Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1956 Feb;71(2):174–181. doi: 10.1128/jb.71.2.174-181.1956

BIOCHEMISTRY OF FILAMENTOUS FUNGI

II. The Quantitative Significance of an “Oxidative Pathway” During the Growth of Penicillium chrysogenum1

E C Heath a,2, Henry Koffler a
PMCID: PMC357761  PMID: 13295190

Full text

PDF
174

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ABRAHAM S., HIRSCH P. F., CHAIKOFF I. L. The quantitative significance of glycolysis and non-glycolysis in glucose utilization by rat mammary gland. J Biol Chem. 1954 Nov;211(1):31–38. [PubMed] [Google Scholar]
  2. ARNSTEIN H. R., BENTLEY R. The biosynthesis of kojic acid. I. Production from (1-14C) and (3:4-14C2) glucose and (2-14C)-1:3-dihydroxyacetone. Biochem J. 1953 Jun;54(3):493–508. doi: 10.1042/bj0540493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BLOOM B., STETTEN M. R., STETTEN D., Jr Evaluation of catabolic pathways of glucose in mammalian systems. J Biol Chem. 1953 Oct;204(2):681–694. [PubMed] [Google Scholar]
  4. COCHRANE V. W., PECK H. D., Jr, HARRISON A. The metabolism of species of Streptomyces. VII. The hexosemonophosphate shunt and associated reactions. J Bacteriol. 1953 Jul;66(1):17–23. doi: 10.1128/jb.66.1.17-23.1953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. DEFIEBRE C. W., KNIGHT S. G. The oxidation of glucose by Penicillium chrysogenum. J Bacteriol. 1953 Aug;66(2):170–172. doi: 10.1128/jb.66.2.170-172.1953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. DICKENS F. The significance of the direct pathway for glucose oxidation. Brookhaven Symp Biol. 1952 Sep;5:134-57; discussion, 157-61. [PubMed] [Google Scholar]
  7. ENTNER N., DOUDOROFF M. Glucose and gluconic acid oxidation of Pseudomonas saccharophila. J Biol Chem. 1952 May;196(2):853–862. [PubMed] [Google Scholar]
  8. Krebs H. A., Johnson W. A. Metabolism of ketonic acids in animal tissues. Biochem J. 1937 Apr;31(4):645–660. doi: 10.1042/bj0310645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. MACGEE J., DOUDOROFF M. A new phosphorylated intermediate in glucose oxidation. J Biol Chem. 1954 Oct;210(2):617–626. [PubMed] [Google Scholar]
  10. PHARES E. F. Degradation of labeled propionic and acetic acids. Arch Biochem Biophys. 1951 Sep;33(2):173–178. doi: 10.1016/0003-9861(51)90094-x. [DOI] [PubMed] [Google Scholar]
  11. SCHWEITZER G. K., STEIN B. R. Measuring solid samples of low-energy beta emitters. Nucleonics. 1950 Sep;7(3):65–72. [PubMed] [Google Scholar]
  12. SMOGYI M. Notes on sugar determination. J Biol Chem. 1952 Mar;195(1):19–23. [PubMed] [Google Scholar]
  13. STOUT H. A., KOFFLER H. Biochemistry of filamentous fungi. I. Oxidative metabolism of glucose by Penicillium chrysogenum. J Bacteriol. 1951 Sep;62(3):253–268. doi: 10.1128/jb.62.3.253-268.1951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. SWIM H. E., KRAMPITZ L. O. Acetic acid oxidation by Escherichia coli; evidence for the occurrence of a tricarboxylic acid cycle. J Bacteriol. 1954 Apr;67(4):419–425. doi: 10.1128/jb.67.4.419-425.1954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Stutz R. E., Burris R. H. PHOTOSYNTHESIS AND METABOLISM OF ORGANIC ACIDS IN HIGHER PLANTS. Plant Physiol. 1951 Apr;26(2):226–243. doi: 10.1104/pp.26.2.226. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. WOOD W. A., SCHWERT R. F. Alternate pathways of hexose oxidation in Pseudomonas fluorescens. J Cell Physiol Suppl. 1953 Mar;41(Suppl 1):165–182. doi: 10.1002/jcp.1030410411. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES