Skip to main content
Current Neuropharmacology logoLink to Current Neuropharmacology
. 2013 Jan;11(1):53–58. doi: 10.2174/157015913804999441

Animal Models for Investigating Benign Essential Blepharospasm

Craig Evinger 1,*
PMCID: PMC3580792  PMID: 23814538

Abstract

The focal dystonia benign essential blepharospasm (BEB) affects as many as 40,000 individuals in the United States. This dystonia is characterized by trigeminal hyperexcitability, photophobia, and most disabling of the symptoms, involuntary spasms of lid closure that can produce functional blindness. Like many focal dystonias, BEB appears to develop from the interaction between a predisposing condition and an environmental trigger. The primary treatment for blepharospasm is to weaken the eyelid-closing orbicularis oculi muscle to reduce lid spasms. There are several animal models of blepharospasm that recreate the spasms of lid closure in order to investigate pharmacological treatments to prevent spasms of lid closure. One animal model attempts to mimic the predisposing condition and environmental trigger that give rise to BEB. This model indicates that abnormal interactions among trigeminal blink circuits, basal ganglia, and the cerebellum are the neural basis for BEB.

Keywords: Basal ganglia, blepharospasm, blink, cerebellum, motor adaptation, trigeminal.

INTRODUCTION

To create functional models of human movement disorders, the model organism should generate movements identical to those of humans. The blink system is ideal in this regard, because all mammals blink in the same way [1]. For all mammals studied, upper eyelid movements result from interactions among four forces. First, contraction of the phasic orbicularis oculi (OO) muscle actively closes the eyelid. The OO receives its input from the ipsilateral facial nerve [2]. Second, the tonically active levator palpebrae superioris (LP) muscle raises the eyelid and holds it open. Motoneurons in the oculomotor complex innervate the LP through the oculomotor nerve [3-6]. Third, Müller’s muscle, a smooth muscle that bridges the belly of the LP and its tendon, raises the eyelid. This muscle receives its innervation from the superior cervical ganglion [7-9]. Fourth, muscle and ligament attachments produce passive downward forces that oppose eyelid elevation [10-13]. Thus, the down phase of a blink occurs when the LP relaxes followed by a burst of OO activity. Combined with the passive downward forces, OO contraction rapidly lowers the eyelid. The LP resumes its tonic activity, following termination of OO activity, slowly raising the eyelid as the LP works against the continuously increasing passive downward force. The upper eyelid assumes its final position when the upward force of LP contraction matches the passive downward force.

Consistent with the common anatomical organization, the same physiological organization of blinking is similar among mammals. Stimulation of the supraorbital branch of the trigeminal nerve evokes two bursts of OO electromyographic activity, a short latency R1 and a longer latency R2. In humans, the longer latency R2 component produces most of the eyelid closure, [10] whereas the shorter latency R1 contributes most strongly to eyelid closure in non primate mammals [2, 14-17]. In all mammals investigated, blinks evoked by corneal stimulation elicit a single burst of OO activity [18-20]. Basal ganglia modulation of trigeminal blinks is identical for primates and rodents, and presumably the same for other mammals. The substantia nigra pars reticulata inhibits neurons in the superior colliculus that excite neurons in the nucleus raphe magnus. A serotonergic input from nucleus raphe magnus increases inhibition within spinal trigeminal blink circuits [15, 21-29]. Thus, the homologies in the anatomical organization and physiological control of the blink system among mammals make it ideal for developing animal models that closely mimic the eyelid focal dystonia benign essential blepharospasm (BEB).

The characteristic signs and symptoms of BEB are spasms of eyelid closure, trigeminal hyperexcitability, excessive blinking, and photophobia. [30-34]. These characteristics are exaggerations of the normal blink adaptation to the corneal irritation created by dry eye [35]. Thus, it is not surprising that a significant proportion of patients report current or previous experiences of dry eye when first diagnosed with BEB [36-39]. Nevertheless, the vast majority of individuals with dry eye do not go on to develop BEB. The best explanation for this discrepancy is that BEB and other focal dystonias result from the confluence of a predisposing condition with an environmental trigger, the ‘two-hit hypothesis’ [31, 32, 40]. Dry eye or eye irritation is the strongest candidate to be the environmental trigger for BEB. The most likely predisposing factor for BEB and other dystonias is genetic. Although there is no clear genetic modification identified with BEB, there is compelling evidence that the gene responsible for the predisposing factor is autosomal dominant with low penetrance [41-47].

The most disturbing symptom for BEB patients is the involuntary spasms of eyelid closure that can produce functional blindness. Dystonic eyelid spasms are not tonic OO contractions, rather they are closely spaced bursts of OO activity, such that a new OO contraction begins before the eyelid has time to rise following the preceding burst of OO activity [31, 48, 49]. The primary treatments for these spasms are to reduce OO strength with botulinum toxin injections, [50-53] surgical removal of the OO muscle, [54] or killing muscle fibers with chemical agents [55]. One goal of animal models of blepharospasm is to create a system to test treatments that decrease OO contraction sufficiently to disrupt eyelid spasms without eliminating the blinking necessary to maintain the corneal tear film.

One of the first models of involuntary eyelid closure was created by electrically stimulating premotor inputs to the facial nucleus of cats [56]. The investigators implanted stimulating electrodes into the facial nucleus, parabrachial region, red nucleus, interstitial nucleus of Cajal, the primary sensory nucleus of the trigeminal nerve, and into three reticular nuclei, ventral reticularis pontis oralis, reticularis parvocellularis, and reticularis centralis ventralis. In response to one long duration stimulus, only stimulation in the parabrachial region, the red nucleus and the interstitial nucleus of Cajal evoked a single, ipsilateral eyelid closure. The result for the red nucleus stimulation was somewhat surprising because the red nucleus projects primarily to contralateral OO motoneurons. [17, 57, 58-61] Ten to fifty Hz stimulus trains at these three sites produced sustained eyelid closure. Klemm et al (1993) [56] tested whether systemic drug treatment with atropine, haloperidol, molindone, diphenylhydramine or physostigmine reduced sustained eyelid closure in this model. None of the drugs modified electrically evoked eyelid closure even though the cats exhibited the general behavioral changes associated with the drugs.

A possible role for 5-HT and catecholamines in blepharospasm was identified in reserpine treated rodents and rabbits. Acute reserpine treatment produces blepharospasm, muscle rigidity, akinesia, miosis, and ptosis [62-66]. Reserpine, RO4-1284, depletes 5-HT and catecholamine stores. Consequently, drugs that cause dopamine release, block monoamine oxidase, and/or activate 5-HT receptors tend to reverse the blepharospasm produced by reserpine treatment [67, 68]. The diverse pharmacological effects of reserpine, however, reduce its usefulness for identifying a pharmacological basis for eyelid spasms. Investigations focusing specifically on the role of 5-HT in eyelid spasms have been more informative.

LeDoux and colleagues created another model of involuntary eyelid closure by microinjection of serotonin (5-HT) into the facial nucleus [69]. They reported that cats exhibited sustained eyelid closure ipsilateral to the 5-HT injection. This result was not a nonspecific effect of microinjection into the facial nucleus because microinjection of ketanserin, a 5-HT2A and 5-HT2C antagonist, or saline did not cause sustained eyelid closure. LeDoux et al (1998) [69] demonstrated that pretreatment with oral administration of ritanserin, a 5-HT2A and 5-HT2C antagonist, diminished eyelid closure induced by 5-HT microinjection into the facial nucleus. The investigators linked these results to observations of successful treatment of some BEB patients with cyproheptadine, a H1 and 5-HT antagonist [70].

The blink system is exquisitely sensitive to central dopamine levels [71]. For spontaneous blinks, the blinks that occur without an external stimulus, systemic activation of dopamine receptors increases the blink rate and eliminating dopamine or blocking dopamine receptors reduces spontaneous blink rates [72-79]. Blinks evoked by stimulation of the cornea or periorbital region, trigeminal reflex blinks, respond oppositely to dopamine than do spontaneous blinks. Systemic treatment with L-dopa, apomorphine, a D1/D2 agonist, or enhancing dopamine release with nicotine reduces trigeminal reflex blink excitability [15, 80] and the speed of eyelid closure [81]. Conversely, the loss of dopamine neurons with Parkinson’s disease or experimental lesions in animals significantly increases the excitability of trigeminal reflex blinks [24, 28, 82, 83-90]. With this increased trigeminal excitability, touching the cornea can be sufficient to initiate a spasm of eyelid closure, reflex blepharospasm [82, 91-94]. These spasms of eyelid closure result from rapid bursts of OO contraction [24] as occurs in BEB eyelid spasms. Thus, dopamine depletion by itself causes reflex blepharospasm, but does not appear to be the direct cause of BEB as individuals with Parkinson’s disease do not exhibit spasms of eyelid closure in the absence of a blink evoking stimulus [95].

Despite the lack of convincing evidence that dopamine depletion alone causes BEB, abnormalities in dopamine transmission may be a proximate cause of the predisposing condition that allows the development of BEB. One genetic study reports polymorphisms in the DR5 gene associated with BEB, [46] although another investigation does not support this conclusion [41] and D5 knockout mice do not exhibit abnormal blinking [96]. Abnormalities in the D2 receptor, however, may set the stage for BEB. BEB patients show a decreased D2 binding in the striatum, [40, 97] and animal models of generalized and hemidystonia exhibit altered D2 binding [98, 99].

One rodent model of BEB mimicked the dystonia by creating a predisposing condition using minimal dopamine depletion and initiating an environmental trigger by creating a transient dry eye condition [100]. Rats received a unilateral, 6-OHDA lesion that caused a small loss of dopaminergic cells in the substantia nigra pars compacta. After creating this predisposing condition, a branch of the facial nerve providing approximately 30% of the input to the OO muscle was crushed near the OO. Because blinks made with the weakened OO inadequately reformed the tear film, the ensuing eye irritation served as the environmental trigger. This eye irritation initiated a series of trigeminal reflex blink modifications [35, 101, 102] that normally compensate for dry eye and eye irritation. In the presence of the predisposing condition, however, rats began to exhibit spasms of eyelid closure, excessive blinking, and trigeminal hyperexcitability. Even after OO reinnervation and concomitant resolution of the eye irritation, rats continued to exhibit these BEB-like blink abnormalities. Neither the predisposing condition nor the environmental trigger by themselves created these BEB characteristics. By itself, the small 6-OHDA lesion slightly increased trigeminal reflex blink excitability but did not generate reflex blepharospasm or spasms of eyelid closure. The OO weakening alone also increased trigeminal reflex blink excitability and resulted in the development of blink oscillations similar to those seen in human dry eye [35]. Combining the two conditions, however, produced eyelid abnormalities typical of BEB. Similar to this model, some individuals with facial palsy develop blepharospasm [103-105]. Consistent with the hypothesis that the predisposing condition enables maladaptive blink circuit adaptation in response to the eye irritation caused by inadequate lid closure, gold weight implantation to improve eyelid closure of the paretic eyelid reduced the drive for blink adaptation and the patient’s blepharospasm.

This animal model [100] based on the two-hit hypothesis of focal dystonia is unlikely to have identified the ‘predisposing condition’ that allows BEB in humans. If dopamine loss was the predisposing condition in human BEB, a reasonable prediction is that BEB patients would be more likely to develop Parkinson’s disease than individuals without BEB. Such an increased incidence of Parkinson’s disease, however, does not appear to occur in BEB patients [106]. The eye irritation environmental trigger, however, is consistent with the human data [36-39] and the evidence that changes in the basal ganglia plays a role in the predisposing condition is compelling [40, 97-99]. Thus, the Schicatano et al (1997) model [100] suggests an outline for abnormal neural circuit interactions that support BEB.

The animal model of BEB indicates that the brain regions necessary to support BEB are trigeminal blink circuits, the basal ganglia, and the cerebellum. There is abundant evidence that adaptive modifications of blinking originate in trigeminal blink circuits [102, 106, 107]. Normally, the basal ganglia modulates inhibitory processes of trigeminal blink circuits to enhance or depress these adaptations. In pathological conditions, such as Parkinson’s disease, abnormal basal ganglia activity disrupts trigeminal blink circuits. [22-24] In the Schicatano et al (1997) animal model, [100] the predisposing condition distorts trigeminal blink circuit activity patterns so that maladaptive modifications occur in response to eye irritation [35]. The cerebellum is also critical in blink adaptation processes [101, 108, 109]. Trigeminal inputs to the cerebellum through mossy and climbing fibers [110-117] enable the cerebellum to support and maintain blink adaptations through indirect modulation of OO motoneuron depolarization and trigeminal system activity [68, 108, 117]. If the cerebellum receives abnormal trigeminal inputs from maladaptive learning processes, then the cerebellum will support and maintain this abnormal motor learning that originated in trigeminal blink circuits. Like previous studies indicating that the cerebellum is essential for the expression of dystonic movements, [118-120] the Schicatano et al (1997) rat model [100] predicts that the cerebellum is essential for maintaining spasms of eyelid closure created by abnormal trigeminal blink circuit motor learning enabled by a dysfunctional basal ganglia input This focus on abnormal motor learning as the proximate cause of BEB points to novel approaches to alleviate spasms of eyelid closure in BEB through modifying trigeminal motor learning.

An important goal of future animal models of BEB is to identify the predisposing condition and determine how it disrupts motor learning in trigeminal reflex blink circuits. The Schicatano et al (1997) model [100] uses a small dopamine depletion to create the predisposing condition, but evidence in humans [121] suggests that dopamine depletion is not the ‘predisposing condition’ in humans. The key to understanding how different predisposing factors, e.g., genetic, dopamine loss, lead to BEB is to determine how basal ganglia dysfunction enables abnormal trigeminal blink circuit motor learning. One possibility is that different predisposing conditions may induce similar modifications in the pattern of basal ganglia activity. Parkinson’s disease causes an increase in the synchronicity of basal ganglia neuronal discharge and shifts the predominant frequency of this activity down to the beta range, 12 – 20 Hz [122-127]. Generalized dystonia also increases synchronicity of basal ganglia neurons, but the predominant frequency of this bursting pattern is 4 – 10 Hz, [126, 128-130] lower than that reported in Parkinson’s disease. This divergence in the frequency of basal ganglia outputs in Parkinson’s disease and dystonia can create dramatic functional differences in brainstem motor learning. Parkinson’s disease disrupts long term potentiation-like changes in blink amplitude, [131] whereas BEB enhances this form of motor learning [132]. Using animal models, it should be possible to identify modifications in the interconnected cerebellar and trigeminal blink circuits that modify motor learning when receiving abnormal patterns of basal ganglia activity.

ACKNOWLEDGEMENTS

This work was supported by a grant from the National Eye Institute (EY07391).

CONFLICT OF INTEREST

The author(s) confirm that this article content has no conflict of interest.

REFERENCES

  • 1.Evinger C, Shaw MD, Peck CK, Manning KA, Baker R. Blinking and associated eye movements in humans, guinea pigs, and rabbits. J. Neurophysiol. 1984;52(2):323–339. doi: 10.1152/jn.1984.52.2.323. [DOI] [PubMed] [Google Scholar]
  • 2.Horn AK, Porter JD, Evinger C. Botulinum toxin paralysis of the orbicularis oculi muscle.Types and time course of alterations in muscle struture physiology and lid kinematics. Exp. Brain Res. 1993; 96(1):39–53. doi: 10.1007/BF00230437. [DOI] [PubMed] [Google Scholar]
  • 3.Evinger C. Extraocular motor nuclei: location, morphology and afferents. Rev. Oculomot. Res. 1988;2:81–117. [PubMed] [Google Scholar]
  • 4.Evinger C, Graf WM, Baker R. Extra- and intracellular HRP analysis of the organization of extraocular motoneurons and internuclear neurons in the guinea pig and rabbit. J. Comp. Neurol. 1987;262(3):429–445. doi: 10.1002/cne.902620307. [DOI] [PubMed] [Google Scholar]
  • 5.Porter JD, Burns LA, May PJ. Morphological substrate for eyelid movements: innervation and structure of primate levator palpebrae superioris and orbicularis oculi muscles. J. Comp. Neurol. 1989;287(1):64–81. doi: 10.1002/cne.902870106. [DOI] [PubMed] [Google Scholar]
  • 6.VanderWerf F, Aramideh M, Ongerboer de Visser BW, Baljet B, Speelman JD, Otto JA. A retrograde double fluorescent tracing study of the levator palpebrae superioris muscle in the cynomolgus monkey. Exp. Brain Res. 1997;113(1):174–179. doi: 10.1007/BF02454155. [DOI] [PubMed] [Google Scholar]
  • 7.Kuwabara T, Cogan DG, Johnson CC. Structure of the muscles of the upper eyelid. Arch. Ophthalmol. 1975;93(11):1189–1197. doi: 10.1001/archopht.1975.01010020889012. [DOI] [PubMed] [Google Scholar]
  • 8.Reifler DM. Early descriptions of Horner's muscle and the lacrimal pump. Surv. Ophthalmol. 1996;41(2):127–134. doi: 10.1016/s0039-6257(96)80002-6. [DOI] [PubMed] [Google Scholar]
  • 9.Small RG, Fransen SR, Adams R, Owen WL, Taylor RB., 3rd The effect of phenylephrine on Muller muscle.A blepharogram study of eyelid motion. Ophthalmology. 1995;102(4):599–606. doi: 10.1016/s0161-6420(95)30978-5. [DOI] [PubMed] [Google Scholar]
  • 10.Evinger C, Manning KA, Sibony PA. Eyelid movements. Mechanisms and normal data. Invest. Ophthalmol. Vis. Sci. 1991;32(2):387–400. [PubMed] [Google Scholar]
  • 11.Goldberg RA, Wu JC, Jesmanowicz A, Hyde JS. Eyelid anatomy revisited. Dynamic high-resolution magnetic resonance images of Whitnall's ligament and upper eyelid structures with the use of a surface coil. Arch. Ophthalmol. 1992;110(11):1598–1600. doi: 10.1001/archopht.1992.01080230098030. [DOI] [PubMed] [Google Scholar]
  • 12.Sibony PA, Evinger C. Normal and Abnormal Eyelid Function. In: Miller NR, Newman NJ, editors. Walsh and Hoyt's Clinical Neuro-Ophthalmlogy. Baltimore: Williams & Wilkins; 1998. pp. 1509–1594. [Google Scholar]
  • 13.Sibony PA, Evinger C, Manning KA. Eyelid movements in facial paralysis. Arch. Ophthalmol. 1991;109(11):1555–1561. doi: 10.1001/archopht.1991.01080110091043. [DOI] [PubMed] [Google Scholar]
  • 14.Dauvergne C, Evinger C. Experiential modification of the trigeminal reflex blink circuit. J. Neurosci. 2007;27(39):10414–10422. doi: 10.1523/JNEUROSCI.1152-07.2007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Evinger C, Basso MA, Manning KA, Sibony PA, Pellegrini JJ, Horn AK. A role for the basal ganglia in nicotinic modulation of the blink reflex. Exp. Brain Res. 1993;92(3):507–515. doi: 10.1007/BF00229040. [DOI] [PubMed] [Google Scholar]
  • 16.LeDoux MS, Lorden JF, Weir AD, Smith JM. Blink reflex to supraorbital nerve stimulation in the cat. Exp. Brain Res. 1997;116(1):104–112. doi: 10.1007/pl00005730. [DOI] [PubMed] [Google Scholar]
  • 17.Pellegrini JJ, Horn AK, Evinger C. The trigeminally evoked blink reflex.I. Neuronal circuits. Exp. Brain Res. 1995;107(2):166–180. doi: 10.1007/BF00230039. [DOI] [PubMed] [Google Scholar]
  • 18.Cruccu G, Agostino R, Berardelli A, Manfredi M. Excitability of the corneal reflex in man. Neurosci. Lett. 1986;63(3):320–324. doi: 10.1016/0304-3940(86)90378-2. [DOI] [PubMed] [Google Scholar]
  • 19.Henriquez VM, Evinger C. Modification of cornea-evoked reflex blinks in rats. Exp. Brain Res. 2005;163(4):445–456. doi: 10.1007/s00221-004-2200-y. [DOI] [PubMed] [Google Scholar]
  • 20.Henriquez VM, Evinger C. The three-neuron corneal reflex circuit and modulation of second-order corneal responsive neurons. Exp. Brain Res. 2007;179(4):691–702. doi: 10.1007/s00221-006-0826-7. [DOI] [PubMed] [Google Scholar]
  • 21.Agostino R, Berardelli A, Cruccu G, Stocchi F, Manfredi M. Corneal and blink reflexes in Parkinson's disease with "on-off" fluctuations. Mov. Disord. 1987;2(4):227–235. doi: 10.1002/mds.870020401. [DOI] [PubMed] [Google Scholar]
  • 22.Basso MA, Evinger C. An explanation for reflex blink hyperexcitability in Parkinson's disease. II. Nucleus raphe magnus. J. Neurosci. 1996;16(22):7318–7330. doi: 10.1523/JNEUROSCI.16-22-07318.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Basso MA, Powers AS, Evinger C. An explanation for reflex blink hyperexcitability in Parkinson's disease. I. Superior colliculus. J. Neurosci. 1996;16(22):7308–7317. doi: 10.1523/JNEUROSCI.16-22-07308.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Basso MA, Strecker RE, Evinger C. Midbrain 6-hydroxydopamine lesions modulate blink reflex excitability. Exp. Brain Res. 1993;94(1):88–96. doi: 10.1007/BF00230472. [DOI] [PubMed] [Google Scholar]
  • 25.Evinger C, Sibony PA, Manning KA, Fiero RA. A pharmacological distinction between the long and short latency pathways of the human blink reflex revealed with tobacco. Exp. Brain Res. 1988;73(3):477–480. doi: 10.1007/BF00406604. [DOI] [PubMed] [Google Scholar]
  • 26.Gnadt JW, Lu SM, Breznen B, Basso MA, Henriquez VM, Evinger C. Influence of the superior colliculus on the primate blink reflex. Exp. Brain Res. 1997;116(3):389–398. doi: 10.1007/pl00005767. [DOI] [PubMed] [Google Scholar]
  • 27.Kimura J. Disorder of interneurons in Parkinsonism.The orbicularis oculi reflex to paired stimuli. Brain. 1973;96(1):87–96. doi: 10.1093/brain/96.1.87. [DOI] [PubMed] [Google Scholar]
  • 28.Schicatano EJ, Peshori KR, Gopalaswamy R, Sahay E, Evinger C. Reflex excitability regulates prepulse inhibition. J. Neurosci. 2000;20(11):4240–4247. doi: 10.1523/JNEUROSCI.20-11-04240.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Valls-Sole J. Neurophysiological characterization of parkinsonian syndromes. Neurophysiol. Clin. 2000;30(6):352–367. doi: 10.1016/s0987-7053(00)00236-7. [DOI] [PubMed] [Google Scholar]
  • 30.Berardelli A, Rothwell JC, Day BL, Marsden CD. Pathophysiology of blepharospasm and oromandibular dystonia. Brain. 1985;108 ( Pt 3):593–608. doi: 10.1093/brain/108.3.593. [DOI] [PubMed] [Google Scholar]
  • 31.Hallett M. Blepharospasm: recent advances. Neurology . 2002;59(9):1306–1312. doi: 10.1212/01.wnl.0000027361.73814.0e. [DOI] [PubMed] [Google Scholar]
  • 32.Hallett M, Evinger C, Jankovic J, Stacy M. Update on blepharospasm: Report from the BEBRF International Workshop. Neurology . 2008;71(16):1275–1282. doi: 10.1212/01.wnl.0000327601.46315.85. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Patel BC, Anderson RL. Blepharospasm and related facial movement disorders. Curr. Opin. Ophthalmol. 1995;6(5):86–99. doi: 10.1097/00055735-199510000-00014. [DOI] [PubMed] [Google Scholar]
  • 34.Tolosa E, Marti MJ. Blepharospasm-oromandibular dystonia syndrome (Meige's syndrome): clinical aspects. Adv. Neurol. 1988;49:73–84. [PubMed] [Google Scholar]
  • 35.Evinger C, Mao JB, Powers AS, Kassem IS, Schicatano EJ, Henriquez VM, Peshori KR. Dry eye, blinking, and blepharospasm. Mov. Disord. 2002;17(Suppl 2):S75–78. doi: 10.1002/mds.10065. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Defazio G, Berardelli A, Abbruzzese G, Lepore V, Coviello V, Acquistapace D, Capus L, Carella F, De Berardinis MT, Galardi G, Girlanda P, Maurri S, Albanese A, Bertolasi L, Liguori R, Rossi A, Santoro L, Tognoni G, Livrea P. Possible risk factors for primary adult onset dystonia: a case-control investigation by the Italian Movement Disorders Study Group. J. Neurol. Neurosurg. Psychiatry . 1998;64(1):25–32. doi: 10.1136/jnnp.64.1.25. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Elston JS, Marsden CD, Grandas F, Quinn NP. The significance of ophthalmological symptoms in idiopathic blepharospasm. Eye . 1988;2 ( Pt 4):435–439. doi: 10.1038/eye.1988.79. [DOI] [PubMed] [Google Scholar]
  • 38.Jankovic J, Ford J. Blepharospasm and orofacial-cervical dystonia: clinical and pharmacological findings in 100 patients. Ann. Neurol. 1983;13(4):402–411. doi: 10.1002/ana.410130406. [DOI] [PubMed] [Google Scholar]
  • 39.Martino D, Defazio G, Alessio G, Abbruzzese G, Girlanda P, Tinazzi M, Fabbrini G, Marinelli L, Majorana G, Buccafusca M, Vacca L, Livrea P, Berardelli A. Relationship between eye symptoms and blepharospasm: a multicenter case-control study. Mov. Disord. 2005;20(12):1564–1570. doi: 10.1002/mds.20635. [DOI] [PubMed] [Google Scholar]
  • 40.Horie C, Suzuki Y, Kiyosawa M, Mochizuki M, Wakakura M, Oda K, Ishiwata K, Ishii K. Decreased dopamine D receptor binding in essential blepharospasm. Acta Neurol. Scand. . 2009;119(1):49–54. doi: 10.1111/j.1600-0404.2008.01053.x. [DOI] [PubMed] [Google Scholar]
  • 41.Clarimon J, Brancati F, Peckham E, Valente EM, Dallapiccola B, Abruzzese G, Girlanda P, Defazio G, Berardelli A, Hallett M, Singleton AB. Assessing the role of DRD5 and DYT1 in two different case-control series with primary blepharospasm. Mov. Disord. . 2007;22(2):162–166. doi: 10.1002/mds.21182. [DOI] [PubMed] [Google Scholar]
  • 42.Defazio G, Brancati F, Valente EM, Caputo V, Pizzuti A, Martino D, Abbruzzese G, Livrea P, Berardelli A, Dallapiccola B. Familial blepharospasm is inherited as an autosomal dominant trait and relates to a novel unassigned gene. Mov. Disord. . 2003;18(2):207–212. doi: 10.1002/mds.10314. [DOI] [PubMed] [Google Scholar]
  • 43.Defazio G, Livrea P, Guanti G, Lepore V, Ferrari E. Genetic contribution to idiopathic adult-onset blepharospasm and cranial-cervical dystonia. Eur. Neurol. 1993;33(5):345–350. doi: 10.1159/000116969. [DOI] [PubMed] [Google Scholar]
  • 44.Dhaenens CM, Krystkowiak P, Douay X, Charpentier P, Bele S, Destee A, Sablonniere B. Clinical and genetic evaluation in a French population presenting with primary focal dystonia. Mov. Disord. 2005;20(7):822–825. doi: 10.1002/mds.20398. [DOI] [PubMed] [Google Scholar]
  • 45.Maniak S, Sieberer M, Hagenah J, Klein C, Vieregge P. Focal and segmental primary dystonia in north-western Germany--a clinico-genetic study. Acta Neurol. Scand. 2003;107(3):228–232. doi: 10.1034/j.1600-0404.2003.01362.x. [DOI] [PubMed] [Google Scholar]
  • 46.Misbahuddin A, Placzek MR, Chaudhuri KR, Wood NW, Bhatia KP, Warner TT. A polymorphism in the dopamine receptor DRD5 is associated with blepharospasm. Neurology . 2002;58(1):124–126. doi: 10.1212/wnl.58.1.124. [DOI] [PubMed] [Google Scholar]
  • 47.O'Riordan S, Raymond D, Lynch T, Saunders-Pullman R, Bressman SB, Daly L, Hutchinson M. Age at onset as a factor in determining the phenotype of primary torsion dystonia. Neurology . 2004;63(8):1423–1426. doi: 10.1212/01.wnl.0000142035.26034.c2. [DOI] [PubMed] [Google Scholar]
  • 48.Aramideh M, Eekhof JL, Bour LJ, Koelman JH, Speelman JD, Ongerboer de Visser BW. Electromyography and recovery of the blink reflex in involuntary eyelid closure: a comparative study. J. Neurol. Neurosurg. Psychiatry. 1995;58(6):692–698. doi: 10.1136/jnnp.58.6.692. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Aramideh M, Ongerboer de Visser BW, Devriese PP, Bour LJ, Speelman JD. Electromyographic features of levator palpebrae superioris and orbicularis oculi muscles in blepharospasm. Brain . 1994;117 ( Pt 1):27–38. doi: 10.1093/brain/117.1.27. [DOI] [PubMed] [Google Scholar]
  • 50.Borodic GE, Ferrante R. Effects of repeated botulinum toxin injections on orbicularis oculi muscle. J. Clin. Neuroophthalmol. 1992;12(2):121–127. doi: 10.3109/01658109209058127. [DOI] [PubMed] [Google Scholar]
  • 51.Dutton JJ, Buckley EG. Botulinum toxin in the management of blepharospasm. Arch. Neurol. 1986;43(4):380–382. doi: 10.1001/archneur.1986.00520040060020. [DOI] [PubMed] [Google Scholar]
  • 52.Elston JS, Russell RW. Effect of treatment with botulinum toxin on neurogenic blepharospasm. Br. Med.J. (Clin Res Ed) 1985;290(6485):1857–1859. doi: 10.1136/bmj.290.6485.1857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.Manning KA, Evinger C, Sibony PA. Eyelid movements before and after botulinum therapy in patients with lid spasm. Ann. Neurol. 1990;28(5):653–660. doi: 10.1002/ana.410280509. [DOI] [PubMed] [Google Scholar]
  • 54.Gillum WN, Anderson RL. Blepharospasm surgery. An anatomical approach. Arch. Ophthalmol. 1981;99(6):1056–1062. doi: 10.1001/archopht.1981.03930011056015. [DOI] [PubMed] [Google Scholar]
  • 55.Wirtschafter JD. Chemomyectomy of the orbicularis oculi muscles for the treatment of localized hemifacial spasm. J. Neuroophthalmol. 1994;14(4):199–204. [PubMed] [Google Scholar]
  • 56.Klemm WR, Bratton GR, Hudson LC, Sherry CJ, Dziezyc J. A possible feline model for human blepharospasm. Neurol. Res. 1993;15(1):41–45. doi: 10.1080/01616412.1993.11740105. [DOI] [PubMed] [Google Scholar]
  • 57.Holstege G, Collewijn H. The efferent connections of the nucleus of the optic tract and the superior colliculus in the rabbit. J. Comp. Neurol. 1982;209(2):139–175. doi: 10.1002/cne.902090204. [DOI] [PubMed] [Google Scholar]
  • 58.Holstege G, Tan J, van Ham JJ, Graveland GA. Anatomical observations on the afferent projections to the retractor bulbi motoneuronal cell group and other pathways possibly related to the blink reflex in the cat. Brain Res. 1986;374(2):321–334. doi: 10.1016/0006-8993(86)90426-9. [DOI] [PubMed] [Google Scholar]
  • 59.Morcuende S, Delgado-Garcia JM, Ugolini G. Neuronal premotor networks involved in eyelid responses: retrograde transneuronal tracing with rabies virus from the orbicularis oculi muscle in the rat. J. Neurosci. 2002;22(20):8808–8818. doi: 10.1523/JNEUROSCI.22-20-08808.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60.Takada M, Itoh K, Yasui Y, Mitani A, Nomura S, Mizuno N. Distribution of premotor neurons for orbicularis oculi motoneurons in the cat, with particular reference to possible pathways for blink reflex. Neurosci. Lett. 1984;50(1-3):251–255. doi: 10.1016/0304-3940(84)90494-4. [DOI] [PubMed] [Google Scholar]
  • 61.Takeuchi Y, Nakano K, Uemura M, Matsuda K, Matsushima R, Mizuno N. Mesencephalic and pontine afferent fiber system to the facial neucleus in the cat: a study using the horseradish peroxidase and silver impregnation techniques. Exp. Neurol. 1979;66(2):330–342. doi: 10.1016/0014-4886(79)90084-0. [DOI] [PubMed] [Google Scholar]
  • 62.Brodie BB, Comer MS, Costa E, Dlabac A. The role of brain serotonin in the mechanism of the central action of reserpine. J. Pharmacol. Exp. Ther. 1966;152(2):340–349. [PubMed] [Google Scholar]
  • 63.Burkard WP, Bonetti EP, Da Prada M, Martin JR, Polc P, Schaffner R, Scherschlicht R, Hefti F, Muller RK, Wyss PC, et al. Pharmacological profile of moclobemide, a short-acting and reversible inhibitor of monoamine oxidase type A. J. Pharmacol. Exp. Ther. 1989;248(1):391–399. [PubMed] [Google Scholar]
  • 64.Mostofsky DI, Yehuda S, Rabinovitz S, Carasso R. The control of blepharospasm by essential fatty acids. Neuropsychobiology . 2000;41(3):154–157. doi: 10.1159/000026648. [DOI] [PubMed] [Google Scholar]
  • 65.Tedeschi DH, Fowler PJ, Fujita T, Miller RB. Mechanisms underlying reserpine-induced ptosis and blepharospasm: evidence that reserpine decreases central sympathetic outflow in rats. Life Sci. 1967;6(5):515–523. doi: 10.1016/0024-3205(67)90055-0. [DOI] [PubMed] [Google Scholar]
  • 66.Votava Z, Glisson SN, Himwich HE. Behavioral reaction of rats pretreated with reserpine to LSD-25. Int.J. Neuropharmacol. 1967;6(6):543–547. doi: 10.1016/0028-3908(67)90053-6. [DOI] [PubMed] [Google Scholar]
  • 67.Costa E, Pscheidt GR. Correlations between active eyelid closure and depletion of brain biogenic amines by respine. Proc. Soc. Exp. Biol. Med. 1961;106:693–696. doi: 10.3181/00379727-106-26445. [DOI] [PubMed] [Google Scholar]
  • 68.Davis KD, Dostrovsky JO. Modulatory influences of red nucleus stimulation on the somatosensory responses of cat trigeminal subnucleus oralis neurons. Exp. Neurol. 1986;91(1):80–101. doi: 10.1016/0014-4886(86)90028-2. [DOI] [PubMed] [Google Scholar]
  • 69.LeDoux MS, Lorden JF, Smith JM, Mays LE. Serotonergic modulation of eye blinks in cat and monkey. Neurosci. Lett. 1998;253(1):61–64. doi: 10.1016/s0304-3940(98)00616-8. [DOI] [PubMed] [Google Scholar]
  • 70.Fasanella RM, Aghajanian GK. Treatment of benign essential blepharospasm with cyproheptadine. N. Engl. J. Med. 1990;322(11):778. doi: 10.1056/NEJM199003153221116. [DOI] [PubMed] [Google Scholar]
  • 71.Peshori KR, Schicatano EJ, Gopalaswamy R, Sahay E, Evinger C. Aging of the trigeminal blink system. Exp. Brain Res. 2001;136(3):351–363. doi: 10.1007/s002210000585. [DOI] [PubMed] [Google Scholar]
  • 72.Elsworth JD, Lawrence MS, Roth RH, Taylor JR, Mailman RB, Nichols DE, Lewis MH, Redmond DE., Jr D1 and D2 dopamine receptors independently regulate spontaneous blink rate in the vervet monkey. J. Pharmacol. Exp. Ther. 1991;259(2):595–600. [PubMed] [Google Scholar]
  • 73.Kaminer J, Powers AS, Horn KG, Hui C, Evinger C. Characterizing the spontaneous blink generator: an animal model. J. Neurosci. 2011;31(31):11256–11267. doi: 10.1523/JNEUROSCI.6218-10.2011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 74.Karson CN. Spontaneous eye-blink rates and dopaminergic systems. Brain. 1983;106 (Pt 3):643–653. doi: 10.1093/brain/106.3.643. [DOI] [PubMed] [Google Scholar]
  • 75.Karson CN, Bigelow LB, Kleinman JE, Weinberger DR, Wyatt RJ. Haloperidol-induced changes in blink rates correlate with changes in BPRS score. Br. J. Psychiatry . 1982;140:503–507. doi: 10.1192/bjp.140.5.503. [DOI] [PubMed] [Google Scholar]
  • 76.Karson CN, Staub RA, Kleinman JE, Wyatt RJ. Drug effect on blink rates in rhesus monkeys: preliminary studies. Biol. Psychiatry . 1981;16(3):249–254. [PubMed] [Google Scholar]
  • 77.Lawrence MS, Redmond DE., Jr MPTP lesions and dopaminergic drugs alter eye blink rate in African green monkeys. Pharmacol. Biochem. Behav. 1991;38(4):869–874. doi: 10.1016/0091-3057(91)90255-z. [DOI] [PubMed] [Google Scholar]
  • 78.Taylor JR, Elsworth JD, Lawrence MS, Sladek JR, Jr, Roth RH, Redmond DE., Jr Spontaneous blink rates correlate with dopamine levels in the caudate nucleus of MPTP-treated monkeys. Exp. Neurol. 1999;158(1):214–220. doi: 10.1006/exnr.1999.7093. [DOI] [PubMed] [Google Scholar]
  • 79.Zametkin AJ, Stevens JR, Pittman R. Ontogeny of spontaneous blinking and of habituation of the blink reflex. Ann. Neurol. 1979;5(5):453–457. doi: 10.1002/ana.410050509. [DOI] [PubMed] [Google Scholar]
  • 80.Napolitano A, Bonuccelli U, Rossi B. Different effects of levodopa and apomorphine on blink reflex recovery cycle in essential blepharospasm. Eur. Neurol. 1997;38(2):119–122. doi: 10.1159/000113174. [DOI] [PubMed] [Google Scholar]
  • 81.Baker RS, Radmanesh SM, Abell KM. The effect of apomorphine on blink kinematics in subhuman primates with and without facial nerve palsy. Invest. Ophthalmol. Vis. Sci. 2002;43(9):2933–2938. [PubMed] [Google Scholar]
  • 82.Esteban A, Gimenez-Roldan S. Involuntary closure of eyelids in parkinsonism.Electrophysiological evidence for prolonged inhibition of the levator palpebrae muscles. J. Neurol. Sci. 1988;85(3):333–345. doi: 10.1016/0022-510x(88)90191-8. [DOI] [PubMed] [Google Scholar]
  • 83.Ferguson IT, Lenman JA, Johnston BB. Habituation of the orbicularis oculi reflex in dementia and dyskinetic states. J. Neurol. Neurosurg. Psychiatry . 1978;41(9):824–828. doi: 10.1136/jnnp.41.9.824. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 84.Goto S, Kihara K, Hamasaki T, Nishikawa S, Hirata Y, Ushio Y. Apraxia of lid opening is alleviated by pallidal stimulation in a patient with Parkinson's disease. Eur. J. Neurol. 2000;7(3):337–340. doi: 10.1046/j.1468-1331.2000.00058.x. [DOI] [PubMed] [Google Scholar]
  • 85.Kaneko K, Sakamoto K. Spontaneous blinks of Parkinson's disease patients evaluated by EMG and EOG. Electromyogr. Clin. Neurophysiol. 2001;41(2):87–95. [PubMed] [Google Scholar]
  • 86.Kimura J. Disorder of interneurons in Parkinsonism.The orbicularis oculi reflex to paired stimuli. Brain. 1973;96(1):87–96. doi: 10.1093/brain/96.1.87. [DOI] [PubMed] [Google Scholar]
  • 87.Rey RD, Garretto NS, Bueri JA, Simonetti DD, Sanz OP, Sica RE. The effect of levodopa on the habituation of the acoustic-palpebral reflex in Parkinson's disease. Electromyogr. Clin. Neurophyiol. 1996;36(6):357–360. [PubMed] [Google Scholar]
  • 88.Sunohara N, Tomi H, Satoyoshi E, Tachibana S. Glabella tap sign.Is it due to a lack of R2-habituation? J. Neurol. Sci. 1985;70(3):257–267. doi: 10.1016/0022-510x(85)90167-4. [DOI] [PubMed] [Google Scholar]
  • 89.Valls-Sole J, Valldeoriola F, Tolosa E, Marti MJ. Distinctive abnormalities of facial reflexes in patients with progressive supranuclear palsy. Brain. 1997;120 ( Pt 10):1877–1883. doi: 10.1093/brain/120.10.1877. [DOI] [PubMed] [Google Scholar]
  • 90.Vidailhet M, Rothwell JC, Thompson PD, Lees AJ, Marsden CD. The auditory startle response in the Steele-Richardson-Olszewski syndrome and Parkinson's disease. Brain . 1992;115(Pt 4):1181–1192. doi: 10.1093/brain/115.4.1181. [DOI] [PubMed] [Google Scholar]
  • 91.Hotson JR, Langston EB, Langston JW. Saccade responses to dopamine in human MPTP-induced parkinsonism. Ann. Neurol. 1986;20(4):456–463. doi: 10.1002/ana.410200404. [DOI] [PubMed] [Google Scholar]
  • 92.Jankovic J, Havins WE, Wilkins RB. Blinking and blepharospasm.Mechnism diagnosis, and management. JAMA. 1982; 248(23):3160–3164. [PubMed] [Google Scholar]
  • 93.Klawans HL, Jr, Erlich MA. Observations on the mechanism of parkinsonian blepharospasm and its treatment with L-dopa. Eur. Neurol. 1970;3(6):365–372. doi: 10.1159/000113999. [DOI] [PubMed] [Google Scholar]
  • 94.Repka MX, Claro MC, Loupe DN, Reich SG. Ocular motility in Parkinson's disease. J. Pediatr. Ophthalmol. Strabismus. 1996;33(3):144–147. doi: 10.3928/0191-3913-19960501-04. [DOI] [PubMed] [Google Scholar]
  • 95.Biousse V, Skibell BC, Watts RL, Loupe DN, Drews-Botsch C, Newman NJ. Ophthalmologic features of Parkinson's disease. Neurology . 2004;62(2):177–180. doi: 10.1212/01.wnl.0000103444.45882.d8. [DOI] [PubMed] [Google Scholar]
  • 96.Holmes A, Hollon TR, Gleason TC, Liu Z, Dreiling J, Sibley DR, Crawley JN. Behavioral characterization of dopamine D5 receptor null mutant mice. Behav. Neurosci. 2001;115(5):1129–1144. [PubMed] [Google Scholar]
  • 97.Perlmutter JS, Stambuk MK, Markham J, Black KJ, McGee-Minnich L, Jankovic J, Moerlein SM. Decreased [18F]spiperone binding in putamen in idiopathic focal dystonia. J. Neurosci. 1997;17(2):843–850. doi: 10.1523/JNEUROSCI.17-02-00843.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 98.Perlmutter JS, Tempel LW, Black KJ, Parkinson D, Todd RD. MPTP induces dystonia and parkinsonism.Clues to the pathophysiology of dystonia. Neurology. 1997;49(5):1432–1438. doi: 10.1212/wnl.49.5.1432. [DOI] [PubMed] [Google Scholar]
  • 99.Pisani A, Martella G, Tscherter A, Bonsi P, Sharma N, Bernardi G, Standaert DG. Altered responses to dopaminergic D2 receptor activation and N-type calcium currents in striatal cholinergic interneurons in a mouse model of DYT1 dystonia. Neurobiol. Dis. 2006;24(2):318–325. doi: 10.1016/j.nbd.2006.07.006. [DOI] [PubMed] [Google Scholar]
  • 100.Schicatano EJ, Basso MA, Evinger C. Animal model explains the origins of the cranial dystonia benign essential blepharospasm. J. Neurophysiol. 1997;77(5):2842–2846. doi: 10.1152/jn.1997.77.5.2842. [DOI] [PubMed] [Google Scholar]
  • 101.Evinger C, Pellegrini JJ, Manning KA. Adaptive gain modification of the blink reflex.A model system for investigating the physiologic bases of motor learning. Ann. N. Y. Acad. Sci. 1989;563:87–100. doi: 10.1111/j.1749-6632.1989.tb42192.x. [DOI] [PubMed] [Google Scholar]
  • 102.Schicatano EJ, Mantzouranis J, Peshori KR, Partin J, Evinger C. Lid restraint evokes two types of motor adaptation. J. Neurosci. 2002;22(2):569–576. doi: 10.1523/JNEUROSCI.22-02-00569.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 103.Baker RS, Sun WS, Hasan SA, Rouholiman BR, Chuke JC, Cowen DE, Porter JD. Maladaptive neural compensatory mechanisms in Bell's palsy-induced blepharospasm. Neurology. 1997;49(1):223–229. doi: 10.1212/wnl.49.1.223. [DOI] [PubMed] [Google Scholar]
  • 104.Chuke JC, Baker RS, Porter JD. Bell's Palsy-associated blepharospasm relieved by aiding eyelid closure. Ann. Neurol. 1996;39(2):263–268. doi: 10.1002/ana.410390217. [DOI] [PubMed] [Google Scholar]
  • 105.Miwa H, Kondo T, Mizuno Y. Bell's palsy-induced blepharospasm. J. Neurol. 2002;249(4):452–454. doi: 10.1007/s004150200038. [DOI] [PubMed] [Google Scholar]
  • 106.Kassem IS, Evinger C. Asymmetry of blinking. Invest. Ophthalmol. Vis. Sci. 2006;47(1):195–201. doi: 10.1167/iovs.04-1279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 107.Mao JB, Evinger C. Long-term potentiation of the human blink reflex. J. Neurosci. 2001;21(12):RC151. doi: 10.1523/JNEUROSCI.21-12-j0002.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 108.Chen FP, Evinger C. Cerebellar modulation of trigeminal reflex blinks: interpositus neurons. J. Neurosci. 2006;26(41):10569–10576. doi: 10.1523/JNEUROSCI.0079-06.2006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 109.Pellegrini JJ, Evinger C. Role of cerebellum in adaptive modification of reflex blinks. Learn Mem. 1997;4(1):77–87. doi: 10.1101/lm.4.1.77. [DOI] [PubMed] [Google Scholar]
  • 110.Akaike T. Electrophysiological analysis of the trigemino-tecto-olivo-cerebellar (crus II) projection in the rat. Brain Res. 1988;442(2):373–378. doi: 10.1016/0006-8993(88)91529-6. [DOI] [PubMed] [Google Scholar]
  • 111.Akaike T. Electrophysiological analysis of the trigemino-olivo-cerebellar (crura I and II, lobulus simplex) projection in the rat. Brain Res. 1989;482(2):402–406. doi: 10.1016/0006-8993(89)91209-2. [DOI] [PubMed] [Google Scholar]
  • 112.Cook JR, Wiesendanger M. Input from trigeminal cutaneous afferents to neurones of the inferior olive in rats. Exp. Brain Res. 1976;26(2):193–202. doi: 10.1007/BF00238283. [DOI] [PubMed] [Google Scholar]
  • 113.Huerta MF, Frankfurter A, Harting JK. Studies of the principal sensory and spinal trigeminal nuclei of the rat: projections to the superior colliculus, inferior olive, and cerebellum. J. Comp. Neurol. 1983;220(2):147–167. doi: 10.1002/cne.902200204. [DOI] [PubMed] [Google Scholar]
  • 114.Kobayashi Y. Distribution and size of cerebellar and thalamic projection neurons in the trigeminal principal sensory nucleus and adjacent nuclei in the rat. Kaibogaku Zasshi. 1995;70(2):156–171. [PubMed] [Google Scholar]
  • 115.Phelan KD, Falls WM. A comparison of the distribution and morphology of thalamic, cerebellar and spinal projection neurons in rat trigeminal nucleus interpolaris. Neuroscience . 1991;40(2):497–511. doi: 10.1016/0306-4522(91)90136-c. [DOI] [PubMed] [Google Scholar]
  • 116.Yatim N, Billig I, Compoint C, Buisseret P, Buisseret-Delmas C. Trigeminocerebellar and trigemino-olivary projections in rats. Neurosci. Res. 1996;25(3):267–283. doi: 10.1016/0168-0102(96)01061-9. [DOI] [PubMed] [Google Scholar]
  • 117.Delgado-Garcia JM, Gruart A. The role of interpositus nucleus in eyelid conditioned responses. Cerebellum. 2002;1(4):289–308. doi: 10.1080/147342202320883597. [DOI] [PubMed] [Google Scholar]
  • 118.LeDoux MS, Lorden JF, Ervin JM. Cerebellectomy eliminates the motor syndrome of the genetically dystonic rat. Exp. Neurol. 1993;120(2):302–310. doi: 10.1006/exnr.1993.1064. [DOI] [PubMed] [Google Scholar]
  • 119.Neychev VK, Fan X, Mitev VI, Hess EJ, Jinnah HA. The basal ganglia and cerebellum interact in the expression of dystonic movement. Brain . 2008;131(Pt 9):2499–2509. doi: 10.1093/brain/awn168. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 120.Pizoli CE, Jinnah HA, Billingsley ML, Hess EJ. Abnormal cerebellar signaling induces dystonia in mice. J. Neurosci. 2002;22(17):7825–7833. doi: 10.1523/JNEUROSCI.22-17-07825.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 121.Soonawala N, Bhatia KP, Yeung JH, Quinn NP, Marsden CD. Idiopathic blepharospasm does not lead to a parkinsonian syndrome: results of a questionnaire-based follow-up study. J. Neurol. 1999;246(4):283–286. doi: 10.1007/s004150050347. [DOI] [PubMed] [Google Scholar]
  • 122.Brown P. Oscillatory nature of human basal ganglia activity: relationship to the pathophysiology of Parkinson's disease. Mov. Disord. 2003;18(4):357–363. doi: 10.1002/mds.10358. [DOI] [PubMed] [Google Scholar]
  • 123.Brown P, Oliviero A, Mazzone P, Insola A, Tonali P, Di Lazzaro V. Dopamine dependency of oscillations between subthalamic nucleus and pallidum in Parkinson's disease. J. Neurosci. 2001;21(3):1033–1038. doi: 10.1523/JNEUROSCI.21-03-01033.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 124.Hammond C, Bergman H, Brown P. Pathological synchronization in Parkinson's disease: networks, models and treatments. Trends Neurosci. 2007;30(7):357–364. doi: 10.1016/j.tins.2007.05.004. [DOI] [PubMed] [Google Scholar]
  • 125.Levy R, Ashby P, Hutchison WD, Lang AE, Lozano AM, Dostrovsky JO. Dependence of subthalamic nucleus oscillations on movement and dopamine in Parkinson's disease. Brain. 2002;125(Pt 6):1196–1209. doi: 10.1093/brain/awf128. [DOI] [PubMed] [Google Scholar]
  • 126.Silberstein P, Kuhn AA, Kupsch A, Trottenberg T, Krauss JK, Wohrle JC, Mazzone P, Insola A, Di Lazzaro V, Oliviero A, Aziz T, Brown P. Patterning of globus pallidus local field potentials differs between Parkinson's disease and dystonia. Brain. 2003;126(Pt 12):2597–2608. doi: 10.1093/brain/awg267. [DOI] [PubMed] [Google Scholar]
  • 127.Wichmann T, DeLong MR. Pathophysiology of Parkinson's disease: the MPTP primate model of the human disorder. Ann. N. Y. Acad. Sci. 2003;991:199–213. doi: 10.1111/j.1749-6632.2003.tb07477.x. [DOI] [PubMed] [Google Scholar]
  • 128.Chen CC, Kuhn AA, Trottenberg T, Kupsch A, Schneider GH, Brown P. Neuronal activity in globus pallidus interna can be synchronized to local field potential activity over 3-12 Hz in patients with dystonia. Exp. Neurol. 2006;202(2):480–486. doi: 10.1016/j.expneurol.2006.07.011. [DOI] [PubMed] [Google Scholar]
  • 129.Starr PA, Rau GM, Davis V, Marks WJ, Jr, Ostrem JL, Simmons D, Lindsey N, Turner RS. Spontaneous pallidal neuronal activity in human dystonia: comparison with Parkinson's disease and normal macaque. J. Neurophysiol. 2005;93(6):3165–3176. doi: 10.1152/jn.00971.2004. [DOI] [PubMed] [Google Scholar]
  • 130.Zhuang P, Li Y, Hallett M. Neuronal activity in the basal ganglia and thalamus in patients with dystonia. Clin. Neurophysiol. 2004;115(11):2542–2557. doi: 10.1016/j.clinph.2004.06.006. [DOI] [PubMed] [Google Scholar]
  • 131.Battaglia F, Ghilardi MF, Quartarone A, Bagnato S, Girlanda P, Hallett M. Impaired long-term potentiation-like plasticity of the trigeminal blink reflex circuit in Parkinson's disease. Mov. Disord. 2006;21(12):2230–2233. doi: 10.1002/mds.21138. [DOI] [PubMed] [Google Scholar]
  • 132.Quartarone A, Sant'Angelo A, Battaglia F, Bagnato S, Rizzo V, Morgante F, Rothwell JC, Siebner HR, Girlanda P. Enhanced long-term potentiation-like plasticity of the trigeminal blink reflex circuit in blepharospasm. J. Neurosci. 2006;26(2):716–721. doi: 10.1523/JNEUROSCI.3948-05.2006. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Current Neuropharmacology are provided here courtesy of Bentham Science Publishers

RESOURCES