185 (11) −0.0005 (9) −0.0008 (9) −0.0007 (8)
C11 0.0239 (13) 0.0165 (10) 0.0174 (12) −0.0011 (9) −0.0008 (9) −0.0001 (8)
C12 0.0221 (12) 0.0153 (10) 0.0183 (11) −0.0025 (9) −0.0002 (10) 0.0018 (9)
C13 0.0172 (11) 0.0162 (10) 0.0139 (11) 0.0002 (9) −0.0005 (9) 0.0022 (8)
C14 0.0147 (11) 0.0138 (10) 0.0177 (11) 0.0004 (9) −0.0003 (9) 0.0011 (8)
C15 0.0226 (12) 0.0167 (10) 0.0179 (12) −0.0032 (9) −0.0010 (10) −0.0011 (8)
C16 0.0283 (14) 0.0161 (10) 0.0204 (12) −0.0047 (10) 0.0007 (11) −0.0028 (8)
C17 0.0190 (12) 0.0162 (10) 0.0166 (11) −0.0017 (9) −0.0023 (10) 0.0011 (8)
C18 0.0236 (13) 0.0228 (11) 0.0232 (13) 0.0034 (10) −0.0024 (10) 0.0022 (10)
C19 0.0164 (12) 0.0185 (11) 0.0250 (12) 0.0001 (9) −0.0017 (10) −0.0007 (9)
C20 0.0219 (13) 0.0230 (11) 0.0208 (12) −0.0033 (10) −0.0033 (11) 0.0022 (9)
C21 0.0440 (17) 0.0237 (12) 0.0203 (13) −0.0065 (11) 0.0002 (12) −0.0009 (9)
C22 0.0225 (12) 0.0230 (12) 0.0208 (12) −0.0050 (10) −0.0024 (11) 0.0019 (9)
C23 0.0393 (17) 0.0329 (12) 0.0223 (13) −0.0003 (12) 0.0019 (12) −0.0001 (10)

Geometric parameters (Å, º)

O1—C22 1.344 (2) C11—C12 1.542 (3)
O1—C3 1.460 (2) C11—H20A 0.9900
O2—C22 1.213 (2) C11—H20B 0.9900
O3—C19 1.435 (2) C12—C13 1.541 (3)
O3—H3A 0.8400 C12—H12A 0.9900
O4—C20 1.213 (2) C12—H12B 0.9900
C1—C2 1.538 (3) C13—C18 1.527 (3)
C1—C10 1.553 (3) C13—C14 1.541 (3)
C1—H1A 0.9900 C13—C17 1.545 (3)
C1—H1B 0.9900 C14—C15 1.533 (3)
C2—C3 1.508 (3) C14—H14 1.0000
C2—H2A 0.9900 C15—C16 1.545 (3)
C2—H2B 0.9900 C15—H15A 0.9900
C3—C4 1.519 (3) C15—H15B 0.9900
C3—H3 1.0000 C16—C17 1.561 (3)
C4—C5 1.513 (3) C16—H16A 0.9900
C4—H4A 0.9900 C16—H16B 0.9900
C4—H4B 0.9900 C17—C20 1.507 (3)
C5—C6 1.327 (3) C17—H17 1.0000
C5—C10 1.538 (3) C18—H18A 0.9800
C6—C7 1.486 (3) C18—H18B 0.9800
C6—H6 0.9500 C18—H18C 0.9800
C7—C8 1.524 (2) C19—H19A 0.9900
C7—H7A 0.9900 C19—H19B 0.9900
C7—H7B 0.9900 C20—C21 1.509 (3)
C8—C14 1.514 (3) C21—H21A 0.9800
C8—C9 1.544 (3) C21—H21B 0.9800
C8—H8 1.0000 C21—H21C 0.9800
C9—C11 1.547 (3) C22—C23 1.503 (3)
C9—C10 1.562 (3) C23—H23A 0.9800
C9—H9 1.0000 C23—H23B 0.9800
C10—C19 1.554 (3) C23—H23C 0.9800
C22—O1—C3 116.09 (15) C11—C12—H12A 109.4
C19—O3—H3A 109.5 C13—C12—H12B 109.4
C2—C1—C10 115.17 (17) C11—C12—H12B 109.4
C2—C1—H1A 108.5 H12A—C12—H12B 108.0
C10—C1—H1A 108.5 C18—C13—C12 111.11 (16)
C2—C1—H1B 108.5 C18—C13—C14 112.45 (17)
C10—C1—H1B 108.5 C12—C13—C14 106.58 (16)
H1A—C1—H1B 107.5 C18—C13—C17 110.81 (18)
C3—C2—C1 109.27 (15) C12—C13—C17 116.62 (17)
C3—C2—H2A 109.8 C14—C13—C17 98.59 (14)
C1—C2—H2A 109.8 C8—C14—C15 118.33 (17)
C3—C2—H2B 109.8 C8—C14—C13 115.67 (15)
C1—C2—H2B 109.8 C15—C14—C13 103.82 (16)
H2A—C2—H2B 108.3 C8—C14—H14 106.0
O1—C3—C2 109.60 (14) C15—C14—H14 106.0
O1—C3—C4 109.38 (16) C13—C14—H14 106.0
C2—C3—C4 109.69 (17) C14—C15—C16 103.98 (16)
O1—C3—H3 109.4 C14—C15—H15A 111.0
C2—C3—H3 109.4 C16—C15—H15A 111.0
C4—C3—H3 109.4 C14—C15—H15B 111.0
C5—C4—C3 110.67 (17) C16—C15—H15B 111.0
C5—C4—H4A 109.5 H15A—C15—H15B 109.0
C3—C4—H4A 109.5 C15—C16—C17 105.52 (15)
C5—C4—H4B 109.5 C15—C16—H16A 110.6
C3—C4—H4B 109.5 C17—C16—H16A 110.6
H4A—C4—H4B 108.1 C15—C16—H16B 110.6
C6—C5—C4 119.25 (17) C17—C16—H16B 110.6
C6—C5—C10 123.59 (18) H16A—C16—H16B 108.8
C4—C5—C10 117.15 (16) C20—C17—C13 120.13 (16)
C5—C6—C7 125.24 (18) C20—C17—C16 112.36 (17)
C5—C6—H6 117.4 C13—C17—C16 103.86 (16)
C7—C6—H6 117.4 C20—C17—H17 106.6
C6—C7—C8 112.96 (16) C13—C17—H17 106.6
C6—C7—H7A 109.0 C16—C17—H17 106.6
C8—C7—H7A 109.0 C13—C18—H18A 109.5
C6—C7—H7B 109.0 C13—C18—H18B 109.5
C8—C7—H7B 109.0 H18A—C18—H18B 109.5
H7A—C7—H7B 107.8 C13—C18—H18C 109.5
C14—C8—C7 109.19 (15) H18A—C18—H18C 109.5
C14—C8—C9 110.59 (17) H18B—C18—H18C 109.5
C7—C8—C9 110.59 (16) O3—C19—C10 115.04 (17)
C14—C8—H8 108.8 O3—C19—H19A 108.5
C7—C8—H8 108.8 C10—C19—H19A 108.5
C9—C8—H8 108.8 O3—C19—H19B 108.5
C8—C9—C11 111.31 (16) C10—C19—H19B 108.5
C8—C9—C10 112.25 (16) H19A—C19—H19B 107.5
C11—C9—C10 114.42 (15) O4—C20—C17 122.86 (19)
C8—C9—H9 106.1 O4—C20—C21 119.94 (19)
C11—C9—H9 106.1 C17—C20—C21 117.18 (17)
C10—C9—H9 106.1 C20—C21—H21A 109.5
C5—C10—C1 108.10 (16) C20—C21—H21B 109.5
C5—C10—C19 107.29 (16) H21A—C21—H21B 109.5
C1—C10—C19 110.20 (15) C20—C21—H21C 109.5
C5—C10—C9 108.97 (15) H21A—C21—H21C 109.5
C1—C10—C9 109.34 (17) H21B—C21—H21C 109.5
C19—C10—C9 112.81 (17) O2—C22—O1 123.6 (2)
C12—C11—C9 113.28 (15) O2—C22—C23 124.6 (2)
C12—C11—H20A 108.9 O1—C22—C23 111.88 (18)
C9—C11—H20A 108.9 C22—C23—H23A 109.5
C12—C11—H20B 108.9 C22—C23—H23B 109.5
C9—C11—H20B 108.9 H23A—C23—H23B 109.5
H20A—C11—H20B 107.7 C22—C23—H23C 109.5
C13—C12—C11 111.00 (17) H23A—C23—H23C 109.5
C13—C12—H12A 109.4 H23B—C23—H23C 109.5
C10—C1—C2—C3 −57.1 (2) C9—C11—C12—C13 −56.8 (2)
C22—O1—C3—C2 162.62 (17) C11—C12—C13—C18 −65.7 (2)
C22—O1—C3—C4 −77.1 (2) C11—C12—C13—C14 57.1 (2)
C1—C2—C3—O1 −178.82 (16) C11—C12—C13—C17 166.01 (16)
C1—C2—C3—C4 61.1 (2) C7—C8—C14—C15 −58.5 (2)
O1—C3—C4—C5 −179.18 (15) C9—C8—C14—C15 179.59 (17)
C2—C3—C4—C5 −58.9 (2) C7—C8—C14—C13 177.42 (17)
C3—C4—C5—C6 −126.4 (2) C9—C8—C14—C13 55.5 (2)
C3—C4—C5—C10 52.6 (2) C18—C13—C14—C8 63.1 (2)
C4—C5—C6—C7 −178.7 (2) C12—C13—C14—C8 −58.9 (2)
C10—C5—C6—C7 2.3 (4) C17—C13—C14—C8 179.88 (18)
C5—C6—C7—C8 10.9 (3) C18—C13—C14—C15 −68.3 (2)
C6—C7—C8—C14 −162.88 (18) C12—C13—C14—C15 169.74 (17)
C6—C7—C8—C9 −41.0 (3) C17—C13—C14—C15 48.5 (2)
C14—C8—C9—C11 −48.9 (2) C8—C14—C15—C16 −164.60 (18)
C7—C8—C9—C11 −169.97 (18) C13—C14—C15—C16 −34.9 (2)
C14—C8—C9—C10 −178.62 (16) C14—C15—C16—C17 6.9 (2)
C7—C8—C9—C10 60.3 (2) C18—C13—C17—C20 −51.9 (2)
C6—C5—C10—C1 134.0 (2) C12—C13—C17—C20 76.5 (2)
C4—C5—C10—C1 −45.0 (2) C14—C13—C17—C20 −169.98 (19)
C6—C5—C10—C19 −107.2 (2) C18—C13—C17—C16 74.70 (19)
C4—C5—C10—C19 73.8 (2) C12—C13—C17—C16 −156.87 (17)
C6—C5—C10—C9 15.2 (3) C14—C13—C17—C16 −43.38 (19)
C4—C5—C10—C9 −163.72 (18) C15—C16—C17—C20 154.51 (18)
C2—C1—C10—C5 46.9 (2) C15—C16—C17—C13 23.2 (2)
C2—C1—C10—C19 −70.0 (2) C5—C10—C19—O3 −165.71 (16)
C2—C1—C10—C9 165.42 (16) C1—C10—C19—O3 −48.2 (2)
C8—C9—C10—C5 −45.7 (2) C9—C10—C19—O3 74.3 (2)
C11—C9—C10—C5 −173.76 (17) C13—C17—C20—O4 −12.8 (3)
C8—C9—C10—C1 −163.62 (15) C16—C17—C20—O4 −135.4 (2)
C11—C9—C10—C1 68.3 (2) C13—C17—C20—C21 168.8 (2)
C8—C9—C10—C19 73.38 (19) C16—C17—C20—C21 46.2 (3)
C11—C9—C10—C19 −54.7 (2) C3—O1—C22—O2 −5.2 (3)
C8—C9—C11—C12 51.4 (2) C3—O1—C22—C23 174.20 (17)
C10—C9—C11—C12 179.96 (18)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O3—H3A···O2i 0.84 2.19 2.9305 (19) 147

Symmetry code: (i) −x, y−1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LR2076).

References

  1. Allen, F. H. (2002). Acta Cryst. B58, 380–388. [DOI] [PubMed]
  2. Aoki, S., Watanabe, Y., Sanagawa, M., Setiawan, A., Kotoku, N. & Kobayashi, M. (2006). J. Am. Chem. Soc. 128, 3148–3149. [DOI] [PubMed]
  3. Du, L., Zhu, T., Fang, Y., Gu, Q. & Zhu, W. (2008). J. Nat. Prod. 71, 1343–1351. [DOI] [PubMed]
  4. El Sheikh, S., Meier zu Greffen, A., Lex, J., Neudörfl, J. M. & Schmalz, H. G. (2007). Synlett, pp. 1881–1884.
  5. Fieser & Fieser (1961). Please supply full reference.
  6. Flyer, A. N., Si, C. & Myers, A. G. (2010). Nat. Chem. 2, 886–892. [DOI] [PMC free article] [PubMed]
  7. Halpern, O., Villotti, W. & Bowers, A. (1963). Chem. Ind. (London), 116, 38–39.
  8. Hanson, J. R. (2010). Nat. Prod. Rep. 27, 887–899. [DOI] [PubMed]
  9. Heusler, K. & Kalvoda, J. (1964). Angew. Chem. Int. Ed. Engl. 3, 525–596.
  10. Hooft, R. W. W. (1998). COLLECT Nonius BV, Delft, The Netherlands.
  11. Keller, E. (1999). SCHAKAL99 University of Freiburg, Germany.
  12. Knox, L. H., Velarde, E., Berger, S., Delfin, I. & Grezemkovsky, R. (1965). J. Org. Chem. 30, 4160–4165. [DOI] [PubMed]
  13. Kranz, D. P., Meier zu Greffen, A., El Sheikh, S., Neudörfl, J. M. & Schmalz, H. G. (2011). Eur. J. Org. Chem. pp. 2860–2866.
  14. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.
  15. Reese, P. B. (2001). Steroids, 66, 481–497. [DOI] [PubMed]
  16. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  17. Shenvi, R. A., Guerrero, C. A., Shi, J., Li, C. C. & Baran, P. S. (2008). J. Am. Chem. Soc. 130, 7241–7243. [DOI] [PMC free article] [PubMed]
  18. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536813002493/lr2076sup1.cif

e-69-0o313-sup1.cif (30.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813002493/lr2076Isup2.hkl

e-69-0o313-Isup2.hkl (120.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES