Abstract
The human genes coding for growth hormone (hGH) and placental lactogen (choriosomatomammotropic hormone [hCS]) are clustered on chromosome 17 in the following order: 5' hGH-N hCS-L hCS-A hGH-V hCS-B 3'. So far, a single placenta-specific enhancer has been identified in the locus, 2 kb downstream from the hCS-B gene, and shown to comprise one in vitro binding site for a nuclear protein. We here provide evidence that the hCS-B enhancer is more complex: (i) protection against DNase I digestion in the 3' flanking region of the hCS-B gene reveals four binding sites (DF-1, DF-2, DF-3, and DF-4) for nuclear proteins from either placental or HeLa cells, and (ii) placenta-specific enhancer activity can be fully exerted in transient expression experiments by a 126-bp fragment comprising the DF-3 and DF-4 protein-binding sites. By dissecting this region, we show that enhancer activity is mediated by a synergy between DF-3 and DF-4. Competitions with various oligonucleotides in footprinting and gel retardation experiments indicate that the same protein or set of proteins, different in HeLa and placenta cell nuclei, interacts with sites DF-2, DF-3, and DF-4. We also studied the regions of the hCS-L and hCS-A genes which are highly similar to the hCS-B enhancer. Although they each present the same four protein-binding sites, they exhibit only minor enhancer activity.
Full text
PDF










Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Albanese C., Kay T. W., Troccoli N. M., Jameson J. L. Novel cyclic adenosine 3',5'-monophosphate response element in the human chorionic gonadotropin beta-subunit gene. Mol Endocrinol. 1991 May;5(5):693–702. doi: 10.1210/mend-5-5-693. [DOI] [PubMed] [Google Scholar]
- Barrera-Saldaña H. A., Seeburg P. H., Saunders G. F. Two structurally different genes produce the same secreted human placental lactogen hormone. J Biol Chem. 1983 Mar 25;258(6):3787–3793. [PubMed] [Google Scholar]
- Barsh G. S., Seeburg P. H., Gelinas R. E. The human growth hormone gene family: structure and evolution of the chromosomal locus. Nucleic Acids Res. 1983 Jun 25;11(12):3939–3958. doi: 10.1093/nar/11.12.3939. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beck P., Daughaday W. H. Human placental lactogen: studies of its acute metabolic effects and disposition in normal man. J Clin Invest. 1967 Jan;46(1):103–110. doi: 10.1172/JCI105503. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bodner M., Karin M. A pituitary-specific trans-acting factor can stimulate transcription from the growth hormone promoter in extracts of nonexpressing cells. Cell. 1987 Jul 17;50(2):267–275. doi: 10.1016/0092-8674(87)90222-4. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Cattini P. A., Peritz L. N., Anderson T. R., Baxter J. D., Eberhardt N. L. The 5'-flanking sequences of the human growth hormone gene contain a cell-specific control element. DNA. 1986 Dec;5(6):503–509. doi: 10.1089/dna.1.1986.5.503. [DOI] [PubMed] [Google Scholar]
- Chen E. Y., Liao Y. C., Smith D. H., Barrera-Saldaña H. A., Gelinas R. E., Seeburg P. H. The human growth hormone locus: nucleotide sequence, biology, and evolution. Genomics. 1989 May;4(4):479–497. doi: 10.1016/0888-7543(89)90271-1. [DOI] [PubMed] [Google Scholar]
- Courtois S. J., Lafontaine D. A., Lemaigre F. P., Durviaux S. M., Rousseau G. G. Nuclear factor-I and activator protein-2 bind in a mutually exclusive way to overlapping promoter sequences and trans-activate the human growth hormone gene. Nucleic Acids Res. 1990 Jan 11;18(1):57–64. doi: 10.1093/nar/18.1.57. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Curran T., Franza B. R., Jr Fos and Jun: the AP-1 connection. Cell. 1988 Nov 4;55(3):395–397. doi: 10.1016/0092-8674(88)90024-4. [DOI] [PubMed] [Google Scholar]
- Davidson I., Xiao J. H., Rosales R., Staub A., Chambon P. The HeLa cell protein TEF-1 binds specifically and cooperatively to two SV40 enhancer motifs of unrelated sequence. Cell. 1988 Sep 23;54(7):931–942. doi: 10.1016/0092-8674(88)90108-0. [DOI] [PubMed] [Google Scholar]
- Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dignam J. D., Lebovitz R. M., Roeder R. G. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 1983 Mar 11;11(5):1475–1489. doi: 10.1093/nar/11.5.1475. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dynan W. S. Modularity in promoters and enhancers. Cell. 1989 Jul 14;58(1):1–4. doi: 10.1016/0092-8674(89)90393-0. [DOI] [PubMed] [Google Scholar]
- Farrance I. K., Mar J. H., Ordahl C. P. M-CAT binding factor is related to the SV40 enhancer binding factor, TEF-1. J Biol Chem. 1992 Aug 25;267(24):17234–17240. [PubMed] [Google Scholar]
- Felgner P. L., Gadek T. R., Holm M., Roman R., Chan H. W., Wenz M., Northrop J. P., Ringold G. M., Danielsen M. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7413–7417. doi: 10.1073/pnas.84.21.7413. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fitzpatrick S. L., Walker W. H., Saunders G. F. DNA sequences involved in the transcriptional activation of a human placental lactogen gene. Mol Endocrinol. 1990 Dec;4(12):1815–1826. doi: 10.1210/mend-4-12-1815. [DOI] [PubMed] [Google Scholar]
- Fried M., Crothers D. M. Equilibria and kinetics of lac repressor-operator interactions by polyacrylamide gel electrophoresis. Nucleic Acids Res. 1981 Dec 11;9(23):6505–6525. doi: 10.1093/nar/9.23.6505. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fromental C., Kanno M., Nomiyama H., Chambon P. Cooperativity and hierarchical levels of functional organization in the SV40 enhancer. Cell. 1988 Sep 23;54(7):943–953. doi: 10.1016/0092-8674(88)90109-2. [DOI] [PubMed] [Google Scholar]
- Galas D. J., Schmitz A. DNAse footprinting: a simple method for the detection of protein-DNA binding specificity. Nucleic Acids Res. 1978 Sep;5(9):3157–3170. doi: 10.1093/nar/5.9.3157. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Glass C. K., Holloway J. M., Devary O. V., Rosenfeld M. G. The thyroid hormone receptor binds with opposite transcriptional effects to a common sequence motif in thyroid hormone and estrogen response elements. Cell. 1988 Jul 29;54(3):313–323. doi: 10.1016/0092-8674(88)90194-8. [DOI] [PubMed] [Google Scholar]
- Gorman C. M., Moffat L. F., Howard B. H. Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Mol Cell Biol. 1982 Sep;2(9):1044–1051. doi: 10.1128/mcb.2.9.1044. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Habener J. F. Cyclic AMP response element binding proteins: a cornucopia of transcription factors. Mol Endocrinol. 1990 Aug;4(8):1087–1094. doi: 10.1210/mend-4-8-1087. [DOI] [PubMed] [Google Scholar]
- Ishiji T., Lace M. J., Parkkinen S., Anderson R. D., Haugen T. H., Cripe T. P., Xiao J. H., Davidson I., Chambon P., Turek L. P. Transcriptional enhancer factor (TEF)-1 and its cell-specific co-activator activate human papillomavirus-16 E6 and E7 oncogene transcription in keratinocytes and cervical carcinoma cells. EMBO J. 1992 Jun;11(6):2271–2281. doi: 10.1002/j.1460-2075.1992.tb05286.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- JOSIMOVICH J. B., ATWOOD B. L. HUMAN PLACENTAL LACTOGEN (HPL), A TROPHOBLASTIC HORMONE SYNERGIZING WITH CHORIONIC GONASOTROPIN AND POTENTIATING THE ANABOLIC EFFECTS OF PITUITARY GROWTH HORMONE. Am J Obstet Gynecol. 1964 Apr 1;88:867–879. doi: 10.1016/0002-9378(64)90734-3. [DOI] [PubMed] [Google Scholar]
- Jones K. A., Yamamoto K. R., Tjian R. Two distinct transcription factors bind to the HSV thymidine kinase promoter in vitro. Cell. 1985 Sep;42(2):559–572. doi: 10.1016/0092-8674(85)90113-8. [DOI] [PubMed] [Google Scholar]
- Kaplan S. L., Gurpide E., Sciarra J. J., Grumbach M. M. Metabolic clearance rate and production rate of chorionic growth hormone-prolactin in late pregnancy. J Clin Endocrinol Metab. 1968 Oct;28(10):1450–1460. doi: 10.1210/jcem-28-10-1450. [DOI] [PubMed] [Google Scholar]
- Kohler P. O., Bridson W. E., Hammond J. M., Weintraub B., Kirschner M. A., Van Thiel D. H. Clonal lines of human choriocarcinoma cells in culture. Acta Endocrinol Suppl (Copenh) 1971;153:137–153. doi: 10.1530/acta.0.068s137. [DOI] [PubMed] [Google Scholar]
- Lawn R. M., Fritsch E. F., Parker R. C., Blake G., Maniatis T. The isolation and characterization of linked delta- and beta-globin genes from a cloned library of human DNA. Cell. 1978 Dec;15(4):1157–1174. doi: 10.1016/0092-8674(78)90043-0. [DOI] [PubMed] [Google Scholar]
- Lefevre C., Imagawa M., Dana S., Grindlay J., Bodner M., Karin M. Tissue-specific expression of the human growth hormone gene is conferred in part by the binding of a specific trans-acting factor. EMBO J. 1987 Apr;6(4):971–981. doi: 10.1002/j.1460-2075.1987.tb04847.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lemaigre F. P., Courtois S. J., Lafontaine D. A., Rousseau G. G. Evidence that the upstream stimulatory factor and the Sp1 transcription factor bind in vitro to the promoter of the human-growth-hormone gene. Eur J Biochem. 1989 May 15;181(3):555–561. doi: 10.1111/j.1432-1033.1989.tb14760.x. [DOI] [PubMed] [Google Scholar]
- Lemaigre F. P., Peers B., Lafontaine D. A., Mathy-Hartert M., Rousseau G. G., Belayew A., Martial J. A. Pituitary-specific factor binding to the human prolactin, growth hormone, and placental lactogen genes. DNA. 1989 Apr;8(3):149–159. doi: 10.1089/dna.1.1989.8.149. [DOI] [PubMed] [Google Scholar]
- Luckow B., Schütz G. CAT constructions with multiple unique restriction sites for the functional analysis of eukaryotic promoters and regulatory elements. Nucleic Acids Res. 1987 Jul 10;15(13):5490–5490. doi: 10.1093/nar/15.13.5490. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MacGregor G. R., Mogg A. E., Burke J. F., Caskey C. T. Histochemical staining of clonal mammalian cell lines expressing E. coli beta galactosidase indicates heterogeneous expression of the bacterial gene. Somat Cell Mol Genet. 1987 May;13(3):253–265. doi: 10.1007/BF01535207. [DOI] [PubMed] [Google Scholar]
- MacLeod J. N., Lee A. K., Liebhaber S. A., Cooke N. E. Developmental control and alternative splicing of the placentally expressed transcripts from the human growth hormone gene cluster. J Biol Chem. 1992 Jul 15;267(20):14219–14226. [PubMed] [Google Scholar]
- Martial J. A., Hallewell R. A., Baxter J. D., Goodman H. M. Human growth hormone: complementary DNA cloning and expression in bacteria. Science. 1979 Aug 10;205(4406):602–607. doi: 10.1126/science.377496. [DOI] [PubMed] [Google Scholar]
- Mitchell P. J., Tjian R. Transcriptional regulation in mammalian cells by sequence-specific DNA binding proteins. Science. 1989 Jul 28;245(4916):371–378. doi: 10.1126/science.2667136. [DOI] [PubMed] [Google Scholar]
- Nickel B. E., Cattini P. A. Tissue-specific expression and thyroid hormone regulation of the endogenous placental growth hormone variant and chorionic somatomammotropin genes in a human choriocarcinoma cell line. Endocrinology. 1991 May;128(5):2353–2359. doi: 10.1210/endo-128-5-2353. [DOI] [PubMed] [Google Scholar]
- Nickel B. E., Kardami E., Cattini P. A. Differential expression of human placental growth-hormone variant and chorionic somatomammotropin in culture. Biochem J. 1990 May 1;267(3):653–658. doi: 10.1042/bj2670653. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pattillo R. A., Gey G. O. The establishment of a cell line of human hormone-synthesizing trophoblastic cells in vitro. Cancer Res. 1968 Jul;28(7):1231–1236. [PubMed] [Google Scholar]
- Peers B., Nalda A. M., Monget P., Voz M. L., Belayew A., Martial J. A. Binding of a 100-kDa ubiquitous factor to the human prolactin promoter is required for its basal and hormone-regulated activity. Eur J Biochem. 1992 Nov 15;210(1):53–58. doi: 10.1111/j.1432-1033.1992.tb17389.x. [DOI] [PubMed] [Google Scholar]
- Rogers B. L., Sobnosky M. G., Saunders G. F. Transcriptional enhancer within the human placental lactogen and growth hormone multigene cluster. Nucleic Acids Res. 1986 Oct 10;14(19):7647–7659. doi: 10.1093/nar/14.19.7647. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saiki R. K., Scharf S., Faloona F., Mullis K. B., Horn G. T., Erlich H. A., Arnheim N. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science. 1985 Dec 20;230(4732):1350–1354. doi: 10.1126/science.2999980. [DOI] [PubMed] [Google Scholar]
- Walker W. H., Fitzpatrick S. L., Barrera-Saldaña H. A., Resendez-Perez D., Saunders G. F. The human placental lactogen genes: structure, function, evolution and transcriptional regulation. Endocr Rev. 1991 Nov;12(4):316–328. doi: 10.1210/edrv-12-4-316. [DOI] [PubMed] [Google Scholar]
- Walker W. H., Fitzpatrick S. L., Saunders G. F. Human placental lactogen transcriptional enhancer. Tissue specificity and binding with specific proteins. J Biol Chem. 1990 Aug 5;265(22):12940–12948. [PubMed] [Google Scholar]
- White J. W., Sobnosky M., Rogers B. L., Walker W. H., Saunders G. F. Nucleotide sequence of a transcriptional enhancer located 2.2 kb 3' of a human placental lactogen-encoding gene. Gene. 1989 Dec 14;84(2):521–522. doi: 10.1016/0378-1119(89)90530-1. [DOI] [PubMed] [Google Scholar]





