Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1955 Feb;69(2):215–223. doi: 10.1128/jb.69.2.215-223.1955

MODE OF ACTION OF CHLORAMPHENICOL III.

Action of Chloramphenicol on Bacterial Energy Metabolism

F E Hahn 1, C L Wisseman Jr 1, H E Hopps 1
PMCID: PMC357505  PMID: 14353832

Full text

PDF
215

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BANDURSKI R. S., AXELROD B. The chromatographic identification of some biologically important phosphate esters. J Biol Chem. 1951 Nov;193(1):405–410. [PubMed] [Google Scholar]
  2. BORSOOK H. Protein turnover and incorporation of labeled amino acids into tissue proteins in vivo and in vitro. Physiol Rev. 1950 Apr;30(2):206–219. doi: 10.1152/physrev.1950.30.2.206. [DOI] [PubMed] [Google Scholar]
  3. BOZEMAN F. M., WISSEMAN C. L., Jr, HOPPS H. E., DANAUSKAS J. X. Action of chloramphenicol on T-1 bacteriophage. I. Inhibition of intracellular multiplication. J Bacteriol. 1954 May;67(5):530–536. doi: 10.1128/jb.67.5.530-536.1954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. FARGHALY A. H. Factors influencing the growth and light production of luminous bacteria. J Cell Physiol. 1950 Oct;36(2):165–183. doi: 10.1002/jcp.1030360205. [DOI] [PubMed] [Google Scholar]
  5. GALE E. F., FOLKES J. P. The assimilation of amino-acids by bacteria. XV. Actions of antibiotics on nucleic acid and protein synthesis in Staphylococcus aureus. Biochem J. 1953 Feb;53(3):493–498. doi: 10.1042/bj0530493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. HAHN F. E., WISSEMAN C. L., Jr, HOPPS H. E. Mode of action of chloramphenicol, II. Inhibition of bacterial D-polypeptide formation by an L-stereoisomer of chloramphenicol. J Bacteriol. 1954 Jun;67(6):674–679. doi: 10.1128/jb.67.6.674-679.1954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. HAHN F. E., WISSEMAN C. L., Jr Inhibition of adaptive enzyme formation by antimicrobial agents. Proc Soc Exp Biol Med. 1951 Mar;76(3):533–535. doi: 10.3181/00379727-76-18546. [DOI] [PubMed] [Google Scholar]
  8. LABAW L. W., MOSLEY V. M., WYCKOFF R. W. G. Radioactive studies of the phosphorus metabolism of Escherichia coli. J Bacteriol. 1950 Feb;59(2):251–262. doi: 10.1128/jb.59.2.251-262.1950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. LEPAGE G. A. Effects of chloramphenicol on incorporation of glycine-2-C14 into mammalian tumor cell proteins and purines. Proc Soc Exp Biol Med. 1953 Aug-Sep;83(4):724–726. doi: 10.3181/00379727-83-20474. [DOI] [PubMed] [Google Scholar]
  10. Loomis W. F. On the Mechanism of Action of Aureomycin. Science. 1950 Apr 28;111(2887):474–474. doi: 10.1126/science.111.2887.474. [DOI] [PubMed] [Google Scholar]
  11. MELCHIOR J. B., KLIOZE O., KLOTZ I. M. Further studies of the synthesis of protein by Escherichia coli. J Biol Chem. 1951 Mar;189(1):411–420. [PubMed] [Google Scholar]
  12. MOROWITZ H. J. The energy requirements for bacterial motility. Science. 1954 Feb 26;119(3087):286–286. doi: 10.1126/science.119.3087.286. [DOI] [PubMed] [Google Scholar]
  13. SEAMAN G. R., HOULIHAN R. K. Enzyme systems in Tetrahymena geleii S. II. Acetylcholinesterase activity; its relation to motility of the organism and to coordinated ciliary action in general. J Cell Physiol. 1951 Apr;37(2):309–321. doi: 10.1002/jcp.1030370210. [DOI] [PubMed] [Google Scholar]
  14. STREHLER B. L., CORMIER M. J. Factors affecting the luminescence of cell-free extracts of the luminous bacterium, Achromobacter fischeri. Arch Biochem Biophys. 1953 Nov;47(1):16–33. doi: 10.1016/0003-9861(53)90434-2. [DOI] [PubMed] [Google Scholar]
  15. Still J. L. Triosephosphate dehydrogenase of Bacterium coli. Biochem J. 1940 Nov;34(10-11):1374–1382. doi: 10.1042/bj0341374. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Tam R. K., Wilson P. W. Respiratory Enzyme Systems in Symbiotic Nitrogen Fixation: III. The Dehydrogenase Systems of Rhizobium trifolii and Rhizobium leguminosarum. J Bacteriol. 1941 Apr;41(4):529–546. doi: 10.1128/jb.41.4.529-546.1941. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. UTTER M. F. Mechanism of inhibition of anaerobic glycolysis of brain by sodium ions. J Biol Chem. 1950 Aug;185(2):499–517. [PubMed] [Google Scholar]
  18. Utter M. F., Werkman C. H. Dissimilation of phosphoglyceric acid by Escherichia coli. Biochem J. 1942 Jun;36(5-6):485–493. doi: 10.1042/bj0360485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. WISSEMAN C. L., Jr, SMADEL J. E., HAHN F. E., HOPPS H. E. Mode of action of chloramphenicol. I. Action of chloramphenicol on assimilation of ammonia and on synthesis of proteins and nucleic acids in Escherichia coli. J Bacteriol. 1954 Jun;67(6):662–673. doi: 10.1128/jb.67.6.662-673.1954. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES