Skip to main content
Clinical Microbiology Reviews logoLink to Clinical Microbiology Reviews
. 1993 Jan;6(1):1–21. doi: 10.1128/cmr.6.1.1

Compounds active against cell walls of medically important fungi.

R F Hector 1
PMCID: PMC358263  PMID: 8457977

Abstract

A number of substances that directly or indirectly affect the cell walls of fungi have been identified. Those that actively interfere with the synthesis or degradation of polysaccharide components share the property of being produced by soil microbes as secondary metabolites. Compounds specifically interfering with chitin or beta-glucan synthesis have proven effective in studies of preclinical models of mycoses, though they appear to have a restricted spectrum of coverage. Semisynthetic derivatives of some of the natural products have offered improvements in activity, toxicology, or pharmacokinetic behavior. Compounds which act on the cell wall indirectly or by a secondary mechanism of action, such as the azoles, act against diverse fungi but are usually fungistatic in nature. Overall, these compounds are attractive candidates for further development.

Full text

PDF
1

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andreoli T. E., Monahan M. The interaction of polyene antibiotics with thin lipid membranes. J Gen Physiol. 1968 Aug;52(2):300–325. doi: 10.1085/jgp.52.2.300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Archer D. B. Chitin biosynthesis in protoplasts and subcellular fractions of Aspergillus fumigatus. Biochem J. 1977 Jun 15;164(3):653–658. doi: 10.1042/bj1640653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Au-Young J., Robbins P. W. Isolation of a chitin synthase gene (CHS1) from Candida albicans by expression in Saccharomyces cerevisiae. Mol Microbiol. 1990 Feb;4(2):197–207. doi: 10.1111/j.1365-2958.1990.tb00587.x. [DOI] [PubMed] [Google Scholar]
  4. Azuma I., Kanetsuna F., Tanaka Y., Yamamura Y., Carbonell L. M. Chemical and immunological properties of galactomannans obtained from Histoplasma duboisii, Histoplasma capsulatum, Paracoccidioides brasiliensis and Blasomyces dermatitidis. Mycopathol Mycol Appl. 1974 Oct 15;54(1):111–125. doi: 10.1007/BF02055979. [DOI] [PubMed] [Google Scholar]
  5. Baguley B. C., Römmele G., Gruner J., Wehrli W. Papulacandin B: an inhibitor of glucan synthesis in yeast spheroplasts. Eur J Biochem. 1979 Jul;97(2):345–351. doi: 10.1111/j.1432-1033.1979.tb13120.x. [DOI] [PubMed] [Google Scholar]
  6. Balkovec J. M., Black R. M., Hammond M. L., Heck J. V., Zambias R. A., Abruzzo G., Bartizal K., Kropp H., Trainor C., Schwartz R. E. Synthesis, stability, and biological evaluation of water-soluble prodrugs of a new echinocandin lipopeptide. Discovery of a potential clinical agent for the treatment of systemic candidiasis and Pneumocystis carinii pneumonia (PCP). J Med Chem. 1992 Jan;35(1):194–198. doi: 10.1021/jm00079a027. [DOI] [PubMed] [Google Scholar]
  7. Ballou C. E. A study of the immunochemistry of three yeast mannans. J Biol Chem. 1970 Mar 10;245(5):1197–1203. [PubMed] [Google Scholar]
  8. Ballou C. Structure and biosynthesis of the mannan component of the yeast cell envelope. Adv Microb Physiol. 1976;14(11):93–158. doi: 10.1016/s0065-2911(08)60227-1. [DOI] [PubMed] [Google Scholar]
  9. Bardalaye P. C., Nordin J. H. Chemical structure of the galactomannan from the cell wall of Aspergillus niger. J Biol Chem. 1977 Apr 25;252(8):2584–2591. [PubMed] [Google Scholar]
  10. Bartnicki-Garcia S. Cell wall chemistry, morphogenesis, and taxonomy of fungi. Annu Rev Microbiol. 1968;22:87–108. doi: 10.1146/annurev.mi.22.100168.000511. [DOI] [PubMed] [Google Scholar]
  11. Bastide J. M., Hadibi E. H., Bastide M. Taxonomic significance of yeast sphaeroplast release after enzymatic treatment of intact cells. J Gen Microbiol. 1979 Jul;113(1):147–153. doi: 10.1099/00221287-113-1-147. [DOI] [PubMed] [Google Scholar]
  12. Becker J. M., Covert N. L., Shenbagamurthi P., Steinfeld A. S., Naider F. Polyoxin D inhibits growth of zoopathogenic fungi. Antimicrob Agents Chemother. 1983 Jun;23(6):926–929. doi: 10.1128/aac.23.6.926. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Becker J. M., Marcus S., Tallock J., Miller D., Krainer E., Khare R. K., Naider F. Use of the chitin-synthesis inhibitor nikkomycin to treat disseminated candidiasis in mice. J Infect Dis. 1988 Jan;157(1):212–214. doi: 10.1093/infdis/157.1.212. [DOI] [PubMed] [Google Scholar]
  14. Bennett J. E., Bhattacharjee A. K., Glaudemans C. P. Galactofuranosyl groups are immunodominant in Aspergillus fumigatus galactomannan. Mol Immunol. 1985 Mar;22(3):251–254. doi: 10.1016/0161-5890(85)90158-0. [DOI] [PubMed] [Google Scholar]
  15. Bhattacharjee A. K., Kwon-Chung K. J., Glaudemans C. P. Capsular polysaccharides from a parent strain and from a possible, mutant strain of Cryptococcus neoformans serotype A. Carbohydr Res. 1981 Sep 16;95(2):237–248. doi: 10.1016/s0008-6215(00)85580-9. [DOI] [PubMed] [Google Scholar]
  16. Borgia P. T., Dodge C. L. Characterization of Aspergillus nidulans mutants deficient in cell wall chitin or glucan. J Bacteriol. 1992 Jan;174(2):377–383. doi: 10.1128/jb.174.2.377-383.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Borgia P. T. Roles of the orlA, tsE, and bimG genes of Aspergillus nidulans in chitin synthesis. J Bacteriol. 1992 Jan;174(2):384–389. doi: 10.1128/jb.174.2.384-389.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Bormann C., Huhn W., Zähner H., Rathmann R., Hahn H., König W. A. Metabolic products of microorganisms. 228. New nikkomycins produced by mutants of Streptomyces tendae. J Antibiot (Tokyo) 1985 Jan;38(1):9–16. doi: 10.7164/antibiotics.38.9. [DOI] [PubMed] [Google Scholar]
  19. Bormann C., Mattern S., Schrempf H., Fiedler H. P., Zähner H. Isolation of Streptomyces tendae mutants with an altered nikkomycin spectrum. J Antibiot (Tokyo) 1989 Jun;42(6):913–918. doi: 10.7164/antibiotics.42.913. [DOI] [PubMed] [Google Scholar]
  20. Bowen A. R., Chen-Wu J. L., Momany M., Young R., Szaniszlo P. J., Robbins P. W. Classification of fungal chitin synthases. Proc Natl Acad Sci U S A. 1992 Jan 15;89(2):519–523. doi: 10.1073/pnas.89.2.519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Bowers B., Levin G., Cabib E. Effect of polyoxin D on chitin synthesis and septum formation in Saccharomyces cerevisiae. J Bacteriol. 1974 Aug;119(2):564–575. doi: 10.1128/jb.119.2.564-575.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Bozzola J. J., Mehta R. J., Nisbet L. J., Valenta J. R. The effect of aculeacin A and papulacandin B on morphology and cell wall ultrastructure in Candida albicans. Can J Microbiol. 1984 Jun;30(6):857–863. doi: 10.1139/m84-133. [DOI] [PubMed] [Google Scholar]
  23. Brajtburg J., Kobayashi D., Medoff G., Kobayashi G. S. Antifungal action of amphotericin B in combination with other polyene or imidazole antibiotics. J Infect Dis. 1982 Aug;146(2):138–146. doi: 10.1093/infdis/146.2.138. [DOI] [PubMed] [Google Scholar]
  24. Braun P. C., Calderone R. A. Chitin synthesis in Candida albicans: comparison of yeast and hyphal forms. J Bacteriol. 1978 Mar;133(3):1472–1477. doi: 10.1128/jb.133.3.1472-1477.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Brillinger G. U. Metabolic products of microorganisms. 181. Chitin synthase from fungi, a test model for substances with insecticidal properties. Arch Microbiol. 1979 Apr;121(1):71–74. doi: 10.1007/BF00409207. [DOI] [PubMed] [Google Scholar]
  26. Bulawa C. E. CSD2, CSD3, and CSD4, genes required for chitin synthesis in Saccharomyces cerevisiae: the CSD2 gene product is related to chitin synthases and to developmentally regulated proteins in Rhizobium species and Xenopus laevis. Mol Cell Biol. 1992 Apr;12(4):1764–1776. doi: 10.1128/mcb.12.4.1764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Bull A. T. Chemical composition of wild-type and mutant Aspergillus nidulans cell walls. The nature of polysaccharide and melanin constituents. J Gen Microbiol. 1970 Sep;63(1):75–94. doi: 10.1099/00221287-63-1-75. [DOI] [PubMed] [Google Scholar]
  28. Cabib E., Bowers B. Chitin and yeast budding. Localization of chitin in yeast bud scars. J Biol Chem. 1971 Jan 10;246(1):152–159. [PubMed] [Google Scholar]
  29. Cabib E., Bowers B. Timing and function of chitin synthesis in yeast. J Bacteriol. 1975 Dec;124(3):1586–1593. doi: 10.1128/jb.124.3.1586-1593.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Cabib E. Differential inhibition of chitin synthetases 1 and 2 from Saccharomyces cerevisiae by polyoxin D and nikkomycins. Antimicrob Agents Chemother. 1991 Jan;35(1):170–173. doi: 10.1128/aac.35.1.170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Cabib E., Roberts R., Bowers B. Synthesis of the yeast cell wall and its regulation. Annu Rev Biochem. 1982;51:763–793. doi: 10.1146/annurev.bi.51.070182.003555. [DOI] [PubMed] [Google Scholar]
  32. Cabib E., Sburlati A., Bowers B., Silverman S. J. Chitin synthase 1, an auxiliary enzyme for chitin synthesis in Saccharomyces cerevisiae. J Cell Biol. 1989 May;108(5):1665–1672. doi: 10.1083/jcb.108.5.1665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Cabib E., Silverman S. J., Shaw J. A. Chitinase and chitin synthase 1: counterbalancing activities in cell separation of Saccharomyces cerevisiae. J Gen Microbiol. 1992 Jan;138(1):97–102. doi: 10.1099/00221287-138-1-97. [DOI] [PubMed] [Google Scholar]
  34. Calderone R. A., Braun P. C. Adherence and receptor relationships of Candida albicans. Microbiol Rev. 1991 Mar;55(1):1–20. doi: 10.1128/mr.55.1.1-20.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Campbell C. K. Fine structure of vegetative hyphae of Aspergillus fumigatus. J Gen Microbiol. 1970 Dec;64(3):373–376. doi: 10.1099/00221287-64-3-373. [DOI] [PubMed] [Google Scholar]
  36. Carbonell L. M., Kanetsuna F., Gil F. Chemical morphology of glucan and chitin in the cell wall of the yeast phase of Paracoccidioides brasiliensis. J Bacteriol. 1970 Feb;101(2):636–642. doi: 10.1128/jb.101.2.636-642.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Cass A., Finkelstein A., Krespi V. The ion permeability induced in thin lipid membranes by the polyene antibiotics nystatin and amphotericin B. J Gen Physiol. 1970 Jul;56(1):100–124. doi: 10.1085/jgp.56.1.100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Cassone A. Cell wall of Candida albicans: its functions and its impact on the host. Curr Top Med Mycol. 1989;3:248–314. doi: 10.1007/978-1-4612-3624-5_10. [DOI] [PubMed] [Google Scholar]
  39. Cassone A., Kerridge D., Gale E. F. Ultrastructural changes in the cell wall of Candida albicans following cessation of growth and their possible relationship to the development of polyene resistance. J Gen Microbiol. 1979 Feb;110(2):339–349. doi: 10.1099/00221287-110-2-339. [DOI] [PubMed] [Google Scholar]
  40. Cassone A., Mason R. E., Kerridge D. Lysis of growing yeast-form cells of Candida albicans by echinocandin: a cytological study. Sabouraudia. 1981 Jun;19(2):97–110. [PubMed] [Google Scholar]
  41. Cassone A., Simonetti N., Strippoli V. Ultrastructural changes in the wall during germ-tube formation from blastospores of Candida albicans. J Gen Microbiol. 1973 Aug;77(2):417–426. doi: 10.1099/00221287-77-2-417. [DOI] [PubMed] [Google Scholar]
  42. Chattaway F. W., Holmes M. R., Barlow A. J. Cell wall composition of the mycelial and blastospore forms of Candida albicans. J Gen Microbiol. 1968 May;51(3):367–376. doi: 10.1099/00221287-51-3-367. [DOI] [PubMed] [Google Scholar]
  43. Chen-Wu J. L., Zwicker J., Bowen A. R., Robbins P. W. Expression of chitin synthase genes during yeast and hyphal growth phases of Candida albicans. Mol Microbiol. 1992 Feb;6(4):497–502. doi: 10.1111/j.1365-2958.1992.tb01494.x. [DOI] [PubMed] [Google Scholar]
  44. Cherniak R., Reiss E., Slodki M. E., Plattner R. D., Blumer S. O. Structure and antigenic activity of the capsular polysaccharide of Cryptococcus neoformans serotype A. Mol Immunol. 1980 Aug;17(8):1025–1032. doi: 10.1016/0161-5890(80)90096-6. [DOI] [PubMed] [Google Scholar]
  45. Chiew Y. Y., Shepherd M. G., Sullivan P. A. Regulation of chitin synthesis during germ-tube formation in Candida albicans. Arch Microbiol. 1980 Mar;125(1-2):97–104. doi: 10.1007/BF00403204. [DOI] [PubMed] [Google Scholar]
  46. Cole G. T., Lynn K. T., Seshan K. R. Evaluation of a murine model of hepatic candidiasis. J Clin Microbiol. 1990 Aug;28(8):1828–1841. doi: 10.1128/jcm.28.8.1828-1841.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Collins M., Pappagianis D. Effects of lysozyme and chitinase on the spherules of Coccidioides immitis in vitro. Infect Immun. 1973 May;7(5):817–822. doi: 10.1128/iai.7.5.817-822.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Corrado M. L., Kramer M., Cummings M., Eng R. H. Susceptibility of dermatiaceous fungi to amphotericin B, miconazole, ketoconazole, flucytosine and rifampin alone and in combination. Sabouraudia. 1982 Jun;20(2):109–113. doi: 10.1080/00362178285380181. [DOI] [PubMed] [Google Scholar]
  49. Correa J. U., Elango N., Polacheck I., Cabib E. Endochitinase, a mannan-associated enzyme from Saccharomyces cerevisiae. J Biol Chem. 1982 Feb 10;257(3):1392–1397. [PubMed] [Google Scholar]
  50. Debono M., Abbott B. J., Fukuda D. S., Barnhart M., Willard K. E., Molloy R. M., Michel K. H., Turner J. R., Butler T. F., Hunt A. H. Synthesis of new analogs of echinocandin B by enzymatic deacylation and chemical reacylation of the echinocandin B peptide: synthesis of the antifungal agent cilofungin (LY121019). J Antibiot (Tokyo) 1989 Mar;42(3):389–397. doi: 10.7164/antibiotics.42.389. [DOI] [PubMed] [Google Scholar]
  51. Decker H., Bormann C., Fiedler H. P., Zähner H., Heitsch H., König W. A. Metabolic products of microorganisms. 252. Isolation of new nikkomycins from Streptomyces tendae. J Antibiot (Tokyo) 1989 Feb;42(2):230–235. doi: 10.7164/antibiotics.42.230. [DOI] [PubMed] [Google Scholar]
  52. Decker H., Walz F., Bormann C., Zähner H., Fiedler H. P., Heitsch H., König W. A. Metabolic products of microorganisms. 255. Nikkomycins Wz and Wx, new chitin synthetase inhibitors from Streptomyces tendae. J Antibiot (Tokyo) 1990 Jan;43(1):43–48. doi: 10.7164/antibiotics.43.43. [DOI] [PubMed] [Google Scholar]
  53. Decker H., Zähner H., Heitsch H., König W. A., Fiedler H. P. Structure-activity relationships of the nikkomycins. J Gen Microbiol. 1991 Aug;137(8):1805–1813. doi: 10.1099/00221287-137-8-1805. [DOI] [PubMed] [Google Scholar]
  54. Delzer J., Fiedler H. P., Müller H., Zähner H., Rathmann R., Ernst K., König W. A. New nikkomycins by mutasynthesis and directed fermentation. J Antibiot (Tokyo) 1984 Jan;37(1):80–82. doi: 10.7164/antibiotics.37.80. [DOI] [PubMed] [Google Scholar]
  55. Diamond R. D. The growing problem of mycoses in patients infected with the human immunodeficiency virus. Rev Infect Dis. 1991 May-Jun;13(3):480–486. doi: 10.1093/clinids/13.3.480. [DOI] [PubMed] [Google Scholar]
  56. Dickinson K., Keer V., Hitchcock C. A., Adams D. J. Chitinase activity from Candida albicans and its inhibition by allosamidin. J Gen Microbiol. 1989 Jun;135(6):1417–1421. doi: 10.1099/00221287-135-6-1417. [DOI] [PubMed] [Google Scholar]
  57. Domer J. E. Monosaccharide and chitin content of cell walls of Histoplasma capsulatum and Blastomyces dermatitidis. J Bacteriol. 1971 Sep;107(3):870–877. doi: 10.1128/jb.107.3.870-877.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Drouhet E., Dupont B., Improvisi L., Lesourd M., Prevost M. C. Activity of cilofungin (LY 121019), a new lipopeptide antibiotic, on the cell wall and cytoplasmic membrane of Candida albicans. Structural modifications in scanning and transmission electron microscopy. J Med Vet Mycol. 1990;28(6):425–436. doi: 10.1080/02681219080000541. [DOI] [PubMed] [Google Scholar]
  59. Dupont B., Drouhet E. In vitro synergy and antagonism of antifungal agents against yeast-like fungi. Postgrad Med J. 1979 Sep;55(647):683–686. doi: 10.1136/pgmj.55.647.683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Dávila T., San-Blas G., San-Blas F. Effect of papulacandin B on glucan synthesis in Paracoccidioides brasiliensis. J Med Vet Mycol. 1986 Jun;24(3):193–202. [PubMed] [Google Scholar]
  61. Dähn U., Hagenmaier H., Höhne H., König W. A., Wolf G., Zähner H. Stoffwechselprodukte von mikroorganismen. 154. Mitteilung. Nikkomycin, ein neuer hemmstoff der chitinsynthese bei pilzen. Arch Microbiol. 1976 Mar 19;107(2):143–160. doi: 10.1007/BF00446834. [DOI] [PubMed] [Google Scholar]
  62. Edman J. C., Kovacs J. A., Masur H., Santi D. V., Elwood H. J., Sogin M. L. Ribosomal RNA sequence shows Pneumocystis carinii to be a member of the fungi. Nature. 1988 Aug 11;334(6182):519–522. doi: 10.1038/334519a0. [DOI] [PubMed] [Google Scholar]
  63. Elango N., Correa J. U., Cabib E. Secretory character of yeast chitinase. J Biol Chem. 1982 Feb 10;257(3):1398–1400. [PubMed] [Google Scholar]
  64. Elorza M. V., Murgui A., Rico H., Miragall F., Sentandreu R. Formation of a new cell wall by protoplasts of Candida albicans: effect of papulacandin B, tunicamycin and Nikkomycin. J Gen Microbiol. 1987 Aug;133(8):2315–2325. doi: 10.1099/00221287-133-8-2315. [DOI] [PubMed] [Google Scholar]
  65. Elorza M. V., Rico H., Gozalbo D., Sentandreu R. Cell wall composition and protoplast regeneration in Candida albicans. Antonie Van Leeuwenhoek. 1983 Nov;49(4-5):457–469. doi: 10.1007/BF00399324. [DOI] [PubMed] [Google Scholar]
  66. Emmer G., Ryder N. S., Grassberger M. A. Synthesis of new polyoxin derivatives and their activity against chitin synthase from Candida albicans. J Med Chem. 1985 Mar;28(3):278–281. doi: 10.1021/jm00381a003. [DOI] [PubMed] [Google Scholar]
  67. Endo A., Kakiki K., Misato T. Mechanism of action of the antifugal agent polyoxin D. J Bacteriol. 1970 Oct;104(1):189–196. doi: 10.1128/jb.104.1.189-196.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Endo A., Misato T. Polyoxin D, a competitive inhibitor of UDP-N-acetylglucosamine: chitin N-acetylglucosaminyltransferase in Neurospora crassa. Biochem Biophys Res Commun. 1969 Nov 6;37(4):718–722. doi: 10.1016/0006-291x(69)90870-5. [DOI] [PubMed] [Google Scholar]
  69. Engel P. Plasmid transformation of Streptomyces tendae after heat attenuation of restriction. Appl Environ Microbiol. 1987 Jan;53(1):1–3. doi: 10.1128/aem.53.1.1-3.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Engel P., Ullah A. H. Mutation affecting peptide bond formation in nikkomycin biosynthesis. Biochem Biophys Res Commun. 1988 Oct 31;156(2):695–700. doi: 10.1016/s0006-291x(88)80898-2. [DOI] [PubMed] [Google Scholar]
  71. Farkas V. Biosynthesis of cell walls of fungi. Microbiol Rev. 1979 Jun;43(2):117–144. doi: 10.1128/mr.43.2.117-144.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Fox J. J., Watanabe K. A., Bloch A. Nucleoside antibiotics. Prog Nucleic Acid Res Mol Biol. 1966;5:251–313. doi: 10.1016/s0079-6603(08)60236-6. [DOI] [PubMed] [Google Scholar]
  73. Galgiani J. N., Sun S. H., Clemons K. V., Stevens D. A. Activity of cilofungin against Coccidioides immitis: differential in vitro effects on mycelia and spherules correlated with in vivo studies. J Infect Dis. 1990 Oct;162(4):944–948. doi: 10.1093/infdis/162.4.944. [DOI] [PubMed] [Google Scholar]
  74. Garcia Mendoza C., Novaes Ledieu M. Chitin in the new wall of regenerating protoplasts of Candida utilis. Nature. 1968 Dec 7;220(5171):1035–1035. doi: 10.1038/2201035a0. [DOI] [PubMed] [Google Scholar]
  75. Gimeno C. J., Ljungdahl P. O., Styles C. A., Fink G. R. Unipolar cell divisions in the yeast S. cerevisiae lead to filamentous growth: regulation by starvation and RAS. Cell. 1992 Mar 20;68(6):1077–1090. doi: 10.1016/0092-8674(92)90079-r. [DOI] [PubMed] [Google Scholar]
  76. Gomi S., Sezaki M., Kondo S., Hara T., Naganawa H., Takeuchi T. The structures of new antifungal antibiotics, benanomicins A and B. J Antibiot (Tokyo) 1988 Aug;41(8):1019–1028. doi: 10.7164/antibiotics.41.1019. [DOI] [PubMed] [Google Scholar]
  77. Gooday B. W. Biosynthesis of the fungal wall - mechanisms and implications. The first Fleming Lecture. J Gen Microbiol. 1977 Mar;99(1):1–11. doi: 10.1099/00221287-99-1-1. [DOI] [PubMed] [Google Scholar]
  78. Gopal P. K., Shepherd M. G., Sullivan P. A. Analysis of wall glucans from yeast, hyphal and germ-tube forming cells of Candida albicans. J Gen Microbiol. 1984 Dec;130(12):3295–3301. doi: 10.1099/00221287-130-12-3295. [DOI] [PubMed] [Google Scholar]
  79. Gordee R. S., Zeckner D. J., Ellis L. F., Thakkar A. L., Howard L. C. In vitro and in vivo anti-Candida activity and toxicology of LY121019. J Antibiot (Tokyo) 1984 Sep;37(9):1054–1065. doi: 10.7164/antibiotics.37.1054. [DOI] [PubMed] [Google Scholar]
  80. Gordee R. S., Zeckner D. J., Howard L. C., Alborn W. E., Jr, Debono M. Anti-Candida activity and toxicology of LY121019, a novel semisynthetic polypeptide antifungal antibiotic. Ann N Y Acad Sci. 1988;544:294–309. doi: 10.1111/j.1749-6632.1988.tb40415.x. [DOI] [PubMed] [Google Scholar]
  81. Gottlieb S., Altboum Z., Savage D. C., Segal E. Adhesion of Candida albicans to epithelial cells effect of polyoxin D. Mycopathologia. 1991 Sep;115(3):197–205. doi: 10.1007/BF00462227. [DOI] [PubMed] [Google Scholar]
  82. Hall G. S., Myles C., Pratt K. J., Washington J. A. Cilofungin (LY121019), an antifungal agent with specific activity against Candida albicans and Candida tropicalis. Antimicrob Agents Chemother. 1988 Sep;32(9):1331–1335. doi: 10.1128/aac.32.9.1331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  83. Hanson L. H., Perlman A. M., Clemons K. V., Stevens D. A. Synergy between cilofungin and amphotericin B in a murine model of candidiasis. Antimicrob Agents Chemother. 1991 Jul;35(7):1334–1337. doi: 10.1128/aac.35.7.1334. [DOI] [PMC free article] [PubMed] [Google Scholar]
  84. Hasenclever H. F., Mitchell W. O. A study of yeast surface antigens by agglutination inhibition. Sabouraudia. 1964 Oct;3(4):288–300. doi: 10.1080/00362176485190511. [DOI] [PubMed] [Google Scholar]
  85. Hearn V. M., Mackenzie D. W. Analysis of wall antigens of Aspergillus fumigatus by two-dimensional immunoelectrophoresis. J Med Microbiol. 1981 Feb;14(1):119–129. doi: 10.1099/00222615-14-1-119. [DOI] [PubMed] [Google Scholar]
  86. Hector R. F., Braun P. C. Synergistic action of nikkomycins X and Z with papulacandin B on whole cells and regenerating protoplasts of Candida albicans. Antimicrob Agents Chemother. 1986 Mar;29(3):389–394. doi: 10.1128/aac.29.3.389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  87. Hector R. F., Pappagianis D. Inhibition of chitin synthesis in the cell wall of Coccidioides immitis by polyoxin D. J Bacteriol. 1983 Apr;154(1):488–498. doi: 10.1128/jb.154.1.488-498.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  88. Hector R. F., Schaller K. Positive interaction of nikkomycins and azoles against Candida albicans in vitro and in vivo. Antimicrob Agents Chemother. 1992 Jun;36(6):1284–1289. doi: 10.1128/aac.36.6.1284. [DOI] [PMC free article] [PubMed] [Google Scholar]
  89. Hector R. F., Zimmer B. L., Pappagianis D. Evaluation of nikkomycins X and Z in murine models of coccidioidomycosis, histoplasmosis, and blastomycosis. Antimicrob Agents Chemother. 1990 Apr;34(4):587–593. doi: 10.1128/aac.34.4.587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  90. Heitsch H., König W. A., Decker H., Bormann C., Fiedler H. P., Zähner H. Metabolic products of microorganisms. 254. Structure of the new nikkomycins pseudo-Z and pseudo-J. J Antibiot (Tokyo) 1989 May;42(5):711–717. doi: 10.7164/antibiotics.42.711. [DOI] [PubMed] [Google Scholar]
  91. Hilenski L. L., Naider F., Becker J. M. Polyoxin D inhibits colloidal gold-wheat germ agglutinin labelling of chitin in dimorphic forms of Candida albicans. J Gen Microbiol. 1986 Jun;132(6):1441–1451. doi: 10.1099/00221287-132-6-1441. [DOI] [PubMed] [Google Scholar]
  92. Hobbs M., Perfect J., Durack D. Evaluation of in vitro antifungal activity of LY121019. Eur J Clin Microbiol Infect Dis. 1988 Feb;7(1):77–80. doi: 10.1007/BF01962182. [DOI] [PubMed] [Google Scholar]
  93. Hori M., Eguchi J., Kakiki K., Misato T. Studies on the mode of action of polyoxins. VI. Effect of polyoxin B on chitin synthesis in polyoxin-sensitive and resistant strains of Alternaria kikuchiana. J Antibiot (Tokyo) 1974 Apr;27(4):260–266. doi: 10.7164/antibiotics.27.260. [DOI] [PubMed] [Google Scholar]
  94. Hoshino H., Seki J., Takeuchi T. New antifungal antibiotics, benanomicins A and B inhibit infection of T-cell with human immunodeficiency virus (HIV) and syncytium formation by HIV. J Antibiot (Tokyo) 1989 Feb;42(2):344–346. doi: 10.7164/antibiotics.42.344. [DOI] [PubMed] [Google Scholar]
  95. Hughes C. E., Harris C., Moody J. A., Peterson L. R., Gerding D. N. In vitro activities of amphotericin B in combination with four antifungal agents and rifampin against Aspergillus spp. Antimicrob Agents Chemother. 1984 May;25(5):560–562. doi: 10.1128/aac.25.5.560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  96. Isono K., Asahi K., Suzuki S. Studies on polyoxins, antifungal antibiotics. 13. The structure of polyoxins. J Am Chem Soc. 1969 Dec 17;91(26):7490–7505. doi: 10.1021/ja01054a045. [DOI] [PubMed] [Google Scholar]
  97. Iwamoto T., Fujie A., Tsurumi Y., Nitta K., Hashimoto S., Okuhara M. FR900403, a new antifungal antibiotic produced by a Kernia sp. J Antibiot (Tokyo) 1990 Sep;43(9):1183–1185. doi: 10.7164/antibiotics.43.1183. [DOI] [PubMed] [Google Scholar]
  98. James P. G., Cherniak R., Jones R. G., Stortz C. A., Reiss E. Cell-wall glucans of Cryptococcus neoformans Cap 67. Carbohydr Res. 1990 Apr 2;198(1):23–38. doi: 10.1016/0008-6215(90)84273-w. [DOI] [PubMed] [Google Scholar]
  99. Kanetsuna F., Carbonell L. M., Gil F., Azuma I. Chemical and ultrastructural studies on the cell walls of the yeastlike and mycelial forms of Histoplasma capsulatum. Mycopathol Mycol Appl. 1974 Oct 15;54(1):1–13. doi: 10.1007/BF02055967. [DOI] [PubMed] [Google Scholar]
  100. Kanetsuna F., Carbonell L. M., Moreno R. E., Rodriguez J. Cell wall composition of the yeast and mycelial forms of Paracoccidioides brasiliensis. J Bacteriol. 1969 Mar;97(3):1036–1041. doi: 10.1128/jb.97.3.1036-1041.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  101. Katz D., Rosenberger R. F. A mutation in Aspergillus nidulans producing hyphal walls which lack chitin. Biochim Biophys Acta. 1970 Jun;208(3):452–460. doi: 10.1016/0304-4165(70)90218-7. [DOI] [PubMed] [Google Scholar]
  102. Katz D., Rosenberger R. F. Hyphal wall synthesis in Aspergillus nidulans: effect of protein synthesis inhibition and osmotic shock on chitin insertion and morphogenesis. J Bacteriol. 1971 Oct;108(1):184–190. doi: 10.1128/jb.108.1.184-190.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  103. Keller F. A., Cabib E. Chitin and yeast budding. Properties of chitin synthetase from Saccharomyces carlsbergensis. J Biol Chem. 1971 Jan 10;246(1):160–166. [PubMed] [Google Scholar]
  104. Khare R. K., Becker J. M., Naider F. R. Synthesis and anticandidal properties of polyoxin L analogues containing alpha-amino fatty acids. J Med Chem. 1988 Mar;31(3):650–656. doi: 10.1021/jm00398a027. [DOI] [PubMed] [Google Scholar]
  105. Kitazima Y., Banno Y., Noguchi T., Nozawa Y., Ito Y. Effects of chemical modification of structural polymer upon the cell wall integrity of Trichophyton. Arch Biochem Biophys. 1972 Oct;152(2):811–820. doi: 10.1016/0003-9861(72)90277-9. [DOI] [PubMed] [Google Scholar]
  106. Klimpel K. R., Goldman W. E. Cell walls from avirulent variants of Histoplasma capsulatum lack alpha-(1,3)-glucan. Infect Immun. 1988 Nov;56(11):2997–3000. doi: 10.1128/iai.56.11.2997-3000.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  107. Kondo S., Gomi S., Uotani K., Inouye S., Takeuchi T. Isolation of new minor benanomicins. J Antibiot (Tokyo) 1991 Feb;44(2):123–129. doi: 10.7164/antibiotics.44.123. [DOI] [PubMed] [Google Scholar]
  108. Kopecká M., Phaff H. J., Fleet G. H. Demonstration of a fibrillar component in the cell wall of the yeast Saccharomyces cerevisiae and its chemical nature. J Cell Biol. 1974 Jul;62(1):66–76. doi: 10.1083/jcb.62.1.66. [DOI] [PMC free article] [PubMed] [Google Scholar]
  109. Krainer E., Becker J. M., Naider F. Synthesis and biological evaluation of dipeptidyl and tripeptidyl polyoxin and nikkomycin analogues as anticandidal prodrugs. J Med Chem. 1991 Jan;34(1):174–180. doi: 10.1021/jm00105a026. [DOI] [PubMed] [Google Scholar]
  110. Kuranda M. J., Robbins P. W. Chitinase is required for cell separation during growth of Saccharomyces cerevisiae. J Biol Chem. 1991 Oct 15;266(29):19758–19767. [PubMed] [Google Scholar]
  111. Kuranda M. J., Robbins P. W. Cloning and heterologous expression of glycosidase genes from Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1987 May;84(9):2585–2589. doi: 10.1073/pnas.84.9.2585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  112. Lee J. W., Kelly P., Lecciones J., Coleman D., Gordee R., Pizzo P. A., Walsh T. J. Cilofungin (LY121019) shows nonlinear plasma pharmacokinetics and tissue penetration in rabbits. Antimicrob Agents Chemother. 1990 Nov;34(11):2240–2245. doi: 10.1128/aac.34.11.2240. [DOI] [PMC free article] [PubMed] [Google Scholar]
  113. Leighton T., Marks E., Leighton F. Pesticides: insecticides and fungicides are chitin synthesis inhibitors. Science. 1981 Aug 21;213(4510):905–907. doi: 10.1126/science.213.4510.905. [DOI] [PubMed] [Google Scholar]
  114. Logan D. A., Becker J. M., Naider F. Peptide transport in Candida albicans. J Gen Microbiol. 1979 Sep;114(1):179–186. doi: 10.1099/00221287-114-1-179. [DOI] [PubMed] [Google Scholar]
  115. Manners D. J., Masson A. J., Patterson J. C., Björndal H., Lindberg B. The structure of a beta-(1--6)-D-glucan from yeast cell walls. Biochem J. 1973 Sep;135(1):31–36. doi: 10.1042/bj1350031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  116. Manners D. J., Masson A. J., Patterson J. C. The structure of a beta-(1 leads to 3)-D-glucan from yeast cell walls. Biochem J. 1973 Sep;135(1):19–30. doi: 10.1042/bj1350019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  117. Matsumoto Y., Matsuda S., Tegoshi T. Yeast glucan in the cyst wall of Pneumocystis carinii. J Protozool. 1989 Jan-Feb;36(1):21S–22S. doi: 10.1111/j.1550-7408.1989.tb02674.x. [DOI] [PubMed] [Google Scholar]
  118. McCarthy P. J., Newman D. J., Nisbet L. J., Kingsbury W. D. Relative rates of transport of peptidyl drugs by Candida albicans. Antimicrob Agents Chemother. 1985 Oct;28(4):494–499. doi: 10.1128/aac.28.4.494. [DOI] [PMC free article] [PubMed] [Google Scholar]
  119. McCarthy P. J., Nisbet L. J., Boehm J. C., Kingsbury W. D. Multiplicity of peptide permeases in Candida albicans: evidence from novel chromophoric peptides. J Bacteriol. 1985 Jun;162(3):1024–1029. doi: 10.1128/jb.162.3.1024-1029.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  120. McCarthy P. J., Troke P. F., Gull K. Mechanism of action of nikkomycin and the peptide transport system of Candida albicans. J Gen Microbiol. 1985 Apr;131(4):775–780. doi: 10.1099/00221287-131-4-775. [DOI] [PubMed] [Google Scholar]
  121. McIntyre K. A., Galgiani J. N. pH and other effects on the antifungal activity of cilofungin (LY121019). Antimicrob Agents Chemother. 1989 May;33(5):731–735. doi: 10.1128/aac.33.5.731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  122. Melchinger W., Müller J. Studies on the in vitro-sensitivity of yeast strains isolated from clinical specimens to LY 121019, a new antifungal agent. Mykosen. 1987 Dec;30(12):605–608. doi: 10.1111/j.1439-0507.1987.tb04383.x. [DOI] [PubMed] [Google Scholar]
  123. Milewski S., Chmara H., Borowski E. Antibiotic tetaine--a selective inhibitor of chitin and mannoprotein biosynthesis in Candida albicans. Arch Microbiol. 1986 Aug;145(3):234–240. doi: 10.1007/BF00443651. [DOI] [PubMed] [Google Scholar]
  124. Milewski S., Mignini F., Borowski E. Synergistic action of nikkomycin X/Z with azole antifungals on Candida albicans. J Gen Microbiol. 1991 Sep;137(9):2155–2161. doi: 10.1099/00221287-137-9-2155. [DOI] [PubMed] [Google Scholar]
  125. Miragall F., Rico H., Sentandreu R. Regeneration of the cell wall in protoplasts of Candida albicans. A cytochemical study using wheat germ agglutinin and concanavalin A. Arch Microbiol. 1988;149(4):286–290. doi: 10.1007/BF00411643. [DOI] [PubMed] [Google Scholar]
  126. Mitani M., Inoue Y. Antagonists of an antifungal substance, polyoxin. J Antibiot (Tokyo) 1968 Aug;21(8):492–496. doi: 10.7164/antibiotics.21.492. [DOI] [PubMed] [Google Scholar]
  127. Mitchell M. J., Smith S. L. Effects of the chitin synthetase inhibitor plumbagin and its 2-demethyl derivative juglone on insect ecdysone 20-monooxygenase activity. Experientia. 1988 Dec 1;44(11-12):990–991. doi: 10.1007/BF01939896. [DOI] [PubMed] [Google Scholar]
  128. Mizoguchi J., Saito T., Mizuno K., Hayano K. On the mode of action of a new antifungal antibiotic, aculeacin A: inhibition of cell wall synthesis in Saccharomyces cerevisiae. J Antibiot (Tokyo) 1977 Apr;30(4):308–313. doi: 10.7164/antibiotics.30.308. [DOI] [PubMed] [Google Scholar]
  129. Mizuno K., Yagi A., Satoi S., Takada M., Hayashi M. Studies on aculeacin. I. Isolation and characterization of aculeacin A. J Antibiot (Tokyo) 1977 Apr;30(4):297–302. doi: 10.7164/antibiotics.30.297. [DOI] [PubMed] [Google Scholar]
  130. Molano J., Bowers B., Cabib E. Distribution of chitin in the yeast cell wall. An ultrastructural and chemical study. J Cell Biol. 1980 May;85(2):199–212. doi: 10.1083/jcb.85.2.199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  131. Molina M., Cenamor R., Nombela C. Exo-1,3-beta-glucanase activity in Candida albicans: effect of the yeast-to-mycelium transition. J Gen Microbiol. 1987 Mar;133(3):609–617. doi: 10.1099/00221287-133-3-609. [DOI] [PubMed] [Google Scholar]
  132. Montgomerie J. Z., Edwards J. E., Jr, Guze L. B. Synergism of amphotericin B and 5-fluorocytosine for candida species. J Infect Dis. 1975 Jul;132(1):82–86. doi: 10.1093/infdis/132.1.82. [DOI] [PubMed] [Google Scholar]
  133. Naider F., Shenbagamurthi P., Steinfeld A. S., Smith H. A., Boney C., Becker J. M. Synthesis and biological activity of tripeptidyl polyoxins as antifungal agents. Antimicrob Agents Chemother. 1983 Nov;24(5):787–796. doi: 10.1128/aac.24.5.787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  134. Nishimoto Y., Sakuda S., Takayama S., Yamada Y. Isolation and characterization of new allosamidins. J Antibiot (Tokyo) 1991 Jul;44(7):716–722. doi: 10.7164/antibiotics.44.716. [DOI] [PubMed] [Google Scholar]
  135. Noguchi T., Banno Y., Watanabe T., Nozawa Y., Ito Y. Carbohydrate composition of the isolated cell walls of dermatophytes. Mycopathologia. 1975 Apr 30;55(2):71–76. doi: 10.1007/BF00444274. [DOI] [PubMed] [Google Scholar]
  136. Nyfeler R., Keller-Schierlein W. Stoffwechselprodukte von Mikroorganismen 143. Mitteilung. Echinocandin B, ein neuartiges Polypeptid-Antibioticum aus Aspergillus nidulans var. echinulatus: Isolierung und Bausteine. Helv Chim Acta. 1974;57(8):2459–2477. doi: 10.1002/hlca.19740570818. [DOI] [PubMed] [Google Scholar]
  137. Oki T., Kakushima M., Nishio M., Kamei H., Hirano M., Sawada Y., Konishi M. Water-soluble pradimicin derivatives, synthesis and antifungal evaluation of N,N-dimethyl pradimicins. J Antibiot (Tokyo) 1990 Oct;43(10):1230–1235. doi: 10.7164/antibiotics.43.1230. [DOI] [PubMed] [Google Scholar]
  138. Oki T., Saitoh K., Tomatsu K., Tomita K., Konishi M., Kawaguchi H. Novel antifungal antibiotic BMY-28567. Structural study and biological activities. Ann N Y Acad Sci. 1988;544:184–187. doi: 10.1111/j.1749-6632.1988.tb40402.x. [DOI] [PubMed] [Google Scholar]
  139. Oki T., Tenmyo O., Hirano M., Tomatsu K., Kamei H. Pradimicins A, B and C: new antifungal antibiotics. II. In vitro and in vivo biological activities. J Antibiot (Tokyo) 1990 Jul;43(7):763–770. doi: 10.7164/antibiotics.43.763. [DOI] [PubMed] [Google Scholar]
  140. PHAFF H. J. CELL WALL OF YEASTS. Annu Rev Microbiol. 1963;17:15–30. doi: 10.1146/annurev.mi.17.100163.000311. [DOI] [PubMed] [Google Scholar]
  141. Payne J. W., Barrett-Bee K. J., Shallow D. A. Peptide substrates rapidly modulate expression of dipeptide and oligopeptide permeases in Candida albicans. FEMS Microbiol Lett. 1991 Mar 15;63(1):15–20. doi: 10.1016/0378-1097(91)90519-g. [DOI] [PubMed] [Google Scholar]
  142. Perfect J. R., Hobbs M. M., Wright K. A., Durack D. T. Treatment of experimental disseminated candidiasis with cilofungin. Antimicrob Agents Chemother. 1989 Oct;33(10):1811–1812. doi: 10.1128/aac.33.10.1811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  143. Peterson E. M., Hawley R. J., Calderone R. A. An ultrastructural analysis of protoplast-spheroplast induction in Cryptococcus neoformans. Can J Microbiol. 1976 Oct;22(10):1518–1521. doi: 10.1139/m76-224. [DOI] [PubMed] [Google Scholar]
  144. Pfaller M. A., Riley J., Koerner T. Effects of terconazole and other azole antifungal agents on the sterol and carbohydrate composition of Candida albicans. Diagn Microbiol Infect Dis. 1990 Jan-Feb;13(1):31–35. doi: 10.1016/0732-8893(90)90050-6. [DOI] [PubMed] [Google Scholar]
  145. Pfaller M., Riley J., Koerner T. Effects of cilofungin (LY121019) on carbohydrate and sterol composition of Candida albicans. Eur J Clin Microbiol Infect Dis. 1989 Dec;8(12):1067–1070. doi: 10.1007/BF01975172. [DOI] [PubMed] [Google Scholar]
  146. Pine L., Boone C. J. Cell wall composition and serological reactivity of Histoplasma capsulatum serotypes and related species. J Bacteriol. 1968 Sep;96(3):789–798. doi: 10.1128/jb.96.3.789-798.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  147. Polacheck I., Rosenberger R. F. Aspergillus nidulans mutant lacking alpha-(1,3)-glucan, melanin, and cleistothecia. J Bacteriol. 1977 Nov;132(2):650–656. doi: 10.1128/jb.132.2.650-656.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  148. Polacheck Y., Rosengerger R. F. Autolytic enzymes in hyphae of Aspergillus nidulans: their action on old and newly formed walls. J Bacteriol. 1975 Jan;121(1):332–337. doi: 10.1128/jb.121.1.332-337.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  149. Polak A., Scholer H. J., Wall M. Combination therapy of experimental candidiasis, cryptococcosis and aspergillosis in mice. Chemotherapy. 1982;28(6):461–479. doi: 10.1159/000238138. [DOI] [PubMed] [Google Scholar]
  150. Pollack J. H., Lange C. F., Hashimoto T. "Nonfibrillar" chitin associated with walls and septa of Trichophyton mentagrophytes arthrospores. J Bacteriol. 1983 May;154(2):965–975. doi: 10.1128/jb.154.2.965-975.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  151. Poulain D., Tronchin G., Dubremetz J. F., Biguet J. Ultrastructure of the cell wall of Candida albicans blastospores: study of its constitutive layers by the use of a cytochemical technique revealing polysaccharides. Ann Microbiol (Paris) 1978 Feb-Mar;129(2):141–153. [PubMed] [Google Scholar]
  152. Quesada-Allue L. A. The inhibition of insect chitin synthesis by tunicamycin. Biochem Biophys Res Commun. 1982 Mar 15;105(1):312–319. doi: 10.1016/s0006-291x(82)80046-6. [DOI] [PubMed] [Google Scholar]
  153. Rast D. M., Bartnicki-Garcia S. Effects of amphotericin B, nystatin, and other polyene antibiotics on chitin synthase. Proc Natl Acad Sci U S A. 1981 Feb;78(2):1233–1236. doi: 10.1073/pnas.78.2.1233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  154. Reijula K. E. Two common fungi associated with farmer's lung: fine structure of Aspergillus fumigatus and Aspergillus umbrosus. Mycopathologia. 1991 Mar;113(3):143–149. doi: 10.1007/BF00436117. [DOI] [PubMed] [Google Scholar]
  155. Reiss E., Miller S. E., Kaplan W., Kaufman L. Antigenic, chemical, and structural properties of cell walls of Histoplasma capsulatum yeast-form chemotypes 1 and 2 after serial enzymatic hydrolysis. Infect Immun. 1977 May;16(2):690–700. doi: 10.1128/iai.16.2.690-700.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  156. Reiss E., Patterson D. G., Yert L. W., Holler J. S., Ibrahim B. K. Structural analysis of mannans from Candida albicans serotypes A and B and from Torulopsis glabrata by methylation gas chromatography mass spectrometry and exo-alpha-mannanase. Biomed Mass Spectrom. 1981 Jun;8(6):252–255. doi: 10.1002/bms.1200080605. [DOI] [PubMed] [Google Scholar]
  157. Reiss E. Serial enzymatic hydrolysis of cell walls of two serotypes of yeast-form Histoplasma capsulatum with alpha(1 leads to 3)-glucanase, beta(1 leads to 3)-glucanase, pronase, and chitinase. Infect Immun. 1977 Apr;16(1):181–188. doi: 10.1128/iai.16.1.181-188.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  158. Rouse M. S., Tallan B. M., Steckelberg J. M., Henry N. K., Wilson W. R. Efficacy of cilofungin therapy administered by continuous intravenous infusion for experimental disseminated candidiasis in rabbits. Antimicrob Agents Chemother. 1992 Jan;36(1):56–58. doi: 10.1128/aac.36.1.56. [DOI] [PMC free article] [PubMed] [Google Scholar]
  159. Ruiz-Herrera J., Bartnicki-Garcia S., Bracker C. E. Dissociation of chitosomes by digitonin into 16 S subunits with chitin synthetase activity. Biochim Biophys Acta. 1980 May 7;629(2):201–206. doi: 10.1016/0304-4165(80)90094-x. [DOI] [PubMed] [Google Scholar]
  160. Ryder N. S., Seidl G., Troke P. F. Effect of the antimycotic drug naftifine on growth of and sterol biosynthesis in Candida albicans. Antimicrob Agents Chemother. 1984 Apr;25(4):483–487. doi: 10.1128/aac.25.4.483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  161. SUZUKI S., ISONO K., NAGATSU J., MIZUTANI T., KAWASHIMA Y., MIZUNO T. A NEW ANTIBIOTIC, POLYOXIN A. J Antibiot (Tokyo) 1965 May;18:131–131. [PubMed] [Google Scholar]
  162. Sakuda S., Isogai A., Matsumoto S., Suzuki A. Search for microbial insect growth regulators. II. Allosamidin, a novel insect chitinase inhibitor. J Antibiot (Tokyo) 1987 Mar;40(3):296–300. doi: 10.7164/antibiotics.40.296. [DOI] [PubMed] [Google Scholar]
  163. San-Blas G., San-Blas F., Serrano L. E. Host-parasite relationships in the yeastlike form of Paracoccidioides brasiliensis strain IVIC Pb9. Infect Immun. 1977 Feb;15(2):343–346. doi: 10.1128/iai.15.2.343-346.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  164. Saral R. Candida and Aspergillus infections in immunocompromised patients: an overview. Rev Infect Dis. 1991 May-Jun;13(3):487–492. doi: 10.1093/clinids/13.3.487. [DOI] [PubMed] [Google Scholar]
  165. Saral R. Candida and Aspergillus infections in immunocompromised patients: an overview. Rev Infect Dis. 1991 May-Jun;13(3):487–492. doi: 10.1093/clinids/13.3.487. [DOI] [PubMed] [Google Scholar]
  166. Satoi S., Yagi A., Asano K., Mizuno K., Watanabe T. Studies on aculeacin. II. Isolation and characterization of aculeacins B, C, D, E, F and G. J Antibiot (Tokyo) 1977 Apr;30(4):303–307. doi: 10.7164/antibiotics.30.303. [DOI] [PubMed] [Google Scholar]
  167. Sawada Y., Hatori M., Yamamoto H., Nishio M., Miyaki T., Oki T. New antifungal antibiotics pradimicins FA-1 and FA-2: D-serine analogs of pradimicins A and C. J Antibiot (Tokyo) 1990 Oct;43(10):1223–1229. doi: 10.7164/antibiotics.43.1223. [DOI] [PubMed] [Google Scholar]
  168. Sawada Y., Murakami T., Ueki T., Fukagawa Y., Oki T. Mannan-mediated anticandidal activity of BMY-28864, a new water-soluble pradimicin derivative. J Antibiot (Tokyo) 1991 Jan;44(1):119–121. doi: 10.7164/antibiotics.44.119. [DOI] [PubMed] [Google Scholar]
  169. Sawada Y., Tsuno T., Yamamoto H., Nishio M., Konishi M., Oki T. Pradimicins M, N, O and P, new dihydrobenzo[a]naphthacenequinones produced by blocked mutants of Actinomadura hibisca P157-2. J Antibiot (Tokyo) 1990 Nov;43(11):1367–1374. doi: 10.7164/antibiotics.43.1367. [DOI] [PubMed] [Google Scholar]
  170. Sawistowska-Schröder E. T., Kerridge D., Perry H. Echinocandin inhibition of 1,3-beta-D-glucan synthase from Candida albicans. FEBS Lett. 1984 Jul 23;173(1):134–138. doi: 10.1016/0014-5793(84)81032-7. [DOI] [PubMed] [Google Scholar]
  171. Selitrennikoff C. P. Competitive inhibition of Neurospora crassa chitin synthetase activity by tunicamycin. Arch Biochem Biophys. 1979 Jun;195(1):243–244. doi: 10.1016/0003-9861(79)90346-1. [DOI] [PubMed] [Google Scholar]
  172. Shah V. K., Knight S. G. Chemical composition of hyphal walls of dermatophytes. Arch Biochem Biophys. 1968 Sep 20;127(1):229–234. doi: 10.1016/0003-9861(68)90220-8. [DOI] [PubMed] [Google Scholar]
  173. Shallow D. A., Barrett-Bee K. J., Payne J. W. Evaluation of the dipeptide and oligopeptide permeases of Candida albicans as uptake routes for synthetic anticandidal agents. FEMS Microbiol Lett. 1991 Mar 15;63(1):9–14. doi: 10.1016/0378-1097(91)90518-f. [DOI] [PubMed] [Google Scholar]
  174. Shaw J. A., Mol P. C., Bowers B., Silverman S. J., Valdivieso M. H., Durán A., Cabib E. The function of chitin synthases 2 and 3 in the Saccharomyces cerevisiae cell cycle. J Cell Biol. 1991 Jul;114(1):111–123. doi: 10.1083/jcb.114.1.111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  175. Shenbagamurthi P., Smith H. A., Becker J. M., Naider F. Synthesis and biological properties of chitin synthetase inhibitors resistant to cellular peptidases. J Med Chem. 1986 May;29(5):802–809. doi: 10.1021/jm00155a034. [DOI] [PubMed] [Google Scholar]
  176. Shenbagamurthi P., Smith H. A., Becker J. M., Steinfeld A., Naider F. Design of anticandidal agents: synthesis and biological properties of analogues of polyoxin L. J Med Chem. 1983 Oct;26(10):1518–1522. doi: 10.1021/jm00364a030. [DOI] [PubMed] [Google Scholar]
  177. Shepherd M. G. Morphogenetic transformation of fungi. Curr Top Med Mycol. 1988;2:278–304. doi: 10.1007/978-1-4612-3730-3_8. [DOI] [PubMed] [Google Scholar]
  178. Smith K. R., Lank K. M., Cobbs C. G., Cloud G. A., Dismukes W. E. Comparison of cilofungin and amphotericin B for therapy of murine candidiasis. Antimicrob Agents Chemother. 1990 Aug;34(8):1619–1621. doi: 10.1128/aac.34.8.1619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  179. Smith K. R., Lank K. M., Dismukes W. E., Cobbs C. G. In vitro comparison of cilofungin alone and in combination with other antifungal agents against clinical isolates of Candida species. Eur J Clin Microbiol Infect Dis. 1991 Jul;10(7):588–592. doi: 10.1007/BF01967280. [DOI] [PubMed] [Google Scholar]
  180. Smith W. L., Nakajima T., Ballou C. E. Biosynthesis of yeast mannan. Isolation of Kluyveromyces lactis mannan mutants and a study of the incorporation of N-acetyl-D-glucosamine into the polysaccharide side chains. J Biol Chem. 1975 May 10;250(9):3426–3435. [PubMed] [Google Scholar]
  181. Spitzer E. D., Travis S. J., Kobayashi G. S. Comparative in vitro activity of LY121019 and amphotericin B against clinical isolates of Candida species. Eur J Clin Microbiol Infect Dis. 1988 Feb;7(1):80–81. doi: 10.1007/BF01962183. [DOI] [PubMed] [Google Scholar]
  182. Stagg C. M., Feather M. S. The characterization of a chitin-associated D-glucan from the cell walls of Aspergillus niger. Biochim Biophys Acta. 1973 Aug 17;320(1):64–72. doi: 10.1016/0304-4165(73)90166-9. [DOI] [PubMed] [Google Scholar]
  183. Sternlicht E., Katz D., Rosenberger R. F. Subapical wall synthesis and wall thickening induced by cycloheximide in hyphae of Aspergillus nidulans. J Bacteriol. 1973 May;114(2):819–823. doi: 10.1128/jb.114.2.819-823.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  184. Strippoli V., D'Auria F. D., Simonetti N. A study of the antifungal activity of LY121019, a new echinocandin derivative. Chemioterapia. 1988 Feb;7(1):33–37. [PubMed] [Google Scholar]
  185. Sullivan P. A., McHugh N. J., Romana L. K., Shepherd M. G. The secretion of N-acetylglucosaminidase during germ-tube formation in Candida albicans. J Gen Microbiol. 1984 Sep;130(9):2213–2218. doi: 10.1099/00221287-130-9-2213. [DOI] [PubMed] [Google Scholar]
  186. Sullivan P. A., Yin C. Y., Molloy C., Templeton M. D., Shepherd M. G. An analysis of the metabolism and cell wall composition of Candida albicans during germ-tube formation. Can J Microbiol. 1983 Nov;29(11):1514–1525. doi: 10.1139/m83-233. [DOI] [PubMed] [Google Scholar]
  187. Sunayama H., Suzuki S. Studies on the antigenic activities of yeasts. VI. Analysis of the antigenic determinants of the mannan of Candida albicans serotype B-792. Jpn J Microbiol. 1970 Sep;14(5):371–379. doi: 10.1111/j.1348-0421.1970.tb00537.x. [DOI] [PubMed] [Google Scholar]
  188. Surarit R., Gopal P. K., Shepherd M. G. Evidence for a glycosidic linkage between chitin and glucan in the cell wall of Candida albicans. J Gen Microbiol. 1988 Jun;134(6):1723–1730. doi: 10.1099/00221287-134-6-1723. [DOI] [PubMed] [Google Scholar]
  189. Surarit R., Shepherd M. G. The effects of azole and polyene antifungals on the plasma membrane enzymes of Candida albicans. J Med Vet Mycol. 1987 Dec;25(6):403–413. doi: 10.1080/02681218780000491. [DOI] [PubMed] [Google Scholar]
  190. Suzuki M., Fukazawa Y. Immunochemical characterization of Candida albicans cell wall antigens: specific determinant of Candida albicans serotype A mannan. Microbiol Immunol. 1982;26(5):387–402. doi: 10.1111/j.1348-0421.1982.tb00189.x. [DOI] [PubMed] [Google Scholar]
  191. Suzuki S., Sunayama H., Saito T. Studies on the antigenic activity of yeasts. I. Analysis of the determinant groups of the mannan of Saccharomyces cerevisiae. Jpn J Microbiol. 1968 Mar;12(1):19–24. doi: 10.1111/j.1348-0421.1968.tb00365.x. [DOI] [PubMed] [Google Scholar]
  192. Taft C. S., Selitrennikoff C. P. LY121019 inhibits Neurospora crassa growth and (1-3)-beta-D-glucan synthase. J Antibiot (Tokyo) 1988 May;41(5):697–701. doi: 10.7164/antibiotics.41.697. [DOI] [PubMed] [Google Scholar]
  193. Taft C. S., Stark T., Selitrennikoff C. P. Cilofungin (LY121019) inhibits Candida albicans (1-3)-beta-D-glucan synthase activity. Antimicrob Agents Chemother. 1988 Dec;32(12):1901–1903. doi: 10.1128/aac.32.12.1901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  194. Takeuchi T., Hara T., Naganawa H., Okada M., Hamada M., Umezawa H., Gomi S., Sezaki M., Kondo S. New antifungal antibiotics, benanomicins A and B from an actinomycete. J Antibiot (Tokyo) 1988 Jun;41(6):807–811. doi: 10.7164/antibiotics.41.807. [DOI] [PubMed] [Google Scholar]
  195. Tang J., Parr T. R., Jr W-1 solubilization and kinetics of inhibition by cilofungin of Candida albicans (1,3)-beta-D-glucan synthase. Antimicrob Agents Chemother. 1991 Jan;35(1):99–103. doi: 10.1128/aac.35.1.99. [DOI] [PMC free article] [PubMed] [Google Scholar]
  196. Thomas K. R., Davis B., Mills J. The effect of beta-glucuronidase and chitinase on the cell wall of Aspergillus niger and Aspergillus fumigatus. Microbios. 1979;25(100):111–123. [PubMed] [Google Scholar]
  197. Tomita K., Nishio M., Saitoh K., Yamamoto H., Hoshino Y., Ohkuma H., Konishi M., Miyaki T., Oki T. Pradimicins A, B and C: new antifungal antibiotics. I. Taxonomy, production, isolation and physico-chemical properties. J Antibiot (Tokyo) 1990 Jul;43(7):755–762. doi: 10.7164/antibiotics.43.755. [DOI] [PubMed] [Google Scholar]
  198. Traxler P., Fritz H., Fuhrer H., Richter W. J. Papulacandins, a new family of antibiotics with antifungal activity. Structures of papulacandins A, B, C and D. J Antibiot (Tokyo) 1980 Sep;33(9):967–978. doi: 10.7164/antibiotics.33.967. [DOI] [PubMed] [Google Scholar]
  199. Traxler P., Gruner J., Auden J. A. Papulacandins, a new family of antibiotics with antifungal activity, I. Fermentation, isolation, chemical and biological characterization of papulacandins A, B, C, D and E. J Antibiot (Tokyo) 1977 Apr;30(4):289–296. doi: 10.7164/antibiotics.30.289. [DOI] [PubMed] [Google Scholar]
  200. Traxler P., Tosch W., Zak O. Papulacandins--synthesis and biological activity of papulacandin B derivatives. J Antibiot (Tokyo) 1987 Aug;40(8):1146–1164. doi: 10.7164/antibiotics.40.1146. [DOI] [PubMed] [Google Scholar]
  201. Tronchin G., Poulain D., Herbaut J., Biguet J. Localization of chitin in the cell wall of Candida albicans by means of wheat germ agglutinin. Fluorescence and ultrastructural studies. Eur J Cell Biol. 1981 Dec;26(1):121–128. [PubMed] [Google Scholar]
  202. Uno J., Shigematsu M. L., Arai T. Novel synergism of two antifungal agents, copiamycin and imidazole. Antimicrob Agents Chemother. 1983 Oct;24(4):552–559. doi: 10.1128/aac.24.4.552. [DOI] [PMC free article] [PubMed] [Google Scholar]
  203. Valdivieso M. H., Mol P. C., Shaw J. A., Cabib E., Durán A. CAL1, a gene required for activity of chitin synthase 3 in Saccharomyces cerevisiae. J Cell Biol. 1991 Jul;114(1):101–109. doi: 10.1083/jcb.114.1.101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  204. VanMiddlesworth F., Omstead M. N., Schmatz D., Bartizal K., Fromtling R., Bills G., Nollstadt K., Honeycutt S., Zweerink M., Garrity G. L-687,781, a new member of the papulacandin family of beta-1,3-D-glucan synthesis inhibitors. I. Fermentation, isolation, and biological activity. J Antibiot (Tokyo) 1991 Jan;44(1):45–51. doi: 10.7164/antibiotics.44.45. [DOI] [PubMed] [Google Scholar]
  205. Vanden Bossche H. Biochemical targets for antifungal azole derivatives: hypothesis on the mode of action. Curr Top Med Mycol. 1985;1:313–351. doi: 10.1007/978-1-4613-9547-8_12. [DOI] [PubMed] [Google Scholar]
  206. Vartivarian S. E., Reyes G. H., Jacobson E. S., James P. G., Cherniak R., Mumaw V. R., Tingler M. J. Localization of mannoprotein in Cryptococcus neoformans. J Bacteriol. 1989 Dec;171(12):6850–6852. doi: 10.1128/jb.171.12.6850-6852.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  207. Weijman A. C. Carbohydrate composition and taxonomy of Geotrichum, Trichosporon and allied genera. Antonie Van Leeuwenhoek. 1979;45(1):119–127. doi: 10.1007/BF00400785. [DOI] [PubMed] [Google Scholar]
  208. Wellinga K., Mulder R., van Daalen J. J. Synthesis and laboratory evaluation of 1-(2,6-disubstituted benzoyl)-3-phenylureas, a new class of insecticides. I. 1-(2,6-Dichlorobenzoyl)-3-phenylureas. J Agric Food Chem. 1973 May-Jun;21(3):348–354. doi: 10.1021/jf60187a052. [DOI] [PubMed] [Google Scholar]
  209. Wheat R. W., Tritschler C., Conant N. F., Lowe E. P. Comparison of Coccidioides immitis arthrospore, mycelium, and spherule cell walls, and influence of growth medium on mycelial cell wall composition. Infect Immun. 1977 Jul;17(1):91–97. doi: 10.1128/iai.17.1.91-97.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  210. Wheat R., Scheer E. Cell walls of Coccidioides immitis: neutral sugars of aqueous alkaline extract polymers. Infect Immun. 1977 Jan;15(1):340–341. doi: 10.1128/iai.15.1.340-341.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  211. Wheeler M. H., Bell A. A. Melanins and their importance in pathogenic fungi. Curr Top Med Mycol. 1988;2:338–387. doi: 10.1007/978-1-4612-3730-3_10. [DOI] [PubMed] [Google Scholar]
  212. Wu-Yuan C. D., Hashimoto T. Architecture and chemistry of microconidial walls of Trichophyton mentagrophytes. J Bacteriol. 1977 Mar;129(3):1584–1592. doi: 10.1128/jb.129.3.1584-1592.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  213. Yadan J. C., Gonneau M., Sarthou P., Le Goffic F. Sensitivity to nikkomycin Z in Candida albicans: role of peptide permeases. J Bacteriol. 1984 Dec;160(3):884–888. doi: 10.1128/jb.160.3.884-888.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  214. Yoshida M., Ezaki M., Hashimoto M., Yamashita M., Shigematsu N., Okuhara M., Kohsaka M., Horikoshi K. A novel antifungal antibiotic, FR-900848. I. Production, isolation, physico-chemical and biological properties. J Antibiot (Tokyo) 1990 Jul;43(7):748–754. doi: 10.7164/antibiotics.43.748. [DOI] [PubMed] [Google Scholar]
  215. Zlotnik H., Fernandez M. P., Bowers B., Cabib E. Saccharomyces cerevisiae mannoproteins form an external cell wall layer that determines wall porosity. J Bacteriol. 1984 Sep;159(3):1018–1026. doi: 10.1128/jb.159.3.1018-1026.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  216. Zonneveld B. J. Biochemical analysis of the cell wall of Aspergillus nidulans. Biochim Biophys Acta. 1971 Dec 3;249(2):506–514. doi: 10.1016/0005-2736(71)90126-x. [DOI] [PubMed] [Google Scholar]
  217. Zonneveld B. J. Morphogenesis in Aspergillus nidulans. The significance of a alpha-1, 3-glucan of the cell wall and alpha-1, 3-glucanase for cleistothecium development. Biochim Biophys Acta. 1972 Jun 26;273(1):174–187. doi: 10.1016/0304-4165(72)90205-x. [DOI] [PubMed] [Google Scholar]

Articles from Clinical Microbiology Reviews are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES