Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1955 Nov;70(5):510–520. doi: 10.1128/jb.70.5.510-520.1955

THE METABOLISM OF LABELED GLUCOSE BY THE PROPIONIC ACID BACTERIA1

Harland G Wood 1,2, Rune Stjernholm 1,2, F W Leaver 1,2
PMCID: PMC357705  PMID: 13271285

Full text

PDF
510

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BERNSTEIN I. A., LENTZ K., MALM M., SCHAMBYE P., WOOD H. G. Degradation of glucose-C14 with Leuconostoc mesenteroides; alternate pathways and tracer patterns. J Biol Chem. 1955 Jul;215(1):137–152. [PubMed] [Google Scholar]
  2. ENTNER N., DOUDOROFF M. Glucose and gluconic acid oxidation of Pseudomonas saccharophila. J Biol Chem. 1952 May;196(2):853–862. [PubMed] [Google Scholar]
  3. GIBBS M., DEMOSS R. D. Anaerobic dissimilation of C14-labeled glucose and fructose by Pseudomonas lindneri. J Biol Chem. 1954 Apr;207(2):689–694. [PubMed] [Google Scholar]
  4. GUNSALUS I. C., GIBBS M. The heterolactic fermentation. II. Position of C14 in the products of glucose dissimilation by Leuconostoc mesenteroides. J Biol Chem. 1952 Feb;194(2):871–875. [PubMed] [Google Scholar]
  5. LEAVER F. W., WOOD H. G. Evidence from fermentation of labeled substrates which is inconsistent with present concepts of the propionic acid fermentation. J Cell Physiol Suppl. 1953 Mar;41(Suppl 1):225–240. doi: 10.1002/jcp.1030410414. [DOI] [PubMed] [Google Scholar]
  6. LEAVER F. W., WOOD H. G., STJERNHOLM R. The fermentation of three carbon substrates by Clostridium propionicum and Propionibacterium. J Bacteriol. 1955 Nov;70(5):521–530. doi: 10.1128/jb.70.5.521-530.1955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. PHARES E. F. Degradation of labeled propionic and acetic acids. Arch Biochem Biophys. 1951 Sep;33(2):173–178. doi: 10.1016/0003-9861(51)90094-x. [DOI] [PubMed] [Google Scholar]
  8. RACKER E. Alternate pathways of glucose and fructose metabolism. Adv Enzymol Relat Subj Biochem. 1954;15:141–182. doi: 10.1002/9780470122600.ch4. [DOI] [PubMed] [Google Scholar]
  9. RACKER E., DE LA HABA G., LEDER I. G. Transketolase-catalyzed utilization of fructose 6-phosphate and its significance in a glucose 6-phosphate oxidation cycle. Arch Biochem Biophys. 1954 Jan;48(1):238–240. doi: 10.1016/0003-9861(54)90331-8. [DOI] [PubMed] [Google Scholar]
  10. RAPPOPORT D. A., BARKER H. A. Fermentation of arabinose-1-C14 by propionic acid bacteria. Arch Biochem Biophys. 1954 Mar;49(1):249–251. doi: 10.1016/0003-9861(54)90189-7. [DOI] [PubMed] [Google Scholar]
  11. SWIM H. E., KRAMPITZ L. O. Acetic acid oxidation by Escherichia coli; quantitative significance of the tricarboxylic acid cycle. J Bacteriol. 1954 Apr;67(4):426–434. doi: 10.1128/jb.67.4.426-434.1954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Stone R. W., Werkman C. H. The occurrence of phosphoglyceric acid in the bacterial dissimilation of glucose. Biochem J. 1937 Sep;31(9):1516–1523. doi: 10.1042/bj0311516. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. VOLK W. A. The effect of fluoride on the permeability and phosphatase activity of Propionibacterium pentosaceum. J Biol Chem. 1954 Jun;208(2):777–784. [PubMed] [Google Scholar]
  14. Wiggert W. P., Werkman C. H. Fluoride sensitivity of Propionibacterium pentosaceum as a function of growth conditions. Biochem J. 1939 Jul;33(7):1061–1069. doi: 10.1042/bj0331061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Wood H. G., Werkman C. H. Mechanism of glucose dissimilation by the propionic acid bacteria. Biochem J. 1936 Apr;30(4):618–623. doi: 10.1042/bj0300618. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Wood H. G., Werkman C. H. The relationship of bacterial utilization of CO(2) to succinic acid formation. Biochem J. 1940 Feb;34(2):129–138. doi: 10.1042/bj0340129. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES