Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Jan 31;69(Pt 2):o314–o315. doi: 10.1107/S1600536813002456

1-(4-{2-[(E)-3-(4-Chloro­phen­yl)-3-oxo­prop-1-en-1-yl]phen­oxy}but­yl)-1H-indole-3-carbaldehyde

S Paramasivam a, Santhanagopalan Purushothaman b, P R Seshadri a,*, Raghavachary Raghunathan b
PMCID: PMC3569833  PMID: 23424579

Abstract

In the title compound, C28H24ClNO3, the dihedral angles between the central benzene ring and the indole ring system and the chlorobenzene ring are 70.81 (5) and 78.62 (5)°, respectively. The mol­ecular structure is stabilized by a weak intra­molecular C—H⋯O inter­action. In the crystal, pairs of C—H⋯O hydrogen bonds link the mol­ecules into inversion dimers with an R 2 2(14) motif.

Related literature  

For the biological activity of indole derivatives, see: Olgen & Coban (2003); Ho et al. (1986); Joshi & Chand (1982); Rodriguez et al. (1985); Okabe & Adachi (1998); Merck (1973). For N-atom hybridization, see: Beddoes et al. (1986). For a related structure, see: Paramasivam et al. (2012). For graph-set notation see: Bernstein et al. (1995). graphic file with name e-69-0o314-scheme1.jpg

Experimental  

Crystal data  

  • C28H24ClNO3

  • M r = 457.93

  • Monoclinic, Inline graphic

  • a = 8.7126 (3) Å

  • b = 19.1311 (6) Å

  • c = 13.9338 (4) Å

  • β = 93.198 (2)°

  • V = 2318.89 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 298 K

  • 0.20 × 0.20 × 0.20 mm

Data collection  

  • Bruker SMART APEXII area-detector diffractometer

  • 22253 measured reflections

  • 5782 independent reflections

  • 4060 reflections with I > 2σ(I)

  • R int = 0.026

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.049

  • wR(F 2) = 0.145

  • S = 1.03

  • 5782 reflections

  • 298 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.46 e Å−3

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windowa (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97, PLATON and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813002456/kp2444sup1.cif

e-69-0o314-sup1.cif (31.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813002456/kp2444Isup2.hkl

e-69-0o314-Isup2.hkl (277.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813002456/kp2444Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O2 0.93 2.26 2.850 (2) 121
C20—H20⋯O1i 0.93 2.52 3.374 (2) 152

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors acknowledge the Technology Business Incubator (TBI), CAS in Crystallography, University of Madras, Chennai 600 025, India, for the data collection.

supplementary crystallographic information

Comment

Indole derivatives exhibit antioxidant (Olgen & Coban, 2003), central nervous system depressant and muscle relaxant properties (Ho et al., 1986), antifungicidal (Joshi & Chand, 1982), antimicrobial, antiinflammatory and antiimplantation (Rodriguez et al., 1985), antibacterial (Okabe & Adachi, 1998) and antihypertensive (Merck, 1973) activities. Against this background, the title compound was chosen for X-ray structure analysis (Fig. 1).

The indole ring is planar and it makes the dihedral angle with the chlorophenyl ring of 78.62 (05)°.

The sum of the bond angles around N1 [359.94 (44)°] indicates sp2 hybridization (Beddoes et al., 1986). The geometric parameters of the title molecule (Fig. 1) agree well with reported similar structure (Paramasivam et al., 2012).

The molecular structure is stabilised by a weak C—H···O intramolecular interaction and the crystal packing reveals a weak C—H···O hydrogen bonds (Fig. 2). In the crystal structure, the molecules at (x, y, z) and (- x, - y + 1, - z + 2) are linked by C20—H20···O1 hydrogen bond, generating a centrosymmetric dimeric ring motif R22(14) (Bernstein et al., 1995).

Experimental

2 g (13.7 mmol) of 1H-indole-3-carbaldehyde in 25 mL dry DMF and anhydrous potassium carbonate (2 g, 13.7 mmol) were stirred for 15 min at room temperature followed by addition of 5.4 g (13.7 mmol) of (E)-3-(2-(4-bromobutoxy)phenyl)-1-(4-chlorophenyl)prop-2-en-1-one in 30 mL dry DMF with continued stirring for about 3 h at room temperature. After the completion of the reaction as evidenced from TLC, the solvent was filtered into crushed ice and extracted with chloroform. The organic extract was dried over Na2SO4 and concentrated under reduced pressure. Chromatography of the residue eluting with hexane/ethyl acetate mixture (8:2) gave pure (E)-1-(4-(2-(3-(4-chlorophenyl)-3-oxoprop-1-enyl)phenoxy)butyl)-1H-indole-3-carbaldehyde in good yield.

Refinement

Hydrogen atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93 - 0.97 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2 Ueq(C) for other H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids drawn at the 30% probability level.

Fig. 2.

Fig. 2.

The crystal packing of the title compound. Hydrogen bonds are shown by dashed lines.

Crystal data

C28H24ClNO3 F(000) = 960
Mr = 457.93 monoclinic
Monoclinic, P21/n Dx = 1.312 Mg m3
Hall symbol: -P 2yn Mo Kα radiation, λ = 0.71073 Å
a = 8.7126 (3) Å Cell parameters from 5782 reflections
b = 19.1311 (6) Å θ = 1.8–28.3°
c = 13.9338 (4) Å µ = 0.20 mm1
β = 93.198 (2)° T = 298 K
V = 2318.89 (13) Å3 Block, colourless
Z = 4 0.20 × 0.20 × 0.20 mm

Data collection

Bruker SMART APEXII area-detector diffractometer 4060 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.026
Graphite monochromator θmax = 28.3°, θmin = 1.8°
ω and φ scans h = −8→11
22253 measured reflections k = −25→21
5782 independent reflections l = −18→18

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0591P)2 + 0.7822P] where P = (Fo2 + 2Fc2)/3
5782 reflections (Δ/σ)max < 0.001
298 parameters Δρmax = 0.39 e Å3
0 restraints Δρmin = −0.46 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 −0.0037 (3) 0.70610 (12) 0.90463 (15) 0.0675 (5)
C2 0.0110 (3) 0.63646 (12) 0.88447 (16) 0.0743 (6)
H2 −0.0351 0.6177 0.8284 0.089*
C3 0.0951 (3) 0.59454 (11) 0.94836 (14) 0.0656 (5)
H3 0.1071 0.5474 0.9341 0.079*
C4 0.1623 (2) 0.62099 (10) 1.03343 (13) 0.0526 (4)
C5 0.1383 (3) 0.69100 (11) 1.05371 (16) 0.0700 (6)
H5 0.1781 0.7095 1.1116 0.084*
C6 0.0566 (3) 0.73364 (12) 0.98970 (18) 0.0776 (7)
H6 0.0423 0.7806 1.0039 0.093*
C7 0.2526 (2) 0.57743 (10) 1.10492 (13) 0.0559 (4)
C8 0.3047 (2) 0.50761 (10) 1.07578 (13) 0.0552 (4)
H8 0.2842 0.4926 1.0129 0.066*
C9 0.3803 (2) 0.46590 (9) 1.13797 (12) 0.0488 (4)
H9 0.3943 0.4842 1.1997 0.059*
C10 0.44511 (19) 0.39676 (9) 1.12663 (11) 0.0450 (4)
C11 0.5351 (2) 0.36906 (10) 1.20364 (12) 0.0535 (4)
H11 0.5511 0.3958 1.2590 0.064*
C12 0.6008 (3) 0.30409 (11) 1.20085 (14) 0.0647 (5)
H12 0.6605 0.2874 1.2533 0.078*
C13 0.5775 (3) 0.26396 (11) 1.11985 (15) 0.0688 (6)
H13 0.6221 0.2199 1.1174 0.083*
C14 0.4884 (3) 0.28835 (10) 1.04196 (13) 0.0609 (5)
H14 0.4723 0.2604 0.9878 0.073*
C15 0.4230 (2) 0.35419 (9) 1.04394 (11) 0.0472 (4)
C16 0.2994 (3) 0.33837 (10) 0.88721 (13) 0.0632 (5)
H16A 0.2491 0.2958 0.9063 0.076*
H16B 0.3921 0.3260 0.8558 0.076*
C17 0.1931 (3) 0.38074 (11) 0.82024 (13) 0.0612 (5)
H17A 0.1520 0.3506 0.7690 0.073*
H17B 0.1074 0.3973 0.8556 0.073*
C18 0.2704 (2) 0.44254 (11) 0.77648 (12) 0.0571 (5)
H18A 0.3509 0.4258 0.7370 0.068*
H18B 0.3183 0.4708 0.8276 0.068*
C19 0.1603 (2) 0.48804 (10) 0.71534 (12) 0.0583 (5)
H19A 0.0824 0.5064 0.7556 0.070*
H19B 0.2167 0.5274 0.6911 0.070*
C20 −0.0653 (2) 0.43252 (9) 0.62598 (12) 0.0485 (4)
H20 −0.1354 0.4400 0.6729 0.058*
C21 −0.09949 (19) 0.40123 (9) 0.53853 (11) 0.0445 (4)
C22 −0.2501 (2) 0.37870 (11) 0.50518 (14) 0.0564 (5)
H22 −0.3284 0.3832 0.5475 0.068*
C23 0.04045 (18) 0.39990 (8) 0.48909 (11) 0.0404 (3)
C24 0.15337 (18) 0.43141 (8) 0.55073 (11) 0.0420 (3)
C25 0.3043 (2) 0.43976 (10) 0.52522 (13) 0.0526 (4)
H25 0.3779 0.4609 0.5665 0.063*
C26 0.3401 (2) 0.41551 (11) 0.43653 (14) 0.0596 (5)
H26 0.4400 0.4207 0.4172 0.071*
C27 0.2308 (2) 0.38327 (11) 0.37477 (13) 0.0583 (5)
H27 0.2594 0.3668 0.3155 0.070*
C28 0.0807 (2) 0.37520 (10) 0.39963 (11) 0.0492 (4)
H28 0.0082 0.3538 0.3578 0.059*
N1 0.08465 (17) 0.45088 (7) 0.63409 (9) 0.0469 (3)
O1 0.2827 (2) 0.59973 (9) 1.18603 (10) 0.0837 (5)
O2 0.33578 (16) 0.38163 (6) 0.96938 (8) 0.0570 (3)
O3 −0.28421 (16) 0.35426 (9) 0.42671 (11) 0.0757 (4)
Cl1 −0.10168 (10) 0.76018 (4) 0.82139 (5) 0.1058 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0800 (14) 0.0584 (12) 0.0639 (12) 0.0172 (11) 0.0030 (10) −0.0019 (10)
C2 0.0966 (17) 0.0648 (14) 0.0599 (12) 0.0149 (12) −0.0089 (11) −0.0127 (10)
C3 0.0897 (15) 0.0488 (11) 0.0576 (11) 0.0095 (10) −0.0022 (10) −0.0117 (9)
C4 0.0585 (10) 0.0466 (10) 0.0532 (9) 0.0020 (8) 0.0097 (8) −0.0081 (8)
C5 0.0835 (15) 0.0548 (12) 0.0704 (13) 0.0083 (11) −0.0079 (11) −0.0187 (10)
C6 0.0954 (17) 0.0479 (12) 0.0880 (16) 0.0151 (11) −0.0086 (13) −0.0162 (11)
C7 0.0657 (11) 0.0528 (11) 0.0494 (9) 0.0014 (9) 0.0058 (8) −0.0109 (8)
C8 0.0714 (12) 0.0496 (11) 0.0441 (9) 0.0032 (9) −0.0005 (8) −0.0074 (8)
C9 0.0542 (10) 0.0505 (10) 0.0416 (8) −0.0067 (8) 0.0022 (7) −0.0085 (7)
C10 0.0502 (9) 0.0462 (9) 0.0384 (7) −0.0065 (7) 0.0006 (6) −0.0016 (7)
C11 0.0612 (11) 0.0578 (11) 0.0405 (8) −0.0055 (9) −0.0066 (7) −0.0034 (8)
C12 0.0793 (14) 0.0593 (12) 0.0532 (10) 0.0047 (10) −0.0170 (9) 0.0061 (9)
C13 0.0935 (15) 0.0495 (12) 0.0615 (11) 0.0115 (11) −0.0135 (11) 0.0028 (9)
C14 0.0893 (14) 0.0453 (10) 0.0466 (9) 0.0052 (10) −0.0090 (9) −0.0045 (8)
C15 0.0603 (10) 0.0439 (9) 0.0369 (7) −0.0039 (8) −0.0040 (7) 0.0006 (7)
C16 0.0968 (15) 0.0458 (10) 0.0446 (9) −0.0043 (10) −0.0178 (9) −0.0066 (8)
C17 0.0779 (13) 0.0559 (12) 0.0475 (9) −0.0123 (10) −0.0173 (9) −0.0022 (8)
C18 0.0674 (11) 0.0611 (12) 0.0414 (8) −0.0094 (9) −0.0101 (8) −0.0029 (8)
C19 0.0799 (13) 0.0482 (11) 0.0452 (9) −0.0041 (9) −0.0111 (9) −0.0047 (8)
C20 0.0539 (10) 0.0498 (10) 0.0417 (8) 0.0056 (8) 0.0022 (7) 0.0074 (7)
C21 0.0471 (9) 0.0440 (9) 0.0415 (8) 0.0005 (7) −0.0035 (6) 0.0086 (7)
C22 0.0489 (10) 0.0632 (12) 0.0565 (10) −0.0022 (8) −0.0014 (8) 0.0116 (9)
C23 0.0458 (8) 0.0368 (8) 0.0377 (7) 0.0003 (6) −0.0057 (6) 0.0084 (6)
C24 0.0482 (9) 0.0373 (8) 0.0397 (7) 0.0006 (7) −0.0046 (6) 0.0060 (6)
C25 0.0482 (9) 0.0525 (11) 0.0560 (10) −0.0046 (8) −0.0082 (7) 0.0065 (8)
C26 0.0476 (10) 0.0700 (13) 0.0613 (11) 0.0019 (9) 0.0047 (8) 0.0082 (10)
C27 0.0614 (11) 0.0666 (13) 0.0473 (9) 0.0066 (9) 0.0075 (8) 0.0010 (8)
C28 0.0569 (10) 0.0498 (10) 0.0401 (8) 0.0007 (8) −0.0051 (7) 0.0022 (7)
N1 0.0575 (8) 0.0443 (8) 0.0380 (7) 0.0004 (6) −0.0065 (6) 0.0009 (6)
O1 0.1221 (14) 0.0712 (10) 0.0562 (8) 0.0217 (9) −0.0091 (8) −0.0221 (7)
O2 0.0842 (9) 0.0449 (7) 0.0396 (6) 0.0066 (6) −0.0160 (6) −0.0055 (5)
O3 0.0594 (8) 0.1004 (12) 0.0651 (9) −0.0151 (8) −0.0157 (7) −0.0039 (8)
Cl1 0.1481 (7) 0.0834 (5) 0.0832 (4) 0.0471 (5) −0.0170 (4) −0.0014 (3)

Geometric parameters (Å, º)

C1—C2 1.369 (3) C16—C17 1.513 (3)
C1—C6 1.374 (3) C16—H16A 0.9700
C1—Cl1 1.742 (2) C16—H16B 0.9700
C2—C3 1.378 (3) C17—C18 1.506 (3)
C2—H2 0.9300 C17—H17A 0.9700
C3—C4 1.388 (3) C17—H17B 0.9700
C3—H3 0.9300 C18—C19 1.520 (3)
C4—C5 1.387 (3) C18—H18A 0.9700
C4—C7 1.489 (3) C18—H18B 0.9700
C5—C6 1.377 (3) C19—N1 1.462 (2)
C5—H5 0.9300 C19—H19A 0.9700
C6—H6 0.9300 C19—H19B 0.9700
C7—O1 1.223 (2) C20—N1 1.352 (2)
C7—C8 1.475 (3) C20—C21 1.375 (2)
C8—C9 1.326 (3) C20—H20 0.9300
C8—H8 0.9300 C21—C23 1.434 (2)
C9—C10 1.450 (3) C21—C22 1.434 (2)
C9—H9 0.9300 C22—O3 1.211 (2)
C10—C11 1.398 (2) C22—H22 0.9300
C10—C15 1.415 (2) C23—C28 1.396 (2)
C11—C12 1.370 (3) C23—C24 1.405 (2)
C11—H11 0.9300 C24—N1 1.387 (2)
C12—C13 1.371 (3) C24—C25 1.390 (2)
C12—H12 0.9300 C25—C26 1.372 (3)
C13—C14 1.380 (3) C25—H25 0.9300
C13—H13 0.9300 C26—C27 1.392 (3)
C14—C15 1.383 (3) C26—H26 0.9300
C14—H14 0.9300 C27—C28 1.380 (3)
C15—O2 1.3583 (19) C27—H27 0.9300
C16—O2 1.434 (2) C28—H28 0.9300
C2—C1—C6 121.0 (2) H16A—C16—H16B 108.6
C2—C1—Cl1 119.29 (18) C18—C17—C16 113.45 (17)
C6—C1—Cl1 119.75 (17) C18—C17—H17A 108.9
C1—C2—C3 119.1 (2) C16—C17—H17A 108.9
C1—C2—H2 120.5 C18—C17—H17B 108.9
C3—C2—H2 120.5 C16—C17—H17B 108.9
C2—C3—C4 121.55 (19) H17A—C17—H17B 107.7
C2—C3—H3 119.2 C17—C18—C19 113.20 (16)
C4—C3—H3 119.2 C17—C18—H18A 108.9
C5—C4—C3 117.70 (19) C19—C18—H18A 108.9
C5—C4—C7 118.95 (17) C17—C18—H18B 108.9
C3—C4—C7 123.30 (17) C19—C18—H18B 108.9
C6—C5—C4 121.2 (2) H18A—C18—H18B 107.8
C6—C5—H5 119.4 N1—C19—C18 113.48 (15)
C4—C5—H5 119.4 N1—C19—H19A 108.9
C1—C6—C5 119.4 (2) C18—C19—H19A 108.9
C1—C6—H6 120.3 N1—C19—H19B 108.9
C5—C6—H6 120.3 C18—C19—H19B 108.9
O1—C7—C8 121.14 (18) H19A—C19—H19B 107.7
O1—C7—C4 120.06 (17) N1—C20—C21 110.35 (15)
C8—C7—C4 118.80 (15) N1—C20—H20 124.8
C9—C8—C7 120.95 (16) C21—C20—H20 124.8
C9—C8—H8 119.5 C20—C21—C23 106.59 (14)
C7—C8—H8 119.5 C20—C21—C22 124.54 (17)
C8—C9—C10 131.29 (16) C23—C21—C22 128.79 (16)
C8—C9—H9 114.4 O3—C22—C21 125.64 (18)
C10—C9—H9 114.4 O3—C22—H22 117.2
C11—C10—C15 116.86 (16) C21—C22—H22 117.2
C11—C10—C9 117.85 (15) C28—C23—C24 119.25 (15)
C15—C10—C9 125.28 (15) C28—C23—C21 134.26 (15)
C12—C11—C10 122.66 (17) C24—C23—C21 106.49 (14)
C12—C11—H11 118.7 N1—C24—C25 129.92 (15)
C10—C11—H11 118.7 N1—C24—C23 107.87 (14)
C11—C12—C13 119.26 (18) C25—C24—C23 122.20 (15)
C11—C12—H12 120.4 C26—C25—C24 117.22 (17)
C13—C12—H12 120.4 C26—C25—H25 121.4
C12—C13—C14 120.61 (19) C24—C25—H25 121.4
C12—C13—H13 119.7 C25—C26—C27 121.62 (18)
C14—C13—H13 119.7 C25—C26—H26 119.2
C13—C14—C15 120.43 (17) C27—C26—H26 119.2
C13—C14—H14 119.8 C28—C27—C26 121.32 (17)
C15—C14—H14 119.8 C28—C27—H27 119.3
O2—C15—C14 123.39 (15) C26—C27—H27 119.3
O2—C15—C10 116.42 (15) C27—C28—C23 118.38 (16)
C14—C15—C10 120.19 (16) C27—C28—H28 120.8
O2—C16—C17 106.49 (16) C23—C28—H28 120.8
O2—C16—H16A 110.4 C20—N1—C24 108.69 (14)
C17—C16—H16A 110.4 C20—N1—C19 125.67 (15)
O2—C16—H16B 110.4 C24—N1—C19 125.58 (15)
C17—C16—H16B 110.4 C15—O2—C16 118.49 (14)
C6—C1—C2—C3 −3.7 (4) C17—C18—C19—N1 −60.3 (2)
Cl1—C1—C2—C3 176.83 (19) N1—C20—C21—C23 0.29 (19)
C1—C2—C3—C4 1.4 (4) N1—C20—C21—C22 −176.78 (16)
C2—C3—C4—C5 1.9 (3) C20—C21—C22—O3 176.1 (2)
C2—C3—C4—C7 179.3 (2) C23—C21—C22—O3 −0.3 (3)
C3—C4—C5—C6 −2.9 (3) C20—C21—C23—C28 179.59 (18)
C7—C4—C5—C6 179.5 (2) C22—C21—C23—C28 −3.5 (3)
C2—C1—C6—C5 2.7 (4) C20—C21—C23—C24 −0.24 (18)
Cl1—C1—C6—C5 −177.9 (2) C22—C21—C23—C24 176.67 (17)
C4—C5—C6—C1 0.7 (4) C28—C23—C24—N1 −179.75 (14)
C5—C4—C7—O1 12.0 (3) C21—C23—C24—N1 0.11 (17)
C3—C4—C7—O1 −165.4 (2) C28—C23—C24—C25 0.9 (2)
C5—C4—C7—C8 −167.82 (19) C21—C23—C24—C25 −179.28 (15)
C3—C4—C7—C8 14.8 (3) N1—C24—C25—C26 −179.55 (17)
O1—C7—C8—C9 2.8 (3) C23—C24—C25—C26 −0.3 (3)
C4—C7—C8—C9 −177.42 (18) C24—C25—C26—C27 −0.6 (3)
C7—C8—C9—C10 −178.63 (18) C25—C26—C27—C28 0.9 (3)
C8—C9—C10—C11 172.6 (2) C26—C27—C28—C23 −0.3 (3)
C8—C9—C10—C15 −8.3 (3) C24—C23—C28—C27 −0.5 (2)
C15—C10—C11—C12 0.3 (3) C21—C23—C28—C27 179.67 (18)
C9—C10—C11—C12 179.50 (18) C21—C20—N1—C24 −0.22 (19)
C10—C11—C12—C13 −0.3 (3) C21—C20—N1—C19 177.14 (15)
C11—C12—C13—C14 −0.3 (4) C25—C24—N1—C20 179.39 (17)
C12—C13—C14—C15 0.9 (4) C23—C24—N1—C20 0.06 (18)
C13—C14—C15—O2 179.22 (19) C25—C24—N1—C19 2.0 (3)
C13—C14—C15—C10 −0.9 (3) C23—C24—N1—C19 −177.31 (15)
C11—C10—C15—O2 −179.82 (15) C18—C19—N1—C20 109.0 (2)
C9—C10—C15—O2 1.1 (3) C18—C19—N1—C24 −74.1 (2)
C11—C10—C15—C14 0.3 (3) C14—C15—O2—C16 5.0 (3)
C9—C10—C15—C14 −178.79 (18) C10—C15—O2—C16 −174.84 (17)
O2—C16—C17—C18 68.2 (2) C17—C16—O2—C15 176.03 (16)
C16—C17—C18—C19 −175.60 (16)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C8—H8···O2 0.93 2.26 2.850 (2) 121
C9—H9···O1 0.93 2.42 2.791 (2) 104
C20—H20···O1i 0.93 2.52 3.374 (2) 152

Symmetry code: (i) −x, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2444).

References

  1. Beddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787–797.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Bruker (2008). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  5. Ho, C. Y., Haegman, W. E. & Perisco, F. (1986). J. Med. Chem. 29, 118–121.
  6. Joshi, K. C. & Chand, P. (1982). Pharmazie, 37, 1–12. [DOI] [PubMed]
  7. Merck (1973). French Patent No. 2163554.
  8. Okabe, N. & Adachi, Y. (1998). Acta Cryst. C54, 386–387.
  9. Olgen, S. & Coban, T. (2003). Biol. Pharm. Bull. 26, 736–738. [DOI] [PubMed]
  10. Paramasivam, S., Bhaskar, G., Seshadri, P. R. & Perumal, P. T. (2012). Acta Cryst. E68, o683–o684. [DOI] [PMC free article] [PubMed]
  11. Rodriguez, J. G., Temprano, F., Esteban-Calderon, C., Martinez-Ripoll, M. & Garcia-Blanco, S. (1985). Tetrahedron, 41, 3813–3823.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  14. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536813002456/kp2444sup1.cif

e-69-0o314-sup1.cif (31.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813002456/kp2444Isup2.hkl

e-69-0o314-Isup2.hkl (277.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536813002456/kp2444Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES