Skip to main content
Current Genomics logoLink to Current Genomics
. 2013 Mar;14(1):33–48. doi: 10.2174/138920213804999138

The New Perspectives on Genetic Studies of Type 2 Diabetes and Thyroid Diseases

Min Xu 1,2, Yufang Bi 1,2, Bin Cui 1,2, Jie Hong 1,2, Weiqing Wang 1,2, Guang Ning 1,2,*
PMCID: PMC3580778  PMID: 23997649

Abstract

Recently, genome-wide association studies (GWAS) have led to the discovery of hundreds of susceptibility loci that are associated with complex metabolic diseases, such as type 2 diabetes and hyperthyroidism. The majority of the susceptibility loci are common across different races or populations; while some of them show ethnicity-specific distribution. Though the abundant novel susceptibility loci identified by GWAS have provided insight into biology through the discovery of new genes or pathways that were previously not known, most of them are in introns and the associated variants cumulatively explain only a small fraction of total heritability. Here we reviewed the genetic studies on the metabolic disorders, mainly type 2 diabetes and hyperthyroidism, including candidate genes-based findings and more recently the GWAS discovery; we also included the clinical relevance of these novel loci and the gene-environmental interactions. Finally, we discussed the future direction about the genetic study on the exploring of the pathogenesis of the metabolic diseases.

Keywords: Genome wide association study, Gene-environmental interaction, Hyperthyroidism, Risk prediction, Type 2 diabetes.

INTRODUCTION

The genetic research of complex diseases has achieved remarkable leap during the past several years since the completion of the first genome-wide association study (GWAS) of age-related macular degeneration has been published in 2006 [1]. Such revolutionary progress in the field is largely due to the breakthrough in genotyping technology. GWAS has been extensively employed in genetic analysis of various human diseases (e.g., diabetes, obesity, cancers, cardiovascular diseases, dyslipidemia, neuropsychiatric diseases, autoimmune diseases, and infectious diseases) as well as disease-related quantitative traits (e.g., body height, blood glucose levels, body mass index (BMI) and waist circumference). GWAS has led to the discovery of hundreds of susceptibility loci that are associated with complex endocrine and metabolic traits, as long as diseases, such as type 2 diabetes (T2D), obesity and hyperthyroidism, and so on.

The metabolic diseases rose rapidly in the past decades and the number of adults with diabetes is expected to rise to about 440 million by 2030 almost 80% of whom will be from low-income and middle-income countries [2, 3]. T2D is a chronic complex metabolic disorder, the pathogenesis of which is not well elucidated though the impaired insulin sensitivity and islet ( cell dysfunction being the two main mechanisms. Besides the environmental or lifestyle risk factors, like age, obesity, excess energy and longer sedentary time, etc, the genetic risk factors play a pivotal role in the incidence of T2D.

Hyperthyroidism is a condition in which the thyroid gland makes too much thyroid hormone, and the most common causes of hyperthyroidism are Graves' disease, followed by toxic multinodular goitre, whilst rarer causes include an autonomously functioning thyroid adenoma, or thyroiditis [4]. Hyperthyroidism is often referred to as an "overactive thyroid." Hyperthyroidism occurs when the thyroid releases too much of its hormones over a short (acute) or long (chronic) period of time. Many diseases and conditions can cause this problem, including: Graves disease (accounts for most cases of hyperthyroidism), inflammation (thyroiditis) of the thyroid due to viral infections or other causes, noncancerous growths of the thyroid gland or pituitary gland [5]. Graves’ disease is a common organ-specific autoimmune disease, which is, to a significant extent, determined by genetic factors [6, 7]. The search for gene variations that predispose to such disease is complicated by their polygenic nature.

THE CANDIDATE GENE ASSOCIATION STUDIES OF T2D

Before the GWAS era, linkage analysis and candidate genes analysis are the two main methods to explore the effect of genetic factors on T2D. The unequivocal established susceptible loci for the common type of T2D have limited to CAPN10, TCF7L2, KCNJ11 and PPARG genes. CAPN10 and TCF7L2 are the two genes successfully identified by the linkage analysis. CAPN10, which encodes the cysteine protease calpain 10, was the first T2D susceptibility gene identified through a genome-wide linkage followed by positional cloning [8]. Many validated studies have been performed from Caucasians to East Asians [9-1]. TCF7L2, which encodes the transcription factor 7-like 2, was firstly found to be associated with T2D in Danish and US cohorts, through fine-mapping of a suggestive linkage to chromosome 10 [12]. After that, this gene was extensively and successfully replicated and validated in many populations, including the Indians, French and Asians, etc [13-17]. KCNJ11 and PPARG are the two proven susceptibility genes for T2D that was confirmed by candidate gene methods [18, 19]. The mostly studied polymorphisms associated with T2D are E23K in KCNJ11 and P12A in PPARG. KCNJ11, namely potassium inwardly-rectifying channel, subfamily J, member 11, encodes inward rectifier K (+) channel Kir6.2 (KIR6.2), which is important on the effect of anti-diabetic drug sulphonylureas. PPARG encodes peroxisome proliferator-activated receptor gamma, which is a target of thiazolidinediones. PPARG gene is one of the well-established susceptible genes of T2D. Interestingly, PPARG is one of the few genes that were confirmed to be associated with insulin resistance, Significantly greater insulin sensitivity was reported in not only nondiabetic alanine (Ala) carriers, but also the diabetic patients [20, 21].

NEW SUSCEPTIBILITY GENES WERE IDENTIFIED BY GWAS

Since the first GWAS, the number of susceptibility loci for T2D has grown up to more than 50 (Table 1) [22-45]. Most of the susceptibility loci are successfully validated in different races or ethnic groups. However, there are ethnicity-specific genetic loci have also been identified. Rs7903146 of TCF7L2 was widely accepted as one of the most relative susceptibility single nucleotide polymorphism (SNP) with T2D, which was replicated in almost all the GWAS [22, 24, 28, 29, 31, 34, 35]. However, they were mostly performed in Caucasians, and much less GWAS was conducted in Asian populations [27, 33, 37-39, 41, 46]. The minor allele frequency (MAF) of this variation may make the difference. The MAF of rs7903146 in the TCF7L2 gene in East Asians is 0.024–0.042 in control subjects and 0.023–0.055 in patients with T2D [17, 47-49]. In Caucasians, the MAF is 0.180–0.305 in control subjects and 0.220–0.425 in patients with T2D [12-16]. The less frequency of the polymorphisms may lead to less power to be detected in the association study.

Table 1.

The Susceptibility Genetic Loci for Type 2 Diabetes [by May-2012]. The References Listed Here Are Those That Firstly Reported the Significant Loci with P Value Less than 5 x 10-8 for the GWAS

Year Genes Location SNP Type of SNP Odds Ratio, 95% Confidence Interval P-values References
1 2000 CAPN10 2q37.3 9803A/G Missense - - [8] Horikawa Y, Nat Genet 2000
2 PPARG 3p25.2 rs1801282-C Missense 1.25 [Not Reported] 0.002 [18] Altshuler D, Nat Genet 2000
3 2003 KCNJ11 11p15.1 rs5219-T Missense 1. 23 [1.12–1.36]
1.14 [1.10-1.19]
1.5x10-5
7x10-11
[19] Gloyn AL, Diabetes 2003
[28] Scott LJ, Science 2007
rs5215-C Missense 1.14 [1.10-1.19] 5.0x10-11 [22] Zeggini E, Science 2007
4 2006 TCF7L2 10q25.3 rs7903146-T Intron 1.54 [Not Reported]
1.65 [1.28-2.02]
1.38 [Not Reported]
2.1x10-9
2.0x10-34
2x10-10
[12] Grant SF, Nat Genet. 2006;
[24] Sladek R, Nature 2007
[29] Steinthorsdottir V, Nat Genet 2007
10q25.2 rs7901695-C Intron 1.37 [1.31-1.43] 1.0x10-48 [22] Zeggini E, Science 2007
10q25.2 rs4506565-T Intron 1.36 [1.20-1.54] 5x10-12 [23] WTCCC, Nature 2007
5 2007 SLC30A8 8q24.11 rs13266634-C cds-synon 1.18 [0.69-1.67]
1.12 [1.07-1.16]
6x10-8
5x10-8
[24] Sladek R, Nature 2007
[22] Zeggini E, Science 2007
6 WFS1 4p16.1 rs10010131-T Intron 0.90 [0.86-0.93] 1.4x10-7 [25] Sandhu MS, Nat Genet. 2007
rs6446482-C intron 0.90 [0.87-0.94] 3.4x10-7 [25] Sandhu MS, Nat Genet 2007
rs1801214-T cds-synon 1.13 [1.08-1.18] 3x10-8 [34] Voight BF, Nat Genet 2010
7 TCF2 (HNF1B) 17q12 rs7501939-C intron 0.91 [0.87–0.94] 9.2x10-7 [26] Gudmundsson J, Nat Genet 2007
17q12 rs4430796-A intron 0.91 [0.87–0.94] 2.7x10-7 [26] Gudmundsson J, Nat Genet 2007
8 HHEX 10q23.33 rs1111875-C intergenic 1.13 [1.08-1.17] 6x10-10 [28] Scott LJ, Science 2007
rs5015480-C Intergenic 1.18 [1.13-1.23] 1x10-15 [34] Voight BF, Nat Genet 2010
9 IGF2BP2 3q27.2 rs4402960-T Intron 1.14 [1.11-1.18] 9x10-16 [22] Zeggini E, Science 2007
rs6769511-C Intron 1.23 [1.15-1.31] 1x10-9 [27] Unoki H, Nat Genet 2008
10 FTO 16q12.2 rs8050136-A Intron 1.23 [1.18-1.32] 9x10-16 [22] Zeggini E, Science 2007
rs9939609-A Intron 1.34 [1.17-1.52] 2x10-7 [23] WTCCC, Nature 2007
11 CDKAL1 6p22.3 rs10946398-C Intron 1.16 [1.10-1.22] 1x10-8 [22] Zeggini E, Science 2007
rs7754840-C Intron 1.12 [1.08-1.16] 4x10-11 [28] Scott LJ, Science 2007
rs7756992-G Intron 1.2 [1.13-1.27] 8x10-9 [29] Steinthorsdottir V, Nat Genet 2007
rs9465871-C Intron 1.18 [1.04-1.34] 3x10-7 [23] WTCCC, Nature 2007
rs4712524-G intron 1.22 [1.15-1.31] 3x10-10 [27] Unoki H, Nat Genet 2008
12 CDKN2A, CDKN2B 9p21.3 Rs564398-T Intron 1.13 [1.08-1.19] 1x10-8 [22] Zeggini E, Science 2007
rs10811661-T Intergenic 1.2 [1.14-1.25] 8x10-15 [28] Scott LJ, Science 2007
rs2383208-A Intergenic 1.34 [1.27-1.41] 2x10-29 [30] Takeuchi F, Diabetes 2009
rs7018475-? intergenic 1.35 [1.18-1.56] 3x10-8 [45] Huang J, Eur J Hum Genet 2012
13 2008 JAZF1 7p15.1 rs864745-T Intron 1.1 [1.07-1.13] 5x10-14 [31] Zeggini E, Nat Genet 2008
14 CDC123 - CAMK1D 10p13 rs12779790-G Intergenic 1.11 [1.07-1.14] 1x10-10 [31] Zeggini E, Nat Genet 2008
15 TSPAN8 - LGR5 12q21.1 rs7961581-C Intergenic 1.09 [1.06-1.12] 1x10-9 [31] Zeggini E, Nat Genet 2008
16 THADA 2p21 rs7578597-T Mssense 1.15 [1.10-1.20] 1x10-9 [31] Zeggini E, Nat Genet 2008
17 ADAMTS9 - MAGI1 3p14.1 rs4607103-C Intergenic 1.09 [1.06-1.12] 1x10-8 [31] Zeggini E, Nat Genet 2008
18 NOTCH2 1p12 rs10923931-T Intron 1.13 [1.08-1.17] 4x10-8 [31] Zeggini E, Nat Genet 2008
19 KCNQ1 11p15.4 rs2237892-C Intron 1.4 [1.34-1.47] 2x10-42 [33] Yasuda K, Nat Genet 2008
rs2237897-C intron 1.33 [1.24-1.41] 1x10-16 [27] Unoki H, Nat Genet 2008
rs231362-G Intron 1.08 [1.06-1.10] 3x10-13 [34] Voight BF, Nat Genet 2010
rs2237895-C Intron 1.29 [1.19-1.40] 1x10-9 [38] Tsai FJ, PLoS Genet 2010
20 2009 LOC64673, IRS1 2q36.3 rs2943641-C Intergenic 1.19 [1.13-1.25] 9x10-12 [35] Rung J, Nat Genet 2009
21 2010 RBMS1, ITGB6 2q24.2 rs7593730-C Intron 1.11 [1.08-1.16] 4x10-8 [36] Qi L, Hum Mol Genet 2010
22 CENTD2 11q13.4 rs1552224-A intron 1.14 [1.11-1.17] 1x10-22 [34] Voight BF, Nat Genet 2010
23 KIAA1486 - IRS1(IRS1) 2q36.3 rs7578326-A intergenic 1.11 [1.08-1.13] 5x10-20 [34] Voight BF, Nat Genet 2010
24 BCL11A 2p16.1 rs243021-A intergenic 1.08 [1.06-1.10] 3x10-15 [34] Voight BF, Nat Genet 2010
25 MTNR1B 11q14.3 rs1387153-T intergenic 1.09 [1.06-1.11] 8x10-15 [34] Voight BF, Nat Genet 2010
26 ZBED3 5q13.3 rs4457053-G intergenic 1.08 [1.06-1.11] 3x10-12 [34] Voight BF, Nat Genet 2010
27 PRC1 15q26.1 rs8042680-A intron 1.07 [1.05-1.09] 2x10-10 [34] Voight BF, Nat Genet 2010
28 KLF14 7q32.3 rs972283-G intergenic 1.07 [1.05-1.10] 2x10-10 [34] Voight BF, Nat Genet 2010
29 DUSP9 Xq28 rs5945326-A intergenic 1.27 [1.18-1.37] 3x10-10 [34] Voight BF, Nat Genet 2010
30 TP53INP1 8q22.1 rs896854-T intron 1.06 [1.04-1.09] 1x10-9 [34] Voight BF, Nat Genet 2010
31 ZFAND6 15q25.1 rs11634397-G intergenic 1.06 [1.04-1.08] 2x10-9 [34] Voight BF, Nat Genet 2010
32 HMGA2 12q14.3 rs1531343-C UTR-3 1.1 [1.07-1.14] 4x10-9 [34] Voight BF, Nat Genet 2010
33 HNF1A 12q24.31 rs7957197-T intron 1.07 [1.05-1.10] 2x10-8 [34] Voight BF, Nat Genet 2010
34 C2CD4A,C2CD4B 15q22.2 rs7172432-A intergenic 1.11 [1.08-1.14] 9x10-14 [37] Yamauchi T, Nat Genet 2010
35 PTPRD 9p24.1 rs17584499-T intron 1.57 [1.36-1.82] 9x10-10 [38] Tsai FJ, PLoS Genet 2010
36 SRR 17p13.3 rs391300-G intron 1.28 [1.18-1.39] 3x10-9 [38] Tsai FJ, PLoS Genet 2010
37 CDC123,CAMK1D 10p13 rs10906115-A intergenic 1.13 [1.08-1.18] 1x10-8 [39] Shu XO, PLoS Genet 2010
38 SPRY2 13q31.1 rs1359790-G intergenic 1.15 [1.10-1.20] 6x10-9 [39] Shu XO, PLoS Genet 2010
39 2011 C6orf57 6q13 rs1048886-G missense 1.54 [1.32-1.80] 3x10-8 [40] Sim X, PLoS Genet. 2011
40 AP3S2 15q26.1 rs2028299-C UTR-3 1.1 [1.07-1.13] 2x10-11 [41] Kooner JS, Nat Genet 2011
41 HMG20A 15q24.3 rs7178572-G intron 1.09 [1.06-1.12] 7x10-11 [41] Kooner JS, Nat Genet 2011
42 GRB14 2q24.3 rs3923113-A intergenic 1.09 [1.06-1.13] 1x10-8 [41] Kooner JS, Nat Genet 2011
43 ST6GAL1 3q27.3 rs16861329-G intron 1.09 [1.06-1.12] 3x10-8 [41] Kooner JS, Nat Genet 2011
44 VPS26A 10q22.1 rs1802295-A UTR-3 1.08 [1.05-1.12] 4x10-8 [41] Kooner JS, Nat Genet 2011
45 MAEA 4p16.3 rs6815464-C Intron 1.13 [1.10-1.16] 2x10-20 [42] Cho YS, Nat Genet 2011
46 GLIS3 9p24.2 rs7041847-A Intron 1.1 [1.07-1.13] 2x10-14 [42] Cho YS, Nat Genet 2011
47 FITM2,R3HDML,HNF4A 20q13.12 rs6017317-G Intergenic 1.09 [1.07-1.12] 1x10-11 [42] Cho YS, Nat Genet 2011
48 GCC1,PAX4 7q32.1 rs6467136-G intergenic 1.11 [1.07-1.14] 5x10-11 [42] Cho YS, Nat Genet 2011
49 PSMD6 3p14.1 rs831571-C Intergenic 1.09 [1.06-1.12] 8x10-11 [42] Cho YS, Nat Genet 2011
50 ZFAND3 6p21.2 rs9470794-C Intron 1.12 [1.08-1.16] 2x10-10 [42] Cho YS, Nat Genet 2011
51 PEPD 19q13.11 rs3786897-A Intron 1.1 [1.07-1.14] 1x10-8 [42] Cho YS, Nat Genet 2011
52 KCNK16 6p21.2 rs1535500-T intron 1.08 [1.05-1.11] 2x10-8 [42] Cho YS, Nat Genet 2011
53 2012 RBM43, RND3 2q23.3 rs7560163-C Intergenic 1.33 [1.19-1.49] 7x10-9 [43] Palmer ND, PLoS One 2012
54 ANK1 8p11.21 rs515071-C intron 1.18 [1.12-1.25] 1x10-8 [44] Imamura M, Hum Mol Genet 2012

Another discrepancy lies in KCNQ1 gene. KCNQ1 was thought to be an Asian-specific susceptibility gene for T2D when it was firstly detected by GWAS in Japanese [27, 33] and followed by multiple replication studies in other Asian populations [30, 38, 46]. The previously reported GWAS performed in Europeans and Caucasians did not identify KCNQ1 until the large-scale combining genome-wide association data from European descent reported a second independent signal of KCNQ1, rs231362 [50], which is different from the previously reported ones among Asian populations (rs2237892[33], rs2237895[38], rs2237897[27], rs163182 [46]). The MAF of rs231362 in Caucasians is 0.52, which is much higher than 0.08 for rs2237892 and 0.05 for rs2237897.

The remarkable findings from GWAS have inspired investigators and the medical professionals to think about the clinical utility and the impact of their results. One of these considerations is whether it could be effective to discover the functional variations, the ‘causal’ variants. Though GWAS is a powerful way to rapidly and systematically identify new associations, it cannot refine a direct association between a disease or trait and the “causal” DNA sequences (causal in the sense that altering these sequences would eliminate the diabetic phenotype). To the date, the role of GWAS loci in T2D development is less established. With few exceptions such as KCNJ11 and SLC30A8 whose functions are well studied, the causal variant(s), causal gene(s) and pathophysiological processes implicated in GWAS loci (independently and in combination) are little understood.

However, the present GWAS and primary functional studies have achieved some progression on genes in cell cycling control (CDKN2A/2B, CDKAL1), transcription factors (TCF7L2, HHEX), and ion channels (SLC30A8, KCNQ1). Two common variants (near or in FTO and MC4R) alter diabetes risk mediated by a primary effect of obesity [51]. There are many epidemiologic or in vivo function studies which have shown that most of the genetic loci of T2D are associated with the islet ( cell function. The genes identified by GWAS are mostly involved in the process of insulin synthesis and secretion, and seldom are in the process of insulin effect on the target organs. This has been viewed as presumptive evidence that insulin secretion plays a more important etiologic role in T2D than insulin resistance. TCF7L2 is the mostly explored susceptible gene for T2D. Common SNPs in TCF7L2 are reproducibly associated with T2D and reduced insulin response to glucose in nondiabetic individuals [52-54]. Lyssenko and his colleagues extensively explored the predictive effect of 3 SNPs (rs7903146, rs12255372, and rs10885406) in TCF7L2 and the mechanisms in Scandinavians, Swedish and Finnish. They concluded that the increased risk of T2D conferred by variants in TCF7L2 involves the enteroinsular axis, enhanced expression of the gene in islets, and impaired insulin secretion [55]. The common variations of SLC30A8 also have also been extensively studied in a great deal of populations [24, 28, 32, 56, 57]. SLC30A8 encoded the zinc transporter 8 (ZnT8), a member of the zinc transporter (ZnT/Slc30) family) [58, 59]. Both in vitro systems and in vivo studies in the knockout mice and humans, [60-63] have implicated ZnT8 in the development of T2D and are closely related to insulin synthesis and/or secretion. Another extensively studied susceptibility gene is KCNQ1, which was also reported to be highly related to β cell function [64, 65]. Many of the T2D susceptibility genes identified by GWAS affect β cell function (cell cycle regulation), and only a limited number of T2D GWAS loci are associated with insulin resistance (e.g., PPARG, FTO, IRS1 and KLF14) [34]. On one hand, these findings highlight the significant role of β cell dysfunction in T2D pathogenesis; on the other hand, the environmental impact on the development of insulin resistance and case-control design render it much more difficult to identify genetic loci associated with insulin resistance than those with β cell function [66]. Insulin resistance and obesity are highly correlated, and thus by deliberately minimizing the confounding influence of obesity, those scans maximized the chances of identifying insulin secretion genes. One example is that the Welcome Trust Case Control Consortium (WTCCC) identified a locus near FTO associated with T2D in analysis without adjustment for BMI. When the BMI effect was statistically accounted for the association disappeared, indicating that the diabetes risk associated with the FTO locus is mediated by obesity [67]. Insulin resistance genes may also have smaller effect sizes which the current GWAS were underpowered to detect, may be relatively rare and not tagged by the current set of SNPs, or their manifestation may be subjected to stronger environmental influences [66].

CLINICAL CORRELATION OF T2D SUSCEPTIBILITY LOCI IDENTIFIED BY GWAS

Clinical application of T2D GWAS loci is limited mainly due to the lack of information regarding biological function, the small proportion of the heritability explained by the common variants and the minor discrimination effect added to the conventional clinical factors.

Though the abundant novel susceptibility loci identified by GWAS have provided insight into biology through the discovery of new genes or pathways that were previously unknown, most of them are in introns, showing a moderate effect (Table 1) and the associated variants cumulatively explain only a small fraction of total heritability. Regarding the common variants, the loci identified by the current GWAS are estimated to explain only 5-10% of the genetic heritability of T2D [68]. All in a sentence, these common variants have failed to explain most of the genetic contribution to disease [69].

Several clinical studies assessed the predictive value of these loci for the diabetes risk. For example, a 3-year follow-up study found that the risk allele homozygotes (TT) of TCF7L2 variant rs7903146 were more likely to develop diabetes from impaired glucose tolerance than the protective allele homozygotes [70]. Two independent studies in 2008 examined genotypes of 16 and 18 T2D loci respectively, and concluded that these newly identified T2D loci provided limited predictive information of T2D beyond the clinical risk factors (e.g., family history, BMI, hepatic enzymes, smoking status which were taken into consideration [71, 72]. A series of studies performed have tried to find out the predictive and discrimitive effect of these loci on diseases risk and to identify high risk populations [57, 73]. The clinical T2D prediction models that consist of basic demographic, clinical, and laboratory predictors have C statistics ranging from 0.66 in the Rotterdam Study [74] to 0.90 in the Framingham Offspring Study [75], which were greater than the values when genotype scores alone were tested. Moreover, the addition of genotype risk scores to clinical prediction models only modestly improves the C statistic. For example, the C statistic improves from 0.903 to 0.906 with the addition of a 40-SNP score to the clinical model in the Framingham Offspring Study [74] and from 0.78 to 0.79 in participants of European ancestry from the Health Professionals Follow-up Study and Nurses’ Health Study [73] and from 0.71 to 0.73 in Han Chinese case control cohort [57]. There is one issue that should be concerned. Using genotype scores to predict T2D, it should probably be noted that many of the “clinical” risk factors which are stronger predictors of diabetes also have a genetic basis, such as obesity, smoking and family history. It could be more possible that the impact of genetics upon disease is too underestimated. Though the situation is a little bit disappointing, the future is promising. The big progress is thought to be on at least two research fronts that may improve the predictive performance of genotype information [76]. First, expanded GWAS efforts in non-European populations will allow targeted sequencing of risk loci and the identification of true causal variants. Second, genotype information may perform better than clinical risk predictors over a longer period of the life course.

Another potential clinical implementation is in pharmacogenetics. Pharmacogenetics is the study of interactions between genetic variations and effects of drugs. However, little progression has been made on the basis of the novel identified genetic loci. In the Diabetes Prevention Program (DPP) study, the authors did not detect significant interactions between genotypes at either SNP (TCF7L2 rs7903146 and rs12255372, SLC30A8 rs13266634) and the interventions [70, 77]. However, other studies have found a significant interaction between genetic factors and drug effects. In a retrospective, observational Scottish cohort study [78], Pearson et al. identified that TT carriers of TCF7L2 rs12255372 variation were more likely to fail sulfonylurea treatment in a gene-dose dependent fashion; the effect of metformin response was independent of genotype. In a study focused on metformin, subjects carrying a reduced function allele in OCT-1 (organic cation transporter 1, which plays a role in hepatic metformin uptake) resulted in higher glucose levels during oral glucose tolerance test (OGTT) in metformin treated non-diabetic subjects [79]. A recent GWAS for glycemic response to metformin was performed in 1,024 Scottish individuals with T2D with replication in two cohorts including 1,783 Scottish individuals and 1,113 individuals from the UK Prospective Diabetes Study. ATM, a gene known to be involved in DNA repair and cell cycle control, was found to play a role in the effect of metformin upstream of AMP-activated protein kinase, and variation in this gene altered glycemic response to metformin [80]. A meta-analysis consisting three cohorts from Diabetes Care System West-Friesland (DCS), the Rotterdam Study and CARDS Trial, has confirmed the findings [81].

GENE-ENVIRONMENTAL INTERACTION

Another consideration of post GWAS era is study of gene environmental interaction. For most complex diseases including T2D, both genetic and environmental factors are involved in the pathogenesis processes. Genetic makeup does not change, but the environmental factors are changing over the lifetime. It is very essential to study the interaction of genetic factors and environmental factors in the diseases onset, prevention procedures and intervention methods. Great progress has been seen since GWAS has reported the abundant susceptibility loci. Lifestyle and diet habit are important environmental factors. A recent meta-analysis reported that the obesogenic effect of the FTO rs9939609 minor allele was substantially diminished by physical activity [82]. The analysis comprised up to 218,166 adults and provided strong statistical evidence supporting this gene-environmental interaction. Lifestyle intervention trials generally support beneficial responses on adiposity measures regardless of FTO genotype [83, 84]. Many studies focused on dietary intake and interventions have found significant interaction with genotypes. Recently, investigators of the Cohorts for Heart and Aging Research in Genetic Epidemiology (CHARGE) consortium [85, 86] have conducted two large-scale gene-diet interaction studies. In one study [85], they included 14 cohorts to assess the interaction of 20 genetic variants known to be related to glycemic traits and zinc metabolism with dietary zinc intake (food sources) and 5 cohorts to assess the interaction with total zinc intake (food sources and supplements) on fasting glucose levels among individuals of European ancestry without diabetes. A nominally significant yet biologically plausible interaction was observed between SLC30A8 (rs11558471) and total zinc intake. Higher total zinc intake may attenuate the glucose-raising effect of the rs11558471 SLC30A8 (zinc transporter) variant. In another study [86] it was found that higher whole-grain intake was associated with a smaller reduction in fasting insulin in those with the insulin-raising allele of rs780094 (GCKR). Several reports have studied the modification effect of T2D genetic variations, IRS1 (rs2943641 [87]) and GIPR (rs2287019 [88]) on weight loss and related improvement of insulin resistance in a 2-year randomized trial: the Preventing Overweight Using Novel Dietary Strategies (POUNDS LOST) trial. The results may provide evidence for better choice of effective intervention. To use combined genetic effect (such as genetic risk score) in the gene-environmental interaction tests is a reasonable and effective way, especially when the individual genetic variation effect is minor or moderate. Qi et al. [90] assessed whether established genetic variants, mainly from GWAS, modify dietary patterns in predicting diabetes risk. A more Western dietary pattern significantly increased risk of T2D only among those with a high genetic risk score. Secondary analysis suggested the interaction was attributable to the red and processed meat component of the Western diet. No interaction with a prudent diet was observed. They concluded that genetic predisposition may synergistically interact with a Western dietary pattern in determining diabetes risk in men.

HYPERTHYROIDISM

The occurrence of Graves’ disease is related to the combined effect of genetic, environmental factors. Epidemio logical studies have confirmed that the incidence of Graves’ disease has a significant genetic predisposition [91-93]. Previous studies have identified many putative susceptibility variants for Graves’ disease. Until recently, only the major histo-compatibility complex (MHC) [94, 95] and cytotoxicympho-cyte antigen-4 (CTLA-4), TSHR and PTPN22 [96-100] have been consistently found associated with Graves’ disease. Recently, the WTCCC performed a study with a genome-wide set of non-synonymous coding variants and provided evidence that three loci (MHC, TSHR and FCRL3) were associated with Graves’ disease in individuals of European ancestry [101]. The exploration of genome wide susceptibility loci for Graves’ disease and other thyroid diseases achieved great progression since then. So far, there are more than 20 genes were reported to be associated with thyroid volume and function, thyroid cancer and Graves’ disease (Table 2, [102-109])]. Most of them are identified and replicated in European ancestry except that two GWAS of Graves’ Diseases were performed in Chinese and Japanese. In the Chinese study, Chu et al. [108] conducted a GWAS in 1,536 individuals with Graves’ disease (cases) and 1,516 controls and followed by a further replication study which included 3,994 cases and 3,510 controls. Two new susceptibility loci (the RNA SET2-FGFR1 OP-CCR6 region at 6q27 were (Pcombined = 6.85 × 10−10 for rs9355610) and an intergenic region at 4p14 (Pcombined = 1.08 × 10−13 for rs68321 51)). The functional study showed that these newly associated SNPs were correlated with the expression levels of RNASET2 at 6q27, of CHRNA9 and of a previously uncharacterized gene at 4p14, respectively. Moreover, strong associations of TSHR and major histocompatibility complex class II variants with persistently TRAb-positive Graves’ disease were confirmed in the study.

Table 2.

The Susceptibility Genetic Loci for Thyroid Diseases [by May-2012]

Disease/Trait Gene(s) Location Strongest SNP-Risk Allele Initial/Replication Sample Type of SNP P-Value OR or beta 95% Confidence Interval References
Thyroid function PDE8B 5q13.3 rs2046045-T European/ European Intron 2.79x10-27 -0.115 [0.093-0.137] Unit
decrease
[102] Rawal R, Hum Mol Genet. 2012
CAP2B 1p36 rs10917477-A Intergenic 1.54x10-8 -0.058 [0.038-0.078] Unit
decrease
LOC440389 16q23 rs3813582-T Intergenic 5.63x10-10 0.068 [0.046-0.090] Unit
increase
NR3C2 4q31 rs10028213-C Intergenic 2.88x10-10 0.084 [0.059-0.109] Unit
increase
Thyroid cancer MBIP 14q13.3 rs116909374-T European/ European Intergenic 5x10-11 2.09 [1.68-2.60] [103] Gudmundsson J, Nat Genet 2012
NRG1 8p12 rs2439302-G Intron 2x10-9 1.36 [1.23-1.50]
DIRC3 2q35 rs966423-C 1x10-9 1.34 [1.22-1.47]
FOXE1 9q22.33 rs965513-A Intergenic 2x10-27 1.75 [1.59-1.94] [104] Gudmundsson J, Nat Genet 2009
NKX2-1 14q13.3 rs944289-T Intergenic 2x10-9 1.37 [1.24-1.52]
Thyroid volume CAPZB 1p36.13 rs12045440-T European/ European Intergenic 2x10-11 1.38 [1.26-1.51] [105] Teumer A, Am J Hum Genet 2011
CAPZB 1p36.13 rs12138950-A Intergenic 3x10-18 0.1 [0.08-0.12] Unit decrease
MAF 16q23.2 rs3813579-A Intergenic 4x10-10 1.32 [1.21-1.44]
MAF 16q23.2 rs17767419-T Intergenic 9x10-15 0.07 [0.05-0.09] Unit increase
CAPZB 1p36.13 rs10917468-C Intergenic 1x10-14 1.52 [1.37-1.69]
C15orf33, FGF7 15q21.2 rs4338740-C Intron; Intron 3x10-13 1.45 [1.32-1.59]
C15orf33, FGF7 15q21.2 rs4338740-T Intron; Intron 1x10-12 0.07 [0.05-0.09] Unit decrease
Thyroid Stimulating Hormone HACE1 6q16.3 rs9322817-? Framingham/NR Intron 7x10-6 NR NR [106] Hwang SJ, BMC Med Genet 2007
RAPGEF5 7p15.3 rs10499559-? Intergenic 8x10-6 NR NR
Intergenic 7p21.1 rs6977660-? Intron 4x10-6 NR NR
Hypothyroidism FOXE1 9q22.33 rs7850258-? European/ European Intergenic 4x10-9 1.23 [1.04-1.47] [107] Denny JC, Am J Hum Genet 2011
Graves' Disease HLA, DPB1 6p21.32 rs2281388-T Chinese/ Chinese Intergenic 2x10-65 1.64 [1.55-1.74] [108] Chu X, Nat Genet 2011
HLA-B 6p21.33 rs1521-T Intergenic 2x10-65 1.92 [1.78-2.08]
MUC21, C6orf15 6p21.33 rs4947296-C Intergenic 4x10-51 1.77 [1.65-1.91]
HLA, DRB1, DQA1, DQB1 14q31.1 rs6457617-T Intron 7x10-33 1.4 [1.32-1.48]
TSHR 2q33.2 rs12101261-T Intergenic 7x10-24 1.35 [1.28-1.43]
CD28, CTLA4 4p14 rs1024161-T Intergenic 2x10-17 1.3 [1.23-1.38]
RHOH, CHRNA9 1q23.1 rs6832151-G Intron 1x10-13 1.24 [1.17-1.31]
FCRL3 6q27 rs3761959-A Intergenic 2x10-13 1.23 [1.17-1.30]
RNASET2, FGFR1OP 6q15 rs9355610-G Intron 7x10-10 1.19 [1.13-1.26]
BACH2, MAP3K7 6p21.32 rs370409-T Intron 2x10-6 1.15 [1.09-1.22]
ABO 9q34.2 rs505922-T 8x10-6 1.13 [1.07-1.20]
MHC 6p21.32 rs2273017-A Japanese/ Japanese Intron 2x10-22 1.53 [1.40-1.66] [109] Nakabayashi K, J Hum Genet 2011
MHC 6p22.1 rs3893464-G Intergenic 2x10-20 1.53 [1.39-1.67]
MHC 6p22.1 rs4313034-T Neargene-5 2x10-15 1.67 [1.47-1.90]
MHC 6p21.33 rs3132613-C Intergenic 1x10-13 1.43 [1.30-1.57]
MHC 6p21.33 rs4248154-C Intron 1x10-13 1.38 [1.27-1.50]
MHC 6p21.31 rs4713693-T 7x10-13 1.4 [1.28-1.53]
MHC 6p21.31 rs9394159-T 4x10-12 1.36 [1.24-1.48]

In addition to these GWAS, some studies focused on the candidate genes in pathogenesis pathway of thyroid diseases. These studies provide more evidence of genetic basis of the diseases and may cast light on the etiology of this autoimmune disease. Graves' disease is an organ-specific autoimmune thyroid disease; the etiology of Graves’ disease may be multifactorial, but the immune response plays a central role. E-selectin, similar to L-selectin, is one of the three members of the selectin family and has been shown to mediate the recruitment of circulating leukocytes by physically supporting adhesive interactions, and participating in cell signalling and rolling. [110, 111] Furthermore, it was well documented that patients with untreated Graves’ disease had high serum levels of a soluble form of E-selectin (sE-selectin), and the concentrations of this adhesion molecule correlated with the activity of the disease, probably reflecting an ongoing immune process. [112, 113]. Chen H, et al. [114, 115] reported common L-selectin or E-selectin variants may be associated with susceptibility to Graves’ disease in Chinese population. Cytokines, a large group of non-enzymatic proteins, participate in the induction and effector phases of all inflammatory and immune responses, and are therefore likely to play a critical role in the development of autoimmune diseases [116]. A series of case-control studies have evaluated the associations of genetic variations of several interleukin family members with Graves’ diseases [117-125]. They reported the genetic variations in interleukin-1, 3, 4, 5, 8, 9, 12, 13, 16 and 21 were related to the Graves’ diseases in well defined Chinese case control designed studies. Another important candidate gene for thyroid diseases is the interferon-induced helicase (IFIH1) gene. IFIH1 also identified as a type 1 diabetes (T1D) susceptible loci [126] and a cause gene by re-sequencing the genomic regions initially identified by GWAS [127]. rs1990760-T was associated with decreased risk of T1D. It was found to be associated with increased risk of Graves’ disease in Caucasians [128]. In vivo study showed that rs1990760-T is associated with anti-dsDNA antibodies and may play a biological impact on the autoimmune disease risk allele within the interferon-( (IFN-α) pathway [129]. However, the rs1990760-T polymorphism is not related to Graves' disease in Chinese [130] or Japanese population [131].

CONCLUSION

During the past several years, genetic studies of complex diseases have made substantial progression. Hundreds of susceptibility variations have been identified related to the common complex diseases and traits (T2D, obesity, hypertension, cancers, hyperthyroidism, and as well as plasma glucose levels, BMI, A1c, etc). Though the effect of most of the identified loci are moderate, often located in the intergenic or intronic regions, and small discrimination fraction from conventional clinical risk factors, the genetic findings encourage clinicians and investigators to engage much more efforts on further exploration of disease prediction, high-risk population stratification and pathogenesis study. There will be a long journey before applying the GWAS results into personalized medicine. The future studies aimed to translate the GWAS data to clinical interpretation are eagerly needed. The studies for interactions of genetic variations and environmental factors maybe a promising field to utilize the genetic variants. The successful functional and biological studies of the reported susceptibility genes depend on the identification of ‘causal’ locus, indicating rare variants to be more important.

ACKNOWLEDGEMENTS

This study was supported by the grants from the Key Laboratory for Endocrine and Metabolic Diseases of Ministry of Health (1994DP131044), the Sector Funds of Ministry of Health (201002002), the Creative Research Group of Ministry of Education (IRT0932), National Natural Science Foundation of China (81270877) and Canadian Institutes of Health Research (NSFC-CIHR, 30911120493).

CONFLICT OF INTEREST

The author(s) confirm that this article content has no conflicts of interest.

REFERENCES

  • 1.Klein RJ, Zeiss C, Chew EY, Tsai JY, Sackler RS, Haynes C, Henning AK, SanGiovanni JP, Mane SM, Mayne ST, Bracken MB, Ferris FL, Ott J, Barnstable C, Hoh J. Complement factor H polymorphism in age-related macular degeneration. Science. 2005;308:385–389. doi: 10.1126/science.1109557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Wild S, Roglic G, Green A, Sicree R, King G. Global prevalence of diabetes. Estimates for the year 2000 and projections for 2030. Diabetes Care. 2004;27:1047–52. doi: 10.2337/diacare.27.5.1047. [DOI] [PubMed] [Google Scholar]
  • 3.Shaw JE, Sicree RA, Zimmet PZ. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Prac. 2010;87:4–14. doi: 10.1016/j.diabres.2009.10.007. [DOI] [PubMed] [Google Scholar]
  • 4.Vanderpump M. Epidemiology of thyroid dysfunction – Hypothyroidism and Hyperthyroidism. www.thyrolink.com/merck_serono_ thyrolink/en/images/Thyroid-Inter-2-2009-WEB-NEU_tcm1553_ 62515.pdf?Version= (February, 2009)
  • 5.Davies TF, Larsen PR. Thyrotoxicosis. In: Kronenberg HM, Melmed S, Polonsky KS, Larsen R, editors. Williams Textbook of Endocrinology. 11th. Philadelphia, Pa: Saunders Elsevier; 2008. 11. [Google Scholar]
  • 6.Gough SC. The genetics of Graves’ disease. Endocrinol Metab Clin North Am. 2000;29:255–266. doi: 10.1016/s0889-8529(05)70130-4. [DOI] [PubMed] [Google Scholar]
  • 7.Simmonds MJ, Gough SC. Unravelling the genetic complexity of autoimmune thyroid disease HLA CTLA-4 and beyond. Clin Exp Immunol. 2004;136:1–10. doi: 10.1111/j.1365-2249.2004.02424.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Horikawa Y, Oda N, Cox NJ, Li X, Orho-Melander M, Hara M, Hinokio Y, Lindner TH, Mashima H, Schwarz PE, del Bosque-Plata L, Horikawa Y, Oda Y, Yoshiuchi I, Colilla S, Polonsky KS, Wei S, Concannon P, Iwasaki N, Schulze J, Baier LJ, Bogardus C, Groop L, Boerwinkle E, Hanis CL, Bell GI. Genetic variation in the gene encoding calpain-10 is associated with type 2 diabetes mellitus. Nat Genet. 2000;26:163–175. doi: 10.1038/79876. [DOI] [PubMed] [Google Scholar]
  • 9.Evans JC, Frayling TM, Cassell PG, Saker PJ, Hitman GA, Walker M, Levy JC, O'Rahilly S, Rao PV, Bennett AJ, Jones EC, Menzel S, Prestwich P, Simecek N, Wishart M, Dhillon R, Fletcher C, Millward A, Demaine A, Wilkin T, Horikawa Y, Cox NJ, Bell GI, Ellard S, McCarthy MI, Hattersley AT. Studies of association between the gene for calpain-10 and type 2 diabetes mellitus in the United Kingdom. Am J Hum Genet. 2001;69:544–552. doi: 10.1086/323315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Garant MJ, Kao WH, Brancati F, Coresh J, Rami TM, Hanis CL, Boerwinkle E, Shuldiner AR. Atherosclerosis Risk in Communities Study SNP43 of CAPN10 and the risk of type 2 Diabetes in African-Americans: the Atherosclerosis Risk in Communities Study. Diabetes. 2002;51:231–237. doi: 10.2337/diabetes.51.1.231. [DOI] [PubMed] [Google Scholar]
  • 11.Takeuchi M, Okamoto K, Takagi T, Ishii H. Ethnic difference in patients with type 2 diabetes mellitus in inter-East Asian populations: a systematic review and meta-analysis focusing on gene polymorphism. J Diabetes. 2009;4:255–62. doi: 10.1111/j.1753-0407.2009.00040.x. [DOI] [PubMed] [Google Scholar]
  • 12.Grant SF, Thorleifsson G, Reynisdottir I, Benediktsson R, Manolescu A, Sainz J, Helgason A, Stefansson H, Emilsson V, Helgadottir A, Styrkarsdottir U, Magnusson KP, Walters GB, Palsdottir E, Jonsdottir T, Gudmundsdottir T, Gylfason A, Saemundsdottir J, Wilensky RL, Reilly MP, Rader DJ, Bagger Y, Christiansen C, Gudnason V, Sigurdsson G, Thorsteinsdottir U, Gulcher JR, Kong A, Stefansson K. Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet. 2006;38:320–3. doi: 10.1038/ng1732. [DOI] [PubMed] [Google Scholar]
  • 13.Groves CJ, Zeggini E, Minton J, Frayling TM, Weedon MN, Rayner NW, Hitman GA, Walker M, Wiltshire S, Hattersley AT, McCarthy MI. Association analysis of 6,736 U.K. subjects provides replication and confirms TCF7L2 as a type 2 diabetes susceptibility gene with a substantial effect on individual risk. Diabetes. 2006;55:2640–4. doi: 10.2337/db06-0355. [DOI] [PubMed] [Google Scholar]
  • 14.Zhang C, Qi L, Hunter DJ, Meigs JB, Manson JE, van Dam RM, Hu FB. Variant of transcription factor 7-like 2 (TCF7L2) gene and the risk of type 2 diabetes in large cohorts of U.S. women and men. Diabetes. 2006;55:2645–2648. doi: 10.2337/db06-0643. [DOI] [PubMed] [Google Scholar]
  • 15.Cauchi S, El Achhab Y, Choquet H, Dina C, Krempler F, Weitgasser R, Nejjari C, Patsch W, Chikri M, Meyre D, Froguel P. TCF7L2 is reproducibly associated with type 2 diabetes in various ethnic groups: a global meta-analysis. J Mol Med (Berl) 2007;85:777–82. doi: 10.1007/s00109-007-0203-4. [DOI] [PubMed] [Google Scholar]
  • 16.Scott LJ, Bonnycastle LL, Willer CJ, Sprau AG, Jackson AU, Narisu N, Duren WL, Chines PS, Stringham HM, Erdos MR, Valle TT, Tuomilehto J, Bergman RN, Mohlke KL, Collins FS, Boehnke M. Association of transcription factor 7-like 2 (TCF7L2) variants with type 2 diabetes in a Finnish sample. Diabetes. 2006;55:2649–53. doi: 10.2337/db06-0341. [DOI] [PubMed] [Google Scholar]
  • 17.Ng MC, Park KS, Oh B, Tam CH, Cho YM, Shin HD, Lam VK, Ma RC, So WY, Cho YS, Kim HL, Lee HK, Chan JC, Cho NH. Implication of genetic variants near TCF7L2, SLC30A8, HHEX, CDKAL1, CDKN2A/B, IGF2BP2 and FTO in type 2 diabetes and obesity in 6,719 Asians. Diabetes. 2008;57:2226–33. doi: 10.2337/db07-1583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Altshuler D, Hirschhorn JN, Klannemark M, Lindgren CM, Vohl MC, Nemesh J, Lane CR, Schaffner SF, Bolk S, Brewer C, Tuomi T, Gaudet D, Hudson TJ, Daly M, Groop L, Lander ES. The common PPARgamma Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes. Nat Genet. 2000;26:76–80. doi: 10.1038/79216. [DOI] [PubMed] [Google Scholar]
  • 19.Gloyn AL, Weedon MN, Owen KR, Turner MJ, Knight BA, Hitman G, Walker M, Levy JC, Sampson M, Halford S, McCarthy MI, Hattersley AT, Frayling TM. Large-scale association studies of variants in genes encoding the pancreatic beta-cell KATP channel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) confirm that the KCNJ11 E23K variant is associated with type 2 diabetes. Diabetes. 2003;52:568–72. doi: 10.2337/diabetes.52.2.568. [DOI] [PubMed] [Google Scholar]
  • 20.Stumvoll M, Häring H. The peroxisome proliferator-activated receptor-gamma2 Pro12Ala polymorphism. Diabetes. 2002;51:2341–7. doi: 10.2337/diabetes.51.8.2341. [DOI] [PubMed] [Google Scholar]
  • 21.Deeb SS, Fajas L, Nemoto M, Pihlajamaki J, Mykkanen L, Kuusisto J, Laakso M, Fujimoto W, Auwerx J. A Pro12Ala substitution in PPARg2 associated with decreased receptor activity, lower body mass index and improved insulin sensitivity. Nat Genet. 1998;20:284–287. doi: 10.1038/3099. [DOI] [PubMed] [Google Scholar]
  • 22.Zeggini E, Weedon MN, Lindgren CM, Frayling TM, Elliott KS, Lango H, Timpson NJ, Perry JR, Rayner NW, Freathy RM, Barrett JC, Shields B, Morris AP, Ellard S, Groves CJ, Harries LW, Marchini JL, Owen KR, Knight B, Cardon LR, Walker M, Hitman GA, Morris AD, Doney AS, Wellcome Trust Case Control Consortium (WTCCC);, McCarthy MI, Hattersley AT. Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science. 2007;316:1336–41. doi: 10.1126/science.1142364. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007;447:661–78. doi: 10.1038/nature05911. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Sladek R, Rocheleau G, Rung J, Dina C, Shen L, Serre D, Boutin P, Vincent D, Belisle A, Hadjadj S, Balkau B, Heude B, Charpentier G, Hudson TJ, Montpetit A, Pshezhetsky AV, Prentki M, Posner BI, Balding DJ, Meyre D, Polychronakos C, Froguel P. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature. 2007;22(445):881–5. doi: 10.1038/nature05616. [DOI] [PubMed] [Google Scholar]
  • 25.Sandhu MS, Weedon MN, Fawcett KA, Wasson J, Debenham SL, Daly A, Lango H, Frayling TM, Neumann RJ, Sherva R, Blech I, Pharoah PD, Palmer CN, Kimber C, Tavendale R, Morris AD, McCarthy MI, Walker M, Hitman G, Glaser B, Permutt MA, Hattersley AT, Wareham NJ, Barroso I. Common variants in WFS1 confer risk of type 2 diabetes. Nat Genet. 2007;39:951–3. doi: 10.1038/ng2067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Gudmundsson J, Sulem P, Steinthorsdottir V, Bergthorsson JT, Thorleifsson G, Manolescu A, Rafnar T, Gudbjartsson D, Agnarsson BA, Baker A, Sigurdsson A, Benediktsdottir KR, Jakobsdottir M, Blondal T, Stacey SN, Helgason A, Gunnarsdottir S, Olafsdottir A, Kristinsson KT, Birgisdottir B, Ghosh S, Thorlacius S, Magnusdottir D, Stefansdottir G, Kristjansson K, Bagger Y, Wilensky RL, Reilly MP, Morris AD, Kimber CH, Adeyemo A, Chen Y, Zhou J, So WY, Tong PC, Ng MC, Hansen T, Andersen G, Borch-Johnsen K, Jorgensen T, Tres A, Fuertes F, Ruiz-Echarri M, Asin L, Saez B, van Boven E, Klaver S, Swinkels DW, Aben KK, Graif T, Cashy J, Suarez BK, van Vierssen Trip O, Frigge ML, Ober C, Hofker MH, Wijmenga C, Christiansen C, Rader DJ, Palmer CN, Rotimi C, Chan JC, Pedersen O, Sigurdsson G, Benediktsson R, Jonsson E, Einarsson GV, Mayordomo JI, Catalona WJ, Kiemeney LA, Barkardottir RB, Gulcher JR, Thorsteinsdottir U, Kong A, Stefansson K. Two variants on chromosome 17 confer prostate cancer risk, and the one in TCF2 protects against type 2 diabetes. Nat Genet. 2007;39:977–83. doi: 10.1038/ng2062. [DOI] [PubMed] [Google Scholar]
  • 27.Unoki H, Takahashi A, Kawaguchi T, Hara K, Horikoshi M, Andersen G, Ng DP, Holmkvist J, Borch-Johnsen K, Jørgensen T, Sandbaek A, Lauritzen T, Hansen T, Nurbaya S, Tsunoda T, Kubo M, Babazono T, Hirose H, Hayashi M, Iwamoto Y, Kashiwagi A, Kaku K, Kawamori R, Tai ES, Pedersen O, Kamatani N, Kadowaki T, Kikkawa R, Nakamura Y, Maeda S. SNPs in KCNQ1 are associated with susceptibility to type 2 diabetes in East Asian and European populations. Nat Genet. 2008;40:1098–102. doi: 10.1038/ng.208. [DOI] [PubMed] [Google Scholar]
  • 28.Scott LJ, Mohlke KL, Bonnycastle LL, Willer CJ, Li Y, Duren WL, Erdos MR, Stringham HM, Chines PS, Jackson AU, Prokunina-Olsson L, Ding CJ, Swift AJ, Narisu N, Hu T, Pruim R, Xiao R, Li XY, Conneely KN, Riebow NL, Sprau AG, Tong M, White PP, Hetrick KN, Barnhart MW, Bark CW, Goldstein JL, Watkins L, Xiang F, Saramies J, Buchanan TA, Watanabe RM, Valle TT, Kinnunen L, Abecasis GR, Pugh EW, Doheny KF, Bergman RN, Tuomilehto J, Collins FS, Boehnke M. A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science. 2007;316:1341–5. doi: 10.1126/science.1142382. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Steinthorsdottir V, Thorleifsson G, Reynisdottir I, Benediktsson R, Jonsdottir T, Walters GB, Styrkarsdottir U, Gretarsdottir S, Emilsson V, Ghosh S, Baker A, Snorradottir S, Bjarnason H, Ng MC, Hansen T, Bagger Y, Wilensky RL, Reilly MP, Adeyemo A, Chen Y, Zhou J, Gudnason V, Chen G, Huang H, Lashley K, Doumatey A, So WY, Ma RC, Andersen G, Borch-Johnsen K, Jorgensen T, van Vliet-Ostaptchouk JV, Hofker MH, Wijmenga C, Christiansen C, Rader DJ, Rotimi C, Gurney M, Chan JC, Pedersen O, Sigurdsson G, Gulcher JR, Thorsteinsdottir U, Kong A, Stefansson K. A variant in CDKAL1 influences insulin response and risk of type 2 diabetes. Nat Genet. 2007;39:770–5. doi: 10.1038/ng2043. [DOI] [PubMed] [Google Scholar]
  • 30.Takeuchi F, Serizawa M, Yamamoto K, Fujisawa T, Nakashima E, Ohnaka K, Ikegami H, Sugiyama T, Katsuya T, Miyagishi M, Nakashima N, Nawata H, Nakamura J, Kono S, Takayanagi R, Kato N. Confirmation of multiple risk Loci and genetic impacts by a genome-wide association study of type 2 diabetes in the Japanese population. Diabetes. 2009;58:1690–9. doi: 10.2337/db08-1494. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Zeggini E, Scott LJ, Saxena R, Voight BF, Marchini JL, Hu T, de Bakker PI, Abecasis GR, Almgren P, Andersen G, Ardlie K, Boström KB, Bergman RN, Bonnycastle LL, Borch-Johnsen K, Burtt NP, Chen H, Chines PS, Daly MJ, Deodhar P, Ding CJ, Doney AS, Duren WL, Elliott KS, Erdos MR, Frayling TM, Freathy RM, Gianniny L, Grallert H, Grarup N, Groves CJ, Guiducci C, Hansen T, Herder C, Hitman GA, Hughes TE, Isomaa B, Jackson AU, Jørgensen T, Kong A, Kubalanza K, Kuruvilla FG, Kuusisto J, Langenberg C, Lango H, Lauritzen T, Li Y, Lindgren CM, Lyssenko V, Marvelle AF, Meisinger C, Midthjell K, Mohlke KL, Morken MA, Morris AD, Narisu N, Nilsson P, Owen KR, Palmer CN, Payne F, Perry JR, Pettersen E, Platou C, Prokopenko I, Qi L, Qin L, Rayner NW, Rees M, Roix JJ, Sandbaek A, Shields B, Sjögren M, Steinthorsdottir V, Stringham HM, Swift AJ, Thorleifsson G, Thorsteinsdottir U, Timpson NJ, Tuomi T, Tuomilehto J, Walker M, Watanabe RM, Weedon MN, Willer CJ, Wellcome Trust Case Control Consortium, Illig T, Hveem K, Hu FB, Laakso M, Stefansson K, Pedersen O, Wareham NJ, Barroso I, Hattersley AT, Collins FS, Groop L, McCarthy MI, Boehnke M, Altshuler D. Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat Genet. 2008;40:638–45. doi: 10.1038/ng.120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Saxena R, Voight BF, Lyssenko V, Burtt NP, de Bakker PI, Chen H, Roix JJ, Kathiresan S, Hirschhorn JN, Daly MJ, Hughes TE, Groop L, Altshuler D, Almgren P, Florez JC, Meyer J, Ardlie K, Bengtsson Boström K, Isomaa B, Lettre G, Lindblad U, Lyon HN, Melander O, Newton-Cheh C, Nilsson P, Orho-Melander M, Råstam L, Speliotes EK, Taskinen MR, Tuomi T, Guiducci C, Berglund A, Carlson J, Gianniny L, Hackett R, Hall L, Holmkvist J, Laurila E, Sjögren M, Sterner M, Surti A, Svensson M, Svensson M, Tewhey R, Blumenstiel B, Parkin M, Defelice M, Barry R, Brodeur W, Camarata J, Chia N, Fava M, Gibbons J, Handsaker B, Healy C, Nguyen K, Gates C, Sougnez C, Gage D, Nizzari M, Gabriel SB, Chirn GW, Ma Q, Parikh H, Richardson D, Ricke D, Purcell S Diabetes Genetics Initiative of Broad Institute of Harvard and MIT, Lund University, and Novartis Institutes of BioMedical Research. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science. 2007;316:1331–6. doi: 10.1126/science.1142358. [DOI] [PubMed] [Google Scholar]
  • 33.Yasuda K, Miyake K, Horikawa Y, Hara K, Osawa H, Furuta H, Hirota Y, Mori H, Jonsson A, Sato Y, Yamagata K, Hinokio Y, Wang HY, Tanahashi T, Nakamura N, Oka Y, Iwasaki N, Iwamoto Y, Yamada Y, Seino Y, Maegawa H, Kashiwagi A, Takeda J, Maeda E, Shin HD, Cho YM, Park KS, Lee HK, Ng MC, Ma RC, So WY, Chan JC, Lyssenko V, Tuomi T, Nilsson P, Groop L, Kamatani N, Sekine A, Nakamura Y, Yamamoto K, Yoshida T, Tokunaga K, Itakura M, Makino H, Nanjo K, Kadowaki T, Kasuga M. Variants in KCNQ1 are associated with susceptibility to type 2 diabetes mellitus. Nat Genet. 2008;40:1092–7. doi: 10.1038/ng.207. [DOI] [PubMed] [Google Scholar]
  • 34.Voight BF, Scott LJ, Steinthorsdottir V, Morris AP, Dina C, Welch RP, Zeggini E, Huth C, Aulchenko YS, Thorleifsson G, McCulloch LJ, Ferreira T, Grallert H, Amin N, Wu G, Willer CJ, Raychaudhuri S, McCarroll SA, Langenberg C, Hofmann OM, Dupuis J, Qi L, Segrè AV, van Hoek M, Navarro P, Ardlie K, Balkau B, Benediktsson R, Bennett AJ, Blagieva R, Boerwinkle E, Bonnycastle LL, Bengtsson Boström K, Bravenboer B, Bumpstead S, Burtt NP, Charpentier G, Chines PS, Cornelis M, Couper DJ, Crawford G, Doney AS, Elliott KS, Elliott AL, Erdos MR, Fox CS, Franklin CS, Ganser M, Gieger C, Grarup N, Green T, Griffin S, Groves CJ, Guiducci C, Hadjadj S, Hassanali N, Herder C, Isomaa B, Jackson AU, Johnson PR, Jørgensen T, Kao WH, Klopp N, Kong A, Kraft P, Kuusisto J, Lauritzen T, Li M, Lieverse A, Lindgren CM, Lyssenko V, Marre M, Meitinger T, Midthjell K, Morken MA, Narisu N, Nilsson P, Owen KR, Payne F, Perry JR, Petersen AK, Platou C, Proença C, Prokopenko I, Rathmann W, Rayner NW, Robertson NR, Rocheleau G, Roden M, Sampson MJ, Saxena R, Shields BM, Shrader P, Sigurdsson G, Sparsø T, Strassburger K, Stringham HM, Sun Q, Swift AJ, Thorand B, Tichet J, Tuomi T, van Dam RM, van Haeften TW, van Herpt T, van Vliet-Ostaptchouk JV, Walters GB, Weedon MN, Wijmenga C, Witteman J, Bergman RN, Cauchi S, Collins FS, Gloyn AL, Gyllensten U, Hansen T, Hide WA, Hitman GA, Hofman A, Hunter DJ, Hveem K, Laakso M, Mohlke KL, Morris AD, Palmer CN, Pramstaller PP, Rudan I, Sijbrands E, Stein LD, Tuomilehto J, Uitterlinden A, Walker M, Wareham NJ, Watanabe RM, Abecasis GR, Boehm BO, Campbell H, Daly MJ, Hattersley AT, Hu FB, Meigs JB, Pankow JS, Pedersen O, Wichmann HE, Barroso I, Florez JC, Frayling TM, Groop L, Sladek R, Thorsteinsdottir U, Wilson JF, Illig T, Froguel P, van Duijn CM, Stefansson K, Altshuler D, Boehnke M, McCarthy MI. MAGIC investigators; GIANT Consortium. Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat Genet. 2010;42:579–89. doi: 10.1038/ng.609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Rung J, Cauchi S, Albrechtsen A, Shen L, Rocheleau G, Cavalcanti-Proença C, Bacot F, Balkau B, Belisle A, Borch-Johnsen K, Charpentier G, Dina C, Durand E, Elliott P, Hadjadj S, Järvelin MR, Laitinen J, Lauritzen T, Marre M, Mazur A, Meyre D, Montpetit A, Pisinger C, Posner B, Poulsen P, Pouta A, Prentki M, Ribel-Madsen R, Ruokonen A, Sandbaek A, Serre D, Tichet J, Vaxillaire M, Wojtaszewski JF, Vaag A, Hansen T, Poly-chronakos C, Pedersen O, Froguel P, Sladek R. Genetic variant near IRS1 is associated with type 2 diabetes, insulin resistance and hyperinsulinemia. Nat Genet. 2009;41:1110–5. doi: 10.1038/ng.443. [DOI] [PubMed] [Google Scholar]
  • 36.Qi L, Cornelis MC, Kraft P, Stanya KJ, Linda Kao WH, Pankow JS, Dupuis J, Florez JC, Fox CS, Paré G, Sun Q, Girman CJ, Laurie CC, Mirel DB, Manolio TA, Chasman DI, Boerwinkle E, Ridker PM, Hunter DJ, Meigs JB, Lee CH, Hu FB, van Dam RM. Meta-Analysis of Glucose and Insulin-related traits Consortium (MAGIC) Diabetes Genetics Replication and Meta-analysis (DIAGRAM) Consortium. Genetic variants at 2q24 are associated with susceptibility to type 2 diabetes. Hum Mol Genet. 2010;19:2706–15. doi: 10.1093/hmg/ddq156. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Yamauchi T, Hara K, Maeda S, Yasuda K, Takahashi A, Horikoshi M, Nakamura M, Fujita H, Grarup N, Cauchi S, Ng DP, Ma RC, Tsunoda T, Kubo M, Watada H, Maegawa H, Okada-Iwabu M, Iwabu M, Shojima N, Shin HD, Andersen G, Witte DR, Jørgensen T, Lauritzen T, Sandbæk A, Hansen T, Ohshige T, Omori S, Saito I, Kaku K, Hirose H, So WY, Beury D, Chan JC, Park KS, Tai ES, Ito C, Tanaka Y, Kashiwagi A, Kawamori R, Kasuga M, Froguel P, Pedersen O, Kamatani N, Nakamura Y, Kadowaki T. A genome-wide association study in the Japanese population identifies susceptibility loci for type 2 diabetes at UBE2E2 and C2CD4A-C2CD4B. Nat Genet. 2010;42:864–8. doi: 10.1038/ng.660. [DOI] [PubMed] [Google Scholar]
  • 38.Tsai FJ, Yang CF, Chen CC, Chuang LM, Lu CH, Chang CT, Wang TY, Chen RH, Shiu CF, Liu YM, Chang CC, Chen P, Chen CH, Fann CS, Chen YT, Wu JY. A genome-wide association study identifies susceptibility variants for type 2 diabetes in Han Chinese. PLoS Genet. 2010;6:e1000847. doi: 10.1371/journal.pgen.1000847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Shu XO, Long J, Cai Q, Qi L, Xiang YB, Cho YS, Tai ES, Li X, Lin X, Chow WH, Go MJ, Seielstad M, Bao W, Li H, Cornelis MC, Yu K, Wen W, Shi J, Han BG, Sim XL, Liu L, Qi Q, Kim HL, Ng DP, Lee JY, Kim YJ, Li C, Gao YT, Zheng W, Hu FB. Identification of new genetic risk variants for type 2 diabetes. PLoS Genet. 2010;6:e1001127. doi: 10.1371/journal.pgen.1001127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Sim X, Ong RT, Suo C, Tay WT, Liu J, Ng DP, Boehnke M, Chia KS, Wong TY, Seielstad M, Teo YY, Tai ES. Transferability of type 2 diabetes implicated loci in multi-ethnic cohorts from Southeast Asia. PLoS Genet. 2011;7:e1001363. doi: 10.1371/journal.pgen.1001363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Kooner JS, Saleheen D, Sim X, Sehmi J, Zhang W, Frossard P, Been LF, Chia KS, Dimas AS, Hassanali N, Jafar T, Jowett JB, Li X, Radha V, Rees SD, Takeuchi F, Young R, Aung T, Basit A, Chidambaram M, Das D, Grundberg E, Hedman AK, Hydrie ZI, Islam M, Khor CC, Kowlessur S, Kristensen MM, Liju S, Lim WY, Matthews DR, Liu J, Morris AP, Nica AC, Pinidiyapathirage JM, Prokopenko I, Rasheed A, Samuel M, Shah N, Shera AS, Small KS, Suo C, Wickremasinghe AR, Wong TY, Yang M, Zhang F, DIAGRAM MuTHER Abecasis GR, Barnett AH, Caulfield M, Deloukas P, Frayling TM, Froguel P, Kato N, Katulanda P, Kelly MA, Liang J, Mohan V, Sanghera DK, Scott J, Seielstad M, Zimmet PZ, Elliott P, Teo YY, McCarthy MI, Danesh J, Tai ES, Chambers JC. Genome-wide association study in individuals of South Asian ancestry identifies six new type 2 diabetes susceptibility loci. Nat Genet. 2011;43:984–9. doi: 10.1038/ng.921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Cho YS, Chen CH, Hu C, Long J, Ong RT, Sim X, Takeuchi F, Wu Y, Go MJ, Yamauchi T, Chang YC, Kwak SH, Ma RC, Yamamoto K, Adair LS, Aung T, Cai Q, Chang LC, Chen YT, Gao Y, Hu FB, Kim HL, Kim S, Kim YJ, Lee JJ, Lee NR, Li Y, Liu JJ, Lu W, Nakamura J, Nakashima E, Ng DP, Tay WT, Tsai FJ, Wong TY, Yokota M, Zheng W, Zhang R, Wang C, So WY, Ohnaka K, Ikegami H, Hara K, Cho YM, Cho NH, Chang TJ, Bao Y, Hedman K, Morris AP, McCarthy MI, DIAGRAM Consortium MuTHER Consortium, Takayanagi R, Park KS, Jia W, Chuang LM, Chan JC, Maeda S, Kadowaki T, Lee JY, Wu JY, Teo YY, Tai ES, Shu XO, Mohlke KL, Kato N, Han BG, Seielstad M. Meta-analysis of genome-wide association studies identifies eight new loci for type 2 diabetes in east Asians. Nat Genet. 2011;44:67–72. doi: 10.1038/ng.1019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Palmer ND, McDonough CW, Hicks PJ, Roh BH, Wing MR, An SS, Hester JM, Cooke JN, Bostrom MA, Rudock ME, Talbert ME, Lewis JP, DIAGRAM Consortium; MAGIC Investigators , Ferrara A, Lu L, Ziegler JT, Sale MM, Divers J, Shriner D, Adeyemo A, Rotimi CN, Ng MC, Langefeld CD, Freedman BI, Bowden DW, Voight BF, Scott LJ, Steinthorsdottir V, Morris AP, Dina C, Welch RP, Zeggini E, Huth C, Aulchenko YS, Thorleifsson G, McCulloch LJ, Ferreira T, Grallert H, Amin N, Wu G, Willer CJ, Raychaudhuri S, McCarroll SA, Langenberg C, Hofmann OM, Dupuis J, Qi L, Segrè AV, van Hoek M, Navarro P, Ardlie K, Balkau B, Benediktsson R, Bennett AJ, Blagieva R, Boerwinkle E, Bonnycastle LL, Boström KB, Bravenboer B, Bumpstead S, Burtt NP, Charpentier G, Chines PS, Cornelis M, Couper DJ, Crawford G, Doney AS, Elliott KS, Elliott AL, Erdos MR, Fox CS, Franklin CS, Ganser M, Gieger C, Grarup N, Green T, Griffin S, Groves CJ, Guiducci C, Hadjadj S, Hassanali N, Herder C, Isomaa B, Jackson AU, Johnson PR, Jørgensen T, Kao WH, Klopp N, Kong A, Kraft P, Kuusisto J, Lauritzen T, Li M, Lieverse A, Lindgren CM, Lyssenko V, Marre M, Meitinger T, Midthjell K, Morken MA, Narisu N, Nilsson P, Owen KR, Payne F, Perry JR, Petersen AK, Platou C, Proença C, Prokopenko I, Rathmann W, Rayner NW, Robertson NR, Rocheleau G, Roden M, Sampson MJ, Saxena R, Shields BM, Shrader P, Sigurdsson G, Sparsø T, Strassburger K, Stringham HM, Sun Q, Swift AJ, Thorand B, Tichet J, Tuomi T, van Dam RM, van Haeften TW, van Herpt T, van Vliet-Ostaptchouk JV, Walters GB, Weedon MN, Wijmenga C, Witteman J, Bergman RN, Cauchi S, Collins FS, Gloyn AL, Gyllensten U, Hansen T, Hide WA, Hitman GA, Hofman A, Hunter DJ, Hveem K, Laakso M, Mohlke KL, Morris AD, Palmer CN, Pramstaller PP, Rudan I, Sijbrands E, Stein LD, Tuomilehto J, Uitterlinden A, Walker M, Wareham NJ, Watanabe RM, Abecasis GR, Boehm BO, Campbell H, Daly MJ, Hattersley AT, Hu FB, Meigs JB, Pankow JS, Pedersen O, Wichmann HE, Barroso I, Florez JC, Frayling TM, Groop L, Sladek R, Thorsteinsdottir U, Wilson JF, Illig T, Froguel P, van Duijn CM, Stefansson K, Altshuler D, Boehnke M, McCarthy MI, Soranzo N, Wheeler E, Glazer NL, Bouatia-Naji N, Mägi R, Randall J, Johnson T, Elliott P, Rybin D, Henneman P, Dehghan A, Hottenga JJ, Song K, Goel A, Egan JM, Lajunen T, Doney A, Kanoni S, Cavalcanti-Proença C, Kumari M, Timpson NJ, Zabena C, Ingelsson E, An P, O'Connell J, Luan J, Elliott A, McCarroll SA, Roccasecca RM, Pattou F, Sethupathy P, Ariyurek Y, Barter P, Beilby JP, Ben-Shlomo Y, Bergmann S, Bochud M, Bonnefond A, Borch-Johnsen K, Böttcher Y, Brunner E, Bumpstead SJ, Chen YD, Chines P, Clarke R, Coin LJ, Cooper MN, Crisponi L, Day IN, de Geus EJ, Delplanque J, Fedson AC, Fischer-Rosinsky A, Forouhi NG, Frants R, Franzosi MG, Galan P, Goodarzi MO, Graessler J, Grundy S, Gwilliam R, Hallmans G, Hammond N, Han X, Hartikainen AL, Hayward C, Heath SC, Hercberg S, Hicks AA, Hillman DR, Hingorani AD, Hui J, Hung J, Jula A, Kaakinen M, Kaprio J, Kesaniemi YA, Kivimaki M, Knight B, Koskinen S, Kovacs P, Kyvik KO, Lathrop GM, Lawlor DA, Le Bacquer O, Lecoeur C, Li Y, Mahley R, Mangino M, Manning AK, Martínez-Larrad MT, McAteer JB, McPherson R, Meisinger C, Melzer D, Meyre D, Mitchell BD, Mukherjee S, Naitza S, Neville MJ, Oostra BA, Orrù M, Pakyz R, Paolisso G, Pattaro C, Pearson D, Peden JF, Pedersen NL, Perola M, Pfeiffer AF, Pichler I, Polasek O, Posthuma D, Potter SC, Pouta A, Province MA, Psaty BM, Rayner NW, Rice K, Ripatti S, Rivadeneira F, Rolandsson O, Sandbaek A, Sandhu M, Sanna S, Sayer AA, Scheet P, Seedorf U, Sharp SJ, Shields B, Sijbrands EJ, Silveira A, Simpson L, Singleton A, Smith NL, Sovio U, Swift A, Syddall H, Syvänen AC, Tanaka T, Tönjes A, Uitterlinden AG, van Dijk KW, Varma D, Visvikis-Siest S, Vitart V, Vogelzangs N, Waeber G, Wagner PJ, Walley A, Ward KL, Watkins H, Wild SH, Willemsen G, Witteman JC, Yarnell JW, Zelenika D, Zethelius B, Zhai G, Zhao JH, Zillikens MC, Borecki IB, Loos RJ, Meneton P, Magnusson PK, Nathan DM, Williams GH, Silander K, Salomaa V, Smith GD, Bornstein SR, Schwarz P, Spranger J, Karpe F, Shuldiner AR, Cooper C, Dedoussis GV, Serrano-Ríos M, Lind L, Palmer LJ, Franks PW, Ebrahim S, Marmot M, Kao WH, Pramstaller PP, Wright AF, Stumvoll M, Hamsten A, Buchanan TA, Valle TT, Rotter JI, Siscovick DS, Penninx BW, Boomsma DI, Deloukas P, Spector TD, Ferrucci L, Cao A, Scuteri A, Schlessinger D, Uda M, Ruokonen A, Jarvelin MR, Waterworth DM, Vollenweider P, Peltonen L, Mooser V, Sladek R. A genome-wide association search for type 2 diabetes genes in African Americans. PLoS One. 2012;7:e29202. doi: 10.1371/journal.pone.0029202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Imamura M, Maeda S, Yamauchi T, Hara K, Yasuda K, Morizono T, Takahashi A, Horikoshi M, Nakamura M, Fujita H, Tsunoda T, Kubo M, Watada H, Maegawa H, Okada-Iwabu M, Iwabu M, Shojima N, Ohshige T, Omori S, Iwata M, Hirose H, Kaku K, Ito C, Tanaka Y, Tobe K, Kashiwagi A, Kawamori R, Kasuga M, Kamatani N, Diabetes Genetics Replication and Meta-analysis (DIAGRAM) Consortium , Nakamura Y, Kadowaki T. A single-nucleotide polymorphism in ANK1 is associated with susceptibility to type 2 diabetes in Japanese populations. Hum Mol Genet. 2012;21:3042–9. doi: 10.1093/hmg/dds113. [DOI] [PubMed] [Google Scholar]
  • 45.Huang J, Ellinghaus D, Franke A, Howie B, Li Y. 1000 Genomes-based imputation identifies novel and refined associations for the Wellcome Trust Case Control Consortium phase 1 Data. Eur J Hum Genet. 2012;20:801–5. doi: 10.1038/ejhg.2012.3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Cui B, Zhu X, Xu M, Guo T, Zhu D, Chen G, Li X, Xu L, Bi Y, Chen Y, Xu Y, Li X, Wang W, Wang H, Huang W, Ning G. A genome-wide association study confirms previously reported loci for type 2 diabetes in Han Chinese. PLoS One. 2011;6:e22353. doi: 10.1371/journal.pone.0022353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Horikoshi M, Hara K, Ito C, Nagai R, Froguel P, Kadowaki T. A genetic variation of the transcription factor 7-like 2 gene is associated with risk of type 2 diabetes in the Japanese population. Diabetologia. 2007;50:747–51. doi: 10.1007/s00125-006-0588-6. [DOI] [PubMed] [Google Scholar]
  • 48.Chang YC, Chang TJ, Jiang YD, Kuo SS, Lee KC, Chiu KC, Chuang LM. Association study of the genetic polymorphisms of the transcription factor 7-like 2 (TCF7L2) gene and type 2 diabetes in the Chinese population. Diabetes. 2007;56:2631–7. doi: 10.2337/db07-0421. [DOI] [PubMed] [Google Scholar]
  • 49.Ren Q, Han XY, Wang F, Zhang XY, Han LC, Luo YY, Zhou XH, Ji LN. Exon sequencing and association analysis of polymorphisms in TCF7L2 with type 2 diabetes in a Chinese population. Diabetologia. 2008;51:1146–52. doi: 10.1007/s00125-008-1039-3. [DOI] [PubMed] [Google Scholar]
  • 50.Voight BF, Scott LJ, Steinthorsdottir V, Morris AP, Dina C, Welch RP, Zeggini E, Huth C, Aulchenko YS, Thorleifsson G, McCulloch LJ, Ferreira T, Grallert H, Amin N, Wu G, Willer CJ, Raychaudhuri S, McCarroll SA, Langenberg C, Hofmann OM, Dupuis J, Qi L, Segrè AV, van Hoek M, Navarro P, Ardlie K, Balkau B, Benediktsson R, Bennett AJ, Blagieva R, Boerwinkle E, Bonnycastle LL, Bengtsson Boström K, Bravenboer B, Bumpstead S, Burtt NP, Charpentier G, Chines PS, Cor-nelis M, Couper DJ, Crawford G, Doney AS, Elliott KS, Elliott AL, Erdos MR, Fox CS, Franklin CS, Ganser M, Gieger C, Grarup N, Green T, Griffin S, Groves CJ, Guiducci C, Hadjadj S, Hassanali N, Herder C, Isomaa B, Jackson AU, Johnson PR, Jørgensen T, Kao WH, Klopp N, Kong A, Kraft P, Kuusisto J, Lauritzen T, Li M, Lieverse A, Lindgren CM, Lyssenko V, Marre M, Meitinger T, Midthjell K, Morken MA, Narisu N, Nilsson P, Owen KR, Payne F, Perry JR, Petersen AK, Platou C, Proença C, Prokopenko I, Rathmann W, Rayner NW, Robertson NR, Rocheleau G, Roden M, Sampson MJ, Saxena R, Shields BM, Shrader P, Sigurdsson G, Sparsø T, Strassburger K, Stringham HM, Sun Q, Swift AJ, Thorand B, Tichet J, Tuomi T, van Dam RM, van Haeften TW, van Herpt T, van Vliet-Ostaptchouk JV, Walters GB, Weedon MN, Wijmenga C, Witteman J, Bergman RN, Cauchi S, Collins FS, Gloyn AL, Gyllensten U, Hansen T, Hide WA, Hitman GA, Hofman A, Hunter DJ, Hveem K, Laakso M, Mohlke KL, Morris AD, Palmer CN, Pramstaller PP, Rudan I, Sijbrands E, Stein LD, Tuomilehto J, Uitterlinden A, Walker M, Wareham NJ, Watanabe RM, Abecasis GR, Boehm BO, Campbell H, Daly MJ, Hattersley AT, Hu FB, Meigs JB, Pankow JS, Pedersen O, Wichmann HE, Barroso I, Florez JC, Frayling TM, Groop L, Sladek R, Thorsteinsdottir U, Wilson JF, Illig T, Froguel P, van Duijn CM, Stefansson K, Altshuler D, Boehnke M, McCarthy MI. MAGIC investigators GIANT Consortium Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat Genet. 2010;42:579–89. doi: 10.1038/ng.609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.Perry JR, Frayling TM. New gene variants alter type 2 diabetes risk predominantly through reduced beta-cell function. Curr Opin Clin Nutr Metab Care. 2008;11:371–7. doi: 10.1097/MCO.0b013e32830349a1. [DOI] [PubMed] [Google Scholar]
  • 52.Saxena R, Gianniny L, Burtt NP, Lyssenko V, Giuducci C, Sjögren M, Florez JC, Almgren P, Isomaa B, Orho-Melander M, Lindblad U, Daly MJ, Tuomi T, Hirschhorn JN, Ardlie KG, Groop LC, Altshuler D. Common single nucleotide polymorphisms in TCF7L2 are reproducibly associated with type 2 diabetes and reduce the insulin response to glucose in nondiabetic individuals. Diabetes. 2006;55:2890–5. doi: 10.2337/db06-0381. [DOI] [PubMed] [Google Scholar]
  • 53.Munoz J, Lok KH, Gower BA, Fernandez JR, Hunter GR, Lara-Castro C, De Luca M, Garvey WT. Polymorphism in the transcription factor 7-like 2 (TCF7L2) gene is associated with reduced insulin secretion in nondiabetic women. Diabetes. 2006;55:3630–4. doi: 10.2337/db06-0574. [DOI] [PubMed] [Google Scholar]
  • 54.Loos RJ, Franks PW, Francis RW, Barroso I, Gribble FM, Savage DB, Ong KK, O'Rahilly S, Wareham NJ. TCF7L2 polymorphisms modulate proinsulin levels and beta-cell function in a British Europid population. Diabetes. 2007;56:1943–7. doi: 10.2337/db07-0055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55.Lyssenko V, Lupi R, Marchetti P, Del Guerra S, Orho-Melander M, Almgren P, Sjögren M, Ling C, Eriksson KF, Lethagen AL, Mancarella R, Berglund G, Tuomi T, Nilsson P, Del Prato S, Groop L. Mechanisms by which common variants in the TCF7L2 gene increase risk of type 2 diabetes. J Clin Invest. 2007;117:2155–63. doi: 10.1172/JCI30706. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.Lee YH, Kang ES, Kim SH, Han SJ, Kim CH, Kim HJ, Ahn CW, Cha BS, Nam M, Nam CM, Lee HC. Association between polymorphisms in SLC30A8, HHEX, CDKN2A/B, IGF2BP2, FTO, WFS1, CDKAL1, KCNQ1 and type 2 diabetes in the Korean population. J Hum Genet. 2008;53:991–8. doi: 10.1007/s10038-008-0341-8. [DOI] [PubMed] [Google Scholar]
  • 57.Xu M, Bi Y, Xu Y, Yu B, Huang Y, Gu L, Wu Y, Zhu X, Li M, Wang T, Song A, Hou J, Li X, Ning G. Combined effects of 19 common variations on type 2 diabetes in Chinese: results from two community-based studies. PLoS One. 2010;17:e14022. doi: 10.1371/journal.pone.0014022. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58.Chimienti F, Devergnas S, Favier A, Seve M. Identification and cloning of a beta-cell-specific zinc transporter, ZnT-8, localized into insulin secretory granules. Diabetes. 2004;53:2330–7. doi: 10.2337/diabetes.53.9.2330. [DOI] [PubMed] [Google Scholar]
  • 59.Chimienti F, Favier A, Seve M. ZnT-8 a pancreatic beta-cell-specific zinc transporter. Biometals. 2005;18:313–7. doi: 10.1007/s10534-005-3687-9. [DOI] [PubMed] [Google Scholar]
  • 60.Pound LD, Sarkar SA, Benninger RK, Wang Y, Su-wanichkul A, Shadoan MK, Printz RL, Oeser JK, Lee CE, Piston DW, McGuinness OP, Hutton JC, Powell DR, O'Brien RM. Deletion of the mouse Slc30a8 gene encoding zinc transporter-8 results in impaired insulin se-cretion. Biochem J. 2009;421:371–6. doi: 10.1042/BJ20090530. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61.Nicolson TJ, Bellomo EA, Wijesekara N, Loder MK, Baldwin JM, Gyulkhandanyan AV, Koshkin V, Tarasov AI, Carzaniga R, Kronenberger K, Taneja TK, da Silva Xavier G, Libert S, Froguel P, Scharfmann R, Stetsyuk V, Ravassard P, Parker H, Gribble FM, Reimann F, Sladek R, Hughes SJ, Johnson PR, Masseboeuf M, Burcelin R, Baldwin SA, Liu M, Lara-Lemus R, Arvan P, Schuit FC, Wheeler MB, Chimienti F, Rutter GA. Insulin storage and glucose homeostasis in mice null for the granule zinc transporter ZnT8 and studies of the type 2 dia-betes-associated variants. Diabetes. 2009;58:2070–83. doi: 10.2337/db09-0551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62.Xiang J, Li XY, Xu M, Hong J, Huang Y, Tan JR, Lu X, Dai M, Yu B, Ning G. Zinc transporter-8 gene (SLC30A8) is associated with type 2 diabetes in Chinese. J Clin Endocrinol Metab. 2008;93:4107–12. doi: 10.1210/jc.2008-0161. [DOI] [PubMed] [Google Scholar]
  • 63.Boesgaard TW, Zilinskaite J, Vänttinen M, Laakso M, Jansson PA, Hammarstedt A, Smith U, Stefan N, Fritsche A, Häring H, Hribal M, Sesti G, Zobel DP, Pedersen O, Hansen T. EUGENE 2 Consortium The common SLC30A8 Arg325Trp variant is associated with reduced first-phase insulin release in 846 non-diabetic offspring of type 2 diabetes patients--the EUGENE2 study. Diabetologia. 2008;51:816–20. doi: 10.1007/s00125-008-0955-6. [DOI] [PubMed] [Google Scholar]
  • 64.Jonsson A, Isomaa B, Tuomi T, Taneera J, Salehi A, Nilsson P, Groop L, Lyssenko V. A variant in the KCNQ1 gene predicts future type 2 diabetes and mediates impaired insulin secretion. Diabetes. 2009;58:2409–13. doi: 10.2337/db09-0246. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65.Tan JT, Nurbaya S, Gardner D, Ye S, Tai ES, Ng DP. Genetic variation in KCNQ1 associates with fasting glucose and beta-cell function: a study of 3,734 subjects comprising three ethnicities living in Singapore. Diabetes. 2009;58:1445–9. doi: 10.2337/db08-1138. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 66.Florez JC. Newly identified loci highlight beta cell dysfunction as a key cause of type 2 diabetes: where are the insulin resistance genes? Diabetologia. 2008;51:1100–10. doi: 10.1007/s00125-008-1025-9. [DOI] [PubMed] [Google Scholar]
  • 67.Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM, Lindgren CM, Perry JR, Elliott KS, Lango H, Rayner NW, Shields B, Harries LW, Barrett JC, Ellard S, Groves CJ, Knight B, Patch AM, Ness AR, Ebrahim S, Lawlor DA, Ring SM, Ben-Shlomo Y, Jarvelin MR, Sovio U, Bennett AJ, Melzer D, Ferrucci L, Loos RJ, Barroso I, Wareham NJ, Karpe F, Owen KR, Cardon LR, Walker M, Hitman GA, Palmer CN, Doney AS, Morris AD, Smith GD, Hattersley AT, McCarthy MI. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science. 2007;316:889–94. doi: 10.1126/science.1141634. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68.Florez JC. Clinical review the genetics of type 2 diabetes a realistic appraisal in 2008. J Clin Endocrinol Metab. 2008;93:4633–42. doi: 10.1210/jc.2008-1345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69.Maher B. Personal genomes The case of the missing heritability. Nature. 2008;456:18–21. doi: 10.1038/456018a. [DOI] [PubMed] [Google Scholar]
  • 70.Florez JC, Jablonski KA, Bayley N, Pollin TI, de Bakker PI, Shuldiner AR, Knowler WC, Nathan DM, Altshuler D. Diabetes Prevention Program Research Group TCF7L2 polymorphisms and progression to diabetes in the Diabetes Prevention Program. N Engl J Med. 2006;355:241–50. doi: 10.1056/NEJMoa062418. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71.Meigs JB, Shrader P, Sullivan LM, McAteer JB, Fox CS, Dupuis J, Manning AK, Florez JC, Wilson PW, D'Agostino RB Sr, Cupples LA. Genotype score in addition to common risk factors for prediction of type 2 diabetes. N Engl J Med. 2008;359:2208–19. doi: 10.1056/NEJMoa0804742. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 72.Lyssenko V, Jonsson A, Almgren P, Pulizzi N, Isomaa B, Tuomi T, Berglund G, Altshuler D, Nilsson P, Groop L. Clinical risk factors DNA variants and the development of type 2 diabetes. N Engl J Med. 2008;359:2220–32. doi: 10.1056/NEJMoa0801869. [DOI] [PubMed] [Google Scholar]
  • 73.Cornelis MC, Qi L, Zhang C, Kraft P, Manson J, Cai T, Hunter DJ, Hu FB. Joint effects of common genetic variants on the risk for type 2 diabetes in U.S. men and women of European ancestry. Ann Intern Med. 2009;150:541–50. doi: 10.7326/0003-4819-150-8-200904210-00008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 74.van Hoek M, Dehghan A, Witteman JC, van Duijn CM, Uitterlinden AG, Oostra BA, Hofman A, Sijbrands EJ, Janssens AC. Predicting type 2 diabetes based on polymorphisms from genome-wide association studies: a population-based study. Diabetes. 2008;57:3122–3128. doi: 10.2337/db08-0425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 75.de Miguel-Yanes JM, Shrader P, Pencina MJ, Fox CS, Manning AK, Grant RW, Dupuis J, Florez JC, D'Agostino RB Sr, Cupples LA, Meigs JB. MAGIC Investigators DIAGRAM+ Investigators Genetic risk reclassi?cation for type 2 diabetes by age below or above 50 Years using 40 type 2 diabetes risk single nucleotide poly-morphisms. Diabetes Care. 2011;34:121–125. doi: 10.2337/dc10-1265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 76.Vassy JL, Meigs JB. Is genetic testing useful to predict type 2 diabetes? Best Pract Res Clin Endocrinol Metab. 2012;26:189–201. doi: 10.1016/j.beem.2011.09.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 77.Majithia AR, Jablonski KA, McAteer JB, Mather KJ, Goldberg RB, Kahn SE, Florez JC. DPP Research Group Association of the SLC30A8 missense polymorphism R325W with proinsulin levels at baseline and after lifestyle, metformin or troglitazone intervention in the Diabetes Pre-vention Program. Diabetologia. 2011;54:2570–4. doi: 10.1007/s00125-011-2234-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 78.Pearson ER, Donnelly LA, Kimber C, Whitley A, Doney AS, McCarthy MI, Hattersley AT, Morris AD, Palmer CN. Variation in TCF7L2 influences therapeutic response to sulfonylureas: a GoDARTs study. Diabetes. 2007;56:2178–82. doi: 10.2337/db07-0440. [DOI] [PubMed] [Google Scholar]
  • 79.Shu Y, Sheardown SA, Brown C, Owen RP, Zhang S, Castro RA, Ianculescu AG, Yue L, Lo JC, Burchard EG, Brett CM, Giacomini KM. Effect of genetic variation in the organic cation transporter 1 (OCT1) on metformin action. J Clin Invest. 2007;117:1422–31. doi: 10.1172/JCI30558. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 80.Zhou K, Bellenguez C, Spencer CC, Bennett AJ, Coleman RL, Tavendale R, Hawley SA, Donnelly LA, Schofield C, Groves CJ, Burch L, Carr F, Strange A, Freeman C, Blackwell JM, Bramon E, Brown MA, Casas JP, Corvin A, Craddock N, Deloukas P, Dronov S, Duncanson A, Edkins S, Gray E, Hunt S, Jankowski J, Langford C, Markus HS, Mathew CG, Plomin R, Rautanen A, Sawcer SJ, Samani NJ, Trembath R, Viswanathan AC, Wood NW, MAGIC investigators Harries LW, Hattersley AT, Doney AS, Colhoun H, Morris AD, Sutherland C, Hardie DG, Peltonen L, McCarthy MI, Holman RR, Palmer CN, Donnelly P, Pearson ER. GoDARTS and UKPDS Diabetes Pharmaco-genetics Study Group; Wellcome Trust Case Control Consortium 2, Common variants near ATM are associated with glycemic response to metformin in type 2 diabetes. Nat Genet. 2011;43:117–20. doi: 10.1038/ng.735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 81.van Leeuwen N, Nijpels G, Becker ML, Deshmukh H, Zhou K, Stricker BH, Uitterlinden AG, Hofman A, van 't Riet E, Palmer CN, Guigas B, Slagboom PE, Durrington P, Calle RA, Neil A, Hitman G, Livingstone SJ, Colhoun H, Holman RR, McCarthy MI, Dekker JM, 't Hart LM, Pearson ER. A gene variant near ATM is significantly associated with metformin treatment response in type 2 diabetes: a replication and meta-analysis of five cohorts. Diabetologia. 2012;55:1971–7. doi: 10.1007/s00125-012-2537-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 82.Kilpeläinen TO, Qi L, Brage S, Sharp SJ, Sonestedt E, Demerath E, Ahmad T, Mora S, Kaakinen M, Sandholt CH, Holzapfel C, Autenrieth CS, Hyppönen E, Cauchi S, He M, Kutalik Z, Kumari M, Stancáková A, Meidtner K, Balkau B, Tan JT, Mangino M, Timpson NJ, Song Y, Zillikens MC, Jablonski KA, Garcia ME, Johansson S, Bragg-Gresham JL, Wu Y, van Vliet-Ostaptchouk JV, Onland-Moret NC, Zimmermann E, Rivera NV, Tanaka T, Stringham HM, Silbernagel G, Kanoni S, Feitosa MF, Snitker S, Ruiz JR, Metter J, Larrad MT, Atalay M, Hakanen M, Amin N, Cavalcanti-Proença C, Grøntved A, Hallmans G, Jansson JO, Kuusisto J, Kähönen M, Lutsey PL, Nolan JJ, Palla L, Pedersen O, Pérusse L, Renström F, Scott RA, Shungin D, Sovio U, Tammelin TH, Rönnemaa T, Lakka TA, Uusitupa M, Rios MS, Ferrucci L, Bouchard C, Meirhaeghe A, Fu M, Walker M, Borecki IB, Dedoussis GV, Fritsche A, Ohlsson C, Boehnke M, Bandinelli S, van Duijn CM, Ebrahim S, Lawlor DA, Gudnason V, Harris TB, Sørensen TI, Mohlke KL, Hofman A, Uitterlinden AG, Tuomilehto J, Lehtimäki T, Raitakari O, Isomaa B, Njølstad PR, Florez JC, Liu S, Ness A, Spector TD, Tai ES, Froguel P, Boeing H, Marmot M, Bergmann S, Power C, Khaw KT, Chasman D, Ridker P, Hansen T, Monda KL, Illig T, Järvelin MR, Wareham NJ, Hu FB, Groop LC, Orho-Melander M, Ekelund U, Franks PW, Loos RJ. Physical activity attenuates the influence of FTO variants on obesity risk: a meta-analysis of 218,166 adults and 19,268 children. PloS Med. 2011;8:e1001116. doi: 10.1371/journal.pmed.1001116. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 83.Dlouha D, Suchanek P, Lanskalanskalanska V, Hubacek JA. Body mass index change in females after short-time life style intervention is not dependent on the FTO polymorphisms. Physiol. Res. 2011;60:199–202. doi: 10.33549/physiolres.932065. [DOI] [PubMed] [Google Scholar]
  • 84.Franks PW, Jablonski KA, Delahanty LM, McAteer JB, Kahn SE, Knowler WC, Florez JC. Diabetes Prevention Program Research Group. Assessing gene-treatment interactions at the FTO and INSIG2 loci on obesity-related traits in the Diabetes Prevention Program. Diabetologia. 2008;51:2214–23. doi: 10.1007/s00125-008-1158-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 85.Kanoni S, Nettleton JA, Hivert MF, Ye Z, van Rooij FJ, Shungin D, Sonestedt E, Ngwa JS, Wojczynski MK, Lemaitre RN, Gustafsson S, Anderson JS, Tanaka T, Hindy G, Saylor G, Renstrom F, Bennett AJ, van Duijn CM, Florez JC, Fox CS, Hofman A, Hoogeveen RC, Houston DK, Hu FB, Jacques PF, Johansson I, Lind L, Liu Y, McKeown N, Ordovas J, Pankow JS, Sijbrands EJ, Syvänen AC, Uitterlinden AG, Yannakoulia M, Zillikens MC, MAGIC Investigators Wareham NJ, Prokopenko I, Bandinelli S, Forouhi NG, Cupples LA, Loos RJ, Hallmans G, Dupuis J, Langenberg C, Ferrucci L, Kritchevsky SB, McCarthy MI, Ingelsson E, Borecki IB, Witteman JC, Orho-Melander M, Siscovick DS, Meigs JB, Franks PW, Dedoussis GV. Total zinc intake may modify the glucose-raising effect of a zinc transporter (SLC30A8) variant a 14-cohort meta-analysis. Diabetes. 2011;60:2407–16. doi: 10.2337/db11-0176. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 86.Nettleton JA, McKeown NM, Kanoni S, Lemaitre RN, Hivert MF, Ngwa J, van Rooij FJ, Sonestedt E, Wojczynski MK, Ye Z, Tanaka T, Garcia M, Anderson JS, Follis JL, Djousse L, Mukamal K, Papoutsakis C, Mozaffarian D, Zillikens MC, Bandinelli S, Bennett AJ, Borecki IB, Feitosa MF, Ferrucci L, Forouhi NG, Groves CJ, Hallmans G, Harris T, Hofman A, Houston DK, Hu FB, Johansson I, Kritchevsky SB, Langenberg C, Launer L, Liu Y, Loos RJ, Nalls M, Orho-Melander M, Renstrom F, Rice K, Riserus U, Rolandsson O, Rotter JI, Saylor G, Sijbrands EJ, Sjogren P, Smith A, Steingrímsdóttir L, Uitterlinden AG, Wareham NJ, Prokopenko I, Pankow JS, van Duijn CM, Florez JC, Witteman JC, MAGIC Investigators Dupuis J, Dedoussis GV, Ordovas JM, Ingelsson E, Cupples LA, Siscovick DS, Franks PW, Meigs JB. Interactions of dietary whole-grain intakenonsynonymous SNPs in with fasting glucose- and insulin-related genetic loci in individuals of European descent a meta-analysis of 14 cohort studies. Diabetes Care. 2010;33:2684–91. doi: 10.2337/dc10-1150. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 87.Qi Q, Bray GA, Smith SR, Hu FB, Sacks FM, Qi L. Insulin receptor substrate 1 gene variation modifies insulin resistance response to weight-loss diets in a 2-year randomized trial: the Preventing Overweight Using Novel Dietary Strategies (POUNDS LOST) trial. Circulation. 2011;124:563–71. doi: 10.1161/CIRCULATIONAHA.111.025767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 88.Qi Q, Bray GA, Hu FB, Sacks FM, Qi L. Weight-loss diets modify glucose-dependent insulinotropic polypeptide receptor rs2287019 genotype effects on changes in body weight, fasting glucose, and insulin resistance: the Preventing Overweight Using Novel Dietary Strategies trial. Am J Clin Nutr. 2012;95:506–13. doi: 10.3945/ajcn.111.025270. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 89.Cornelis MC, Tchetgen EJ, Liang L, Qi L, Chatterjee N, Hu FB, Kraft P. Gene-environment interactions in genome-wide association studies: a comparative study of tests applied to empirical studies of type 2 diabetes. Am. J. Epidemiol. 2012;175:191–202. doi: 10.1093/aje/kwr368. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 90.Qi L, Cornelis MC, Zhang C, van Dam RM, Hu FB. Genetic predisposition, Western dietary pattern, and the risk of type 2 diabetes in men. Am. J. Clin. Nutr. 2009;89:1453–58. doi: 10.3945/ajcn.2008.27249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 91.Brix TH, Kyvik KO, Christensen K, Hegedüs L. Evidence for a major role of heredity in Graves' disease: a population-based study of two Danish twin cohorts. J Clin Endocrinol Metab. 2001;86:930–4. doi: 10.1210/jcem.86.2.7242. [DOI] [PubMed] [Google Scholar]
  • 92.Brix TH, Kyvik KO, Hegedus L. What is the evidence of genetic factors in the etiology of Graves' disease? A brief review. Thyroid. 1998;8:727. doi: 10.1089/thy.1998.8.727. [DOI] [PubMed] [Google Scholar]
  • 93.Zeitlin AA, Simmonds MJ, Gough SC. Genetic developments in autoimmune thyroid disease: an evolutionary process. Clin Endocrinol (Oxf) 2008;68:671–82. doi: 10.1111/j.1365-2265.2007.03075.x. [DOI] [PubMed] [Google Scholar]
  • 94.Schleusener H, Schernthaner G, Mayr WR, Kotulla P, Bogner U, Finke R, Meinhold H, Koppenhagen K, Wenzel KW. HLA-DR3 and HLA-DR5 associated thyrotoxicosis—two different types of toxic diffuse goiter. J Clin Endocrinol Metab. 1983;56:781–785. doi: 10.1210/jcem-56-4-781. [DOI] [PubMed] [Google Scholar]
  • 95.Weetman AP, Zhang L, Webb S, Shine B. Analysis of HLA-DQB and HLA-DPB alleles in GD by oligonucleotide probing of enzymatically amplified DNA. Clin Endocrinol (Oxf) 1990;33:65–71. doi: 10.1111/j.1365-2265.1990.tb00466.x. [DOI] [PubMed] [Google Scholar]
  • 96.Gu LQ, Zhu W, Zhao SX, Zhao L, Zhang MJ, Cui B, Song HD, Ning G, Zhao YJ. Clinical associations of the genetic variants of CTLA-4, Tg, TSHR, PTPN22, PTPN12 and FCRL3 in patients with Graves' disease. Clin Endocrinol (Oxf) 2010;72:248–55. doi: 10.1111/j.1365-2265.2009.03617.x. [DOI] [PubMed] [Google Scholar]
  • 97.Brand OJ, Barrett JC, Simmonds MJ, Newby PR, McCabe CJ, Bruce CK, Kysela B, Carr-Smith JD, Brix T, Hunt PJ, Wiersinga WM, Hegedüs L, Connell J, Wass JA, Franklyn JA, Weetman AP, Heward JM, Gough SC. Association of the thyroid stimulating hormone receptor gene (TSHR) with Graves’ disease. Hum. Mol. Genet. 2009;18:1704–1713. doi: 10.1093/hmg/ddp087. [DOI] [PubMed] [Google Scholar]
  • 98.Hiratani H, Bowden DW, Ikegami S, Shirasawa S, Shimizu A, Iwatani Y, Akamizu T. Multiple SNPs in intron 7 of thyrotropin receptor are associated with Graves’ disease. J Clin Endocrinol Metab. 2005;90:2898–2903. doi: 10.1210/jc.2004-2148. [DOI] [PubMed] [Google Scholar]
  • 99.Velaga MR, Wilson V, Jennings CE, Owen CJ, Herington S, Donaldson PT, Ball SG, James RA, Quinton R, Perros P, Pearce SH. The codon 620 tryptophan allele of the lymphoid tyrosine phosphatase (LYP) gene is a major determinant of Graves’ disease. J Clin Endocrinol Metab. 2004;89:5862–5865. doi: 10.1210/jc.2004-1108. [DOI] [PubMed] [Google Scholar]
  • 100.Vaidya B, Imrie H, Perros P, Dickinson J, McCarthy MI, Kendall-Taylor P, Pearce SH. Cytotoxic T lymphocyte antigen-4 (CTLA-4) gene polymorphism confers susceptibility to thyroid associated orbitopathy. Lancet. 1999;354:743–744. doi: 10.1016/S0140-6736(99)01465-8. [DOI] [PubMed] [Google Scholar]
  • 101.Burton PR, Clayton DG, Cardon LR, Craddock N, Deloukas P, Duncanson A, Kwiatkowski DP, McCarthy MI, Ouwehand WH, Samani NJ, Todd JA, Donnelly P, Barrett JC, Davison D, Easton D, Evans DM, Leung HT, Marchini JL, Morris AP, Spencer CC, Tobin MD, Attwood AP, Boorman JP, Cant B, Everson U, Hussey JM, Jolley JD, Knight AS, Koch K, Meech E, Nutland S, Prowse CV, Stevens HE, Taylor NC, Walters GR, Walker NM, Watkins NA, Winzer T, Jones RW, McArdle WL, Ring SM, Strachan DP, Pembrey M, Breen G, St Clair D, Caesar S, Gordon-Smith K, Jones L, Fraser C, Green EK, Grozeva D, Hamshere ML, Holmans PA, Jones IR, Kirov G, Moskivina V, Nikolov I, O'Donovan MC, Owen MJ, Collier DA, Elkin A, Farmer A, Williamson R, McGuffin P, Young AH, Ferrier IN, Ball SG, Balmforth AJ, Barrett JH, Bishop TD, Iles MM, Maqbool A, Yuldasheva N, Hall AS, Braund PS, Dixon RJ, Mangino M, Stevens S, Thompson JR, Bredin F, Tremelling M, Parkes M, Drummond H, Lees CW, Nimmo ER, Satsangi J, Fisher SA, Forbes A, Lewis CM, Onnie CM, Prescott NJ, Sanderson J, Matthew CG, Barbour J, Mohiuddin MK, Todhunter CE, Mansfield JC, Ahmad T, Cummings FR, Jewell DP, Webster J, Brown MJ, Lathrop MG, Connell J, Dominiczak A, Marcano CA, Burke B, Dobson R, Gungadoo J, Lee KL, Munroe PB, Newhouse SJ, Onipinla A, Wallace C, Xue M, Caulfield M, Farrall M, Barton A, Biologics in RA Genetics and Genomics Study Syndicate (BRAGGS) Steering Committee, Bruce IN, Donovan H, Eyre S, Gilbert PD, Hilder SL, Hinks AM, John SL, Potter C, Silman AJ, Symmons DP, Thomson W, Worthington J, Dunger DB, Widmer B, Frayling TM, Freathy RM, Lango H, Perry JR, Shields BM, Weedon MN, Hattersley AT, Hitman GA, Walker M, Elliott KS, Groves CJ, Lindgren CM, Rayner NW, Timpson NJ, Zeggini E, Newport M, Sirugo G, Lyons E, Vannberg F, Hill AV, Bradbury LA, Farrar C, Pointon JJ, Wordsworth P, Brown MA, Franklyn JA, Heward JM, Simmonds MJ, Gough SC, Seal S, Breast Cancer Susceptibility Collaboration (UK), Stratton MR, Rahman N, Ban M, Goris A, Sawcer SJ, Compston A, Conway D, Jallow M, Newport M, Sirugo G, Rockett KA, Bumpstead SJ, Chaney A, Downes K, Ghori MJ, Gwilliam R, Hunt SE, Inouye M, Keniry A, King E, McGinnis R, Potter S, Ravindrarajah R, Whittaker P, Widden C, Withers D, Cardin NJ, Davison D, Ferreira T, Pereira-Gale J, Hallgrimsdo'ttir IB, Howie BN, Su Z, Teo YY, Vukcevic D, Bentley D, Brown MA, Compston A, Farrall M, Hall AS, Hattersley AT, Hill AV, Parkes M, Pembrey M, Stratton MR, Mitchell SL, Newby PR, Brand OJ, Carr-Smith J, Pearce SH, McGinnis R, Keniry A, Deloukas P, Reveille JD, Zhou X, Sims AM, Dowling A, Taylor J, Doan T, Davis JC, Savage L, Ward MM, Learch TL, Weisman MH, Brown M. Association scan of 14,500 nonsynonymous SNPs in four diseases identifies autoimmunity variants. Nat Genet. 2007;39:1329–1337. doi: 10.1038/ng.2007.17. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 102.Rawal R, Teumer A, Völzke H, Wallaschofski H, Ittermann T, Asvold BO, Bjøro T, Greiser KH, Tiller D, Werdan K, Meyer Zu, Schwabedissen HE, Doering A, Illig T, Gieger C, Meisinger C, Homuth G. Meta-analysis of two genome-wide association studies identifies four genetic loci associated with thyroid function. Hum Mol Genet. 2012 Apr 16; doi: 10.1093/hmg/dds136. [DOI] [PubMed] [Google Scholar]
  • 103.Gudmundsson J, Sulem P, Gudbjartsson DF, Jonasson JG, Masson G, He H, Jonasdottir A, Sigurdsson A, Stacey SN, Johannsdottir H, Helgadottir HT, Li W, Nagy R, Ringel MD, Kloos RT, de Visser MC, Plantinga TS, den Heijer M, Aguillo E, Panadero A, Prats E, Garcia-Castaño A, De Juan A, Rivera F, Walters GB, Bjarnason H, Tryggvadottir L, Eyjolfsson GI, Bjornsdottir US, Holm H, Olafsson I, Kristjansson K, Kristvinsson H, Magnusson OT, Thorleifsson G, Gulcher JR, Kong A, Kiemeney LA, Jonsson T, Hjartarson H, Mayordomo JI, Netea-Maier RT, de la Chapelle A, Hrafnkelsson J, Thorsteinsdottir U, Rafnar T, Stefansson K. Discovery of common variants associated with low TSH levels and thyroid cancer risk. Nat Genet. 2012;44:319–22. doi: 10.1038/ng.1046. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 104.Gudmundsson J, Sulem P, Gudbjartsson DF, Jonasson JG, Sigurdsson A, Bergthorsson JT, He H, Blondal T, Geller F, Jakobsdottir M, Magnusdottir DN, Matthiasdottir S, Stacey SN, Skarphedinsson OB, Helgadottir H, Li W, Nagy R, Aguillo E, Faure E, Prats E, Saez B, Martinez M, Eyjolfsson GI, Bjornsdottir US, Holm H, Kristjansson K, Frigge ML, Kristvinsson H, Gulcher JR, Jonsson T, Rafnar T, Hjartarsson H, Mayordomo JI, de la Chapelle A, Hrafnkelsson J, Thor-steinsdottir U, Kong A, Stefansson K. Common variants on 9q22.33 and 14q13.3 predispose to thyroid cancer in European populations. Nat Genet. 2009;41:460–4. doi: 10.1038/ng.339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 105.Teumer A, Rawal R, Homuth G, Ernst F, Heier M, Evert M, Dombrowski F, Völker U, Nauck M, Radke D, Ittermann T, Biffar R, Döring A, Gieger C, Klopp N, Wichmann HE, Wallaschofski H, Meisinger C, Völzke H. Genome-wide association study identifies four genetic loci associated with thyroid volume and goiter risk. Am J Hum Genet. 2011;88:664–73. doi: 10.1016/j.ajhg.2011.04.015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 106.Hwang SJ, Yang Q, Meigs JB, Pearce EN, Fox CS. A genome-wide association for kidney function and endocrine-related traits in the NHLBI's Framingham Heart Study. BMC Med Genet. 2007;8(Suppl 1):S10. doi: 10.1186/1471-2350-8-S1-S10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 107.Denny JC, Crawford DC, Ritchie MD, Bielinski SJ, Basford MA, Bradford Y, Chai HS, Bastarache L, Zuvich R, Peissig P, Carrell D, Ramirez AH, Pathak J, Wilke RA, Rasmussen L, Wang X, Pacheco JA, Kho AN, Hayes MG, Weston N, Matsumoto M, Kopp PA, Newton KM, Jarvik GP, Li R, Manolio TA, Kullo IJ, Chute CG, Chisholm RL, Larson EB, McCarty CA, Masys DR, Roden DM, de Andrade M. Variants near FOXE1 are associated with hypothyroidism and other thyroid conditions: using electronic medical records for genome- and phenome-wide studies. Am J Hum Genet. 2011;89:529–42. doi: 10.1016/j.ajhg.2011.09.008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 108.Chu X, Pan CM, Zhao SX, Liang J, Gao GQ, Zhang XM, Yuan GY, Li CG, Xue LQ, Shen M, Liu W, Xie F, Yang SY, Wang HF, Shi JY, Sun WW, Du WH, Zuo CL, Shi JX, Liu BL, Guo CC, Zhan M, Gu ZH, Zhang XN, Sun F, Wang ZQ, Song ZY, Zou CY, Sun WH, Guo T, Cao HM, Ma JH, Han B, Li P, Jiang H, Huang QH, Liang L, Liu LB, Chen G, Su Q, Peng YD, Zhao JJ, Ning G, Chen Z, Chen JL, Chen SJ, Huang W, Song HD. China Consortium for Genetics of Autoimmune Thyroid Disease A genome-wide association study identifies two new risk loci for Graves' disease. Nat Genet. 2011;43:897–901. doi: 10.1038/ng.898. [DOI] [PubMed] [Google Scholar]
  • 109.Nakabayashi K, Tajima A, Yamamoto K, Takahashi A, Hata K, Takashima Y, Koyanagi M, Nakaoka H, Akamizu T, Ishikawa N, Kubota S, Maeda S, Tsunoda T, Kubo M, Kamatani N, Nakamura Y, Sasazuki T, Shirasawa S. Identification of independent risk loci for Graves' disease within the MHC in the Japanese population. J Hum Genet. 2011;56:772–8. doi: 10.1038/jhg.2011.99. [DOI] [PubMed] [Google Scholar]
  • 110.Simon SI, Hu Y, Vestweber D, Smith CW. Neutrophil tethering on E-selectin activates beta 2 integrin binding to ICAM-1 through a mitogen-activated protein kinase signal transduc-tion pathway. J Immunol. 2000;164:4348–4358. doi: 10.4049/jimmunol.164.8.4348. [DOI] [PubMed] [Google Scholar]
  • 111.Abbassi O, Kishimoto TK, McIntire LV, Anderson DC, Smith CW. E-selectin supports neutrophil rolling in vitro under conditions of flow. J Clin Invest. 1993;92:2719–2730. doi: 10.1172/JCI116889. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 112.Hara H, Sugita E, Sato R, Ban Y. Plasma selectin levels in patients with Graves' disease. Endocr J. 1996;43:709–13. doi: 10.1507/endocrj.43.709. [DOI] [PubMed] [Google Scholar]
  • 113.Wenisch C, Myskiw D, Gessl A, Graninger W. Circulating selectins, intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 in hyperthyroidism. J Clin Endocrinol Metab. 1995;80:2122–2126. doi: 10.1210/jcem.80.7.7541802. [DOI] [PubMed] [Google Scholar]
  • 114.Chen HY, Cui B, Wang S, Zhao ZF, Sun H, Zhao YJ, Li X Y, Ning G. L-selectin gene polymorphisms in Graves’ disease. Clin Endocrinol (Oxf) 2007;67:145–151. doi: 10.1111/j.1365-2265.2007.02852.x. [DOI] [PubMed] [Google Scholar]
  • 115.Chen H, Cui B, Wang S, Zhao Z, Sun H, Gu X, Zhao Y, Li X, Ning G. The common variants of E-selectin gene in Graves' disease. Genes Immun. 2008;9:182–6. doi: 10.1038/sj.gene.6364452. [DOI] [PubMed] [Google Scholar]
  • 116.Chen RH, Chen WC, Chang CT, Tsai CH, Tsai FJ. Interleukin-1-beta gene, but not the interleukin-1 receptor antagonist gene, is associated with Graves’ disease. J Clin Lab Anal. 2005;19:133–138. doi: 10.1002/jcla.20067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 117.Jia HY, Zhang ZG, Gu XJ, Guo T, Cui B, Ning G, Zhao YJ. Association between interleukin 21 and Graves' disease. Genet Mol Res. 2011;10:3338–46. doi: 10.4238/2011.October.31.6. [DOI] [PubMed] [Google Scholar]
  • 118.Liu N, Lu H, Tao F, Guo T, Liu C, Cui B, Ning G. An association of interleukin-10 gene polymorphisms with Graves' disease in two Chinese populations. Endocrine. 2011;40:90–4. doi: 10.1007/s12020-011-9444-7. [DOI] [PubMed] [Google Scholar]
  • 119.Guo T, Yang S, Liu N, Wang S, Cui B, Ning G. Association study of interleukin-12A gene polymorphisms with Graves' disease in two Chinese populations. Clin Endocrinol (Oxf) 2011;74:125–9. doi: 10.1111/j.1365-2265.2010.03905.x. [DOI] [PubMed] [Google Scholar]
  • 120.Zhu W, Liu N, Zhao Y, Jia H, Cui B, Ning G. Association analysis of polymorphisms in IL-3, IL-4, IL-5, IL-9, and IL-13 with Graves' disease. J Endocrinol Invest. 2010;33:751–5. doi: 10.1007/BF03346682. [DOI] [PubMed] [Google Scholar]
  • 121.Brand OJ, Lowe CE, Heward JM, Franklyn JA, Cooper JD, Todd JA, Gough SC. Association of the interleukin-2 receptor alpha (IL-2Ralpha)/CD25 gene region with Graves' disease using a multilocus test and tag SNPs. Clin Endocrinol (Oxf) 2007;66:508–12. doi: 10.1111/j.1365-2265.2007.02762.x. [DOI] [PubMed] [Google Scholar]
  • 122.Tait KF, Nithiyananthan R, Heward JM, Barnett AH, Franklyn JA, Gough SC. Polymorphisms of interleukin 4 receptor gene and interleukin 10 gene are not associated with Graves' disease in the UK. Autoimmunity. 2004;37:189–94. doi: 10.1080/08916930410001666631. [DOI] [PubMed] [Google Scholar]
  • 123.Liu N, Li X, Liu C, Zhao Y, Cui B, Ning G. The association of interleukin-1alpha and interleukin-1beta polymorphisms with the risk of Graves' disease in a case-control study and meta-analysis. Hum Immunol. 2010;71:397–401. doi: 10.1016/j.humimm.2010.01.023. [DOI] [PubMed] [Google Scholar]
  • 124.Gu LQ, Jia HY, Zhao YJ, Liu N, Wang S, Cui B, Ning G. Association studies of interleukin-8 gene in Graves' disease and Graves' ophthalmopathy. Endocrine. 2009;36:452–6. doi: 10.1007/s12020-009-9240-9. [DOI] [PubMed] [Google Scholar]
  • 125.Gu XJ, Cui B, Zhao ZF, Chen HY, Li XY, Wang S, Ning G, Zhao YJ. Association of the interleukin (IL)-16 gene polymorphisms with Graves' disease. Clin Immunol. 2008;127:298–302. doi: 10.1016/j.clim.2008.01.017. [DOI] [PubMed] [Google Scholar]
  • 126.Smyth DJ, Cooper JD, Bailey R, Field S, Burren O, Smink LJ, Guja C, Ionescu-Tirgoviste C, Widmer B, Dunger DB, Savage DA, Walker NM, Clayton DG, Todd JA. A genome-wide association study of nonsynonymous SNPs identifies a type 1 diabetes locus in the interferon-induced helicase (IFIH1) region. Nat Genet. 2006;38:617–9. doi: 10.1038/ng1800. [DOI] [PubMed] [Google Scholar]
  • 127.Nejentsev S, Walker N, Riches D, Egholm M, Todd JA. Rare variants of IFIH1 a gene implicated in antiviral responses protect against type 1 diabetes. Science. 2009;324:387–9. doi: 10.1126/science.1167728. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 128.Sutherland A, Davies J, Owen CJ, Vaikkakara S, Walker C, Cheetham TD, James RA, Perros P, Donaldson PT, Cordell HJ, Quinton R, Pearce SH. Genomic polymorphism at the interferon-induced helicase (IFIH1) locus contributes to Graves' disease susceptibility. J Clin Endocrinol Metab. 2007;92:3338–41. doi: 10.1210/jc.2007-0173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 129.Robinson T, Kariuki SN, Franek BS, Kumabe M, Kumar AA, Badaracco M, Mikolaitis RA, Guerrero G, Utset TO, Drevlow BE, Zaacks LS, Grober JS, Cohen LM, Kirou KA, Crow MK, Jolly M, Niewold TB. Autoimmune disease risk variant of IFIH1 is associated with increased sensitivity to IFN-a and serologic autoimmunity in lupus patients. J Immunol. 2011;187:1298–303. doi: 10.4049/jimmunol.1100857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 130.Zhao ZF, Cui B, Chen HY, Wang S, Li I, Gu XJ, Qi L, Li XY, Ning G, Zhao YJ. The A946T polymorphism in the interferon induced helicase gene does not confer susceptibility to Graves' disease in Chinese population. Endocrine. 2007;32:143–7. doi: 10.1007/s12020-007-9024-z. [DOI] [PubMed] [Google Scholar]
  • 131.Ban Y, Tozaki T, Taniyama M, Nakano Y, Ban Y, Hirano T. Genomic polymorphism in the interferon-induced helicase (IFIH1) gene does not confer susceptibility to autoimmune thyroid disease in the Japanese population. Horm Metab Res. 2010;42:70–2. doi: 10.1055/s-0029-1238293. [DOI] [PubMed] [Google Scholar]

Articles from Current Genomics are provided here courtesy of Bentham Science Publishers

RESOURCES