Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1994 Jan;14(1):427–436. doi: 10.1128/mcb.14.1.427

Target cell death triggered by cytotoxic T lymphocytes: a target cell mutant distinguishes passive pore formation and active cell suicide mechanisms.

D S Ucker 1, J D Wilson 1, L D Hebshi 1
PMCID: PMC358392  PMID: 8264610

Abstract

The role of the target cell in its own death mediated by cytotoxic T lymphocytes (CTL) has been controversial. The ability of the pore-forming granule components of CTL to induce target cell death directly has been taken to suggest an essentially passive role for the target. This view of CTL-mediated killing ascribes to the target the single role of providing an antigenic stimulus to the CTL; this signal results in the vectoral degranulation and secretion of pore-forming elements onto the target. On the other hand, by a number of criteria, target cell death triggered by CTL appears fundamentally different from death resulting from membrane damage and osmotic lysis. CTL-triggered target cell death involves primary internal lesions of the target cell that reflect a physiological cell death process. Orderly nuclear disintegration, including lamin phosphorylation and solubilization, chromatin condensation, and genome digestion, are among the earliest events, preceding the loss of plasma membrane integrity. We have tested directly the involvement of the target cell in its own death by examining whether we could isolate mutants of target cells that have retained the ability to be recognized by and provide an antigenic stimulus to CTL while having lost the capacity to respond by dying. Here, we describe one such mutant, BW87. We have used this CTL-resistant mutant to analyze the mechanisms of CTL-triggered target cell death under a variety of conditions. The identification of a mutable target cell element essential for the cell death response to CTL provides genetic evidence that target cell death reflects an active cell suicide process similar to other physiological cell deaths.

Full text

PDF
427

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Acha-Orbea H., Scarpellino L., Hertig S., Dupuis M., Tschopp J. Inhibition of lymphocyte mediated cytotoxicity by perforin antisense oligonucleotides. EMBO J. 1990 Dec;9(12):3815–3819. doi: 10.1002/j.1460-2075.1990.tb07599.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Allbritton N. L., Verret C. R., Wolley R. C., Eisen H. N. Calcium ion concentrations and DNA fragmentation in target cell destruction by murine cloned cytotoxic T lymphocytes. J Exp Med. 1988 Feb 1;167(2):514–527. doi: 10.1084/jem.167.2.514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Allen H., Fraser J., Flyer D., Calvin S., Flavell R. Beta 2-microglobulin is not required for cell surface expression of the murine class I histocompatibility antigen H-2Db or of a truncated H-2Db. Proc Natl Acad Sci U S A. 1986 Oct;83(19):7447–7451. doi: 10.1073/pnas.83.19.7447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Avery R. K., Bleier K. J., Pasternack M. S. Differences between ATP-mediated cytotoxicity and cell-mediated cytotoxicity. J Immunol. 1992 Aug 15;149(4):1265–1270. [PubMed] [Google Scholar]
  5. Berke G., Rosen D. Highly lytic in vivo primed cytolytic T lymphocytes devoid of lytic granules and BLT-esterase activity acquire these constituents in the presence of T cell growth factors upon blast transformation in vitro. J Immunol. 1988 Sep 1;141(5):1429–1436. [PubMed] [Google Scholar]
  6. Dennert G., Anderson C. G., Prochazka G. High activity of N-alpha-benzyloxycarbonyl-L-lysine thiobenzyl ester serine esterase and cytolytic perforin in cloned cell lines is not demonstrable in in-vivo-induced cytotoxic effector cells. Proc Natl Acad Sci U S A. 1987 Jul;84(14):5004–5008. doi: 10.1073/pnas.84.14.5004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dennert G., Landon C., Nowicki M. Cell-mediated and glucocorticoid-mediated target cell lysis do not appear to share common pathways. J Immunol. 1988 Aug 1;141(3):785–791. [PubMed] [Google Scholar]
  8. Dowd D. R., Miesfeld R. L. Evidence that glucocorticoid- and cyclic AMP-induced apoptotic pathways in lymphocytes share distal events. Mol Cell Biol. 1992 Aug;12(8):3600–3608. doi: 10.1128/mcb.12.8.3600. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Duke R. C., Persechini P. M., Chang S., Liu C. C., Cohen J. J., Young J. D. Purified perforin induces target cell lysis but not DNA fragmentation. J Exp Med. 1989 Oct 1;170(4):1451–1456. doi: 10.1084/jem.170.4.1451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Duke R. C., Sellins K. S., Cohen J. J. Cytotoxic lymphocyte-derived lytic granules do not induce DNA fragmentation in target cells. J Immunol. 1988 Oct 1;141(7):2191–2194. [PubMed] [Google Scholar]
  11. Filippini A., Taffs R. E., Sitkovsky M. V. Extracellular ATP in T-lymphocyte activation: possible role in effector functions. Proc Natl Acad Sci U S A. 1990 Nov;87(21):8267–8271. doi: 10.1073/pnas.87.21.8267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Garcia-Sanz J. A., Plaetinck G., Velotti F., Masson D., Tschopp J., MacDonald H. R., Nabholz M. Perforin is present only in normal activated Lyt2+ T lymphocytes and not in L3T4+ cells, but the serine protease granzyme A is made by both subsets. EMBO J. 1987 Apr;6(4):933–938. doi: 10.1002/j.1460-2075.1987.tb04841.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Glasebrook A. L., Sarmiento M., Loken M. R., Dialynas D. P., Quintans J., Eisenberg L., Lutz C. T., Wilde D., Fitch F. W. Murine T lymphocyte clones with distinct immunological functions. Immunol Rev. 1981;54:225–266. doi: 10.1111/j.1600-065x.1981.tb00439.x. [DOI] [PubMed] [Google Scholar]
  14. Gromkowski S. H., Brown T. C., Masson D., Tschopp J. Lack of DNA degradation in target cells lysed by granules derived from cytolytic T lymphocytes. J Immunol. 1988 Aug 1;141(3):774–778. [PubMed] [Google Scholar]
  15. Hayes M. P., Berrebi G. A., Henkart P. A. Induction of target cell DNA release by the cytotoxic T lymphocyte granule protease granzyme A. J Exp Med. 1989 Sep 1;170(3):933–946. doi: 10.1084/jem.170.3.933. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Helgason C. D., Prendergast J. A., Berke G., Bleackley R. C. Peritoneal exudate lymphocyte and mixed lymphocyte culture hybridomas are cytolytic in the absence of cytotoxic cell proteinases and perforin. Eur J Immunol. 1992 Dec;22(12):3187–3190. doi: 10.1002/eji.1830221225. [DOI] [PubMed] [Google Scholar]
  17. Joag S. V., Liu C. C., Kwon B. S., Clark W. R., Young J. D. Expression of mRNAs for pore-forming protein and two serine esterases in murine primary and cloned effector lymphocytes. J Cell Biochem. 1990 May;43(1):81–88. doi: 10.1002/jcb.240430108. [DOI] [PubMed] [Google Scholar]
  18. Jones J., Hallett M. B., Morgan B. P. Reversible cell damage by T-cell perforins. Calcium influx and propidium iodide uptake into K562 cells in the absence of lysis. Biochem J. 1990 Apr 15;267(2):303–307. doi: 10.1042/bj2670303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kane K. P., Vitiello A., Sherman L. A., Mescher M. F. Cytolytic T-lymphocyte response to isolated class I H-2 proteins and influenza peptides. Nature. 1989 Jul 13;340(6229):157–159. doi: 10.1038/340157a0. [DOI] [PubMed] [Google Scholar]
  20. Koski C. L., Ramm L. E., Hammer C. H., Mayer M. M., Shin M. L. Cytolysis of nucleated cells by complement: cell death displays multi-hit characteristics. Proc Natl Acad Sci U S A. 1983 Jun;80(12):3816–3820. doi: 10.1073/pnas.80.12.3816. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kranz D. M., Tonegawa S., Eisen H. N. Attachment of an anti-receptor antibody to non-target cells renders them susceptible to lysis by a clone of cytotoxic T lymphocytes. Proc Natl Acad Sci U S A. 1984 Dec;81(24):7922–7926. doi: 10.1073/pnas.81.24.7922. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Landon C., Nowicki M., Sugawara S., Dennert G. Differential effects of protein synthesis inhibition on CTL and targets in cell-mediated cytotoxicity. Cell Immunol. 1990 Jul;128(2):412–426. doi: 10.1016/0008-8749(90)90037-r. [DOI] [PubMed] [Google Scholar]
  23. Lebow L. T., Bonavida B. Purification and characterization of cytolytic and noncytolytic human natural killer cell subsets. Proc Natl Acad Sci U S A. 1990 Aug;87(16):6063–6067. doi: 10.1073/pnas.87.16.6063. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Liu C. C., Rafii S., Granelli-Piperno A., Trapani J. A., Young J. D. Perforin and serine esterase gene expression in stimulated human T cells. Kinetics, mitogen requirements, and effects of cyclosporin A. J Exp Med. 1989 Dec 1;170(6):2105–2118. doi: 10.1084/jem.170.6.2105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lu P., Garcia-Sanz J. A., Lichtenheld M. G., Podack E. R. Perforin expression in human peripheral blood mononuclear cells. Definition of an IL-2-independent pathway of perforin induction in CD8+ T cells. J Immunol. 1992 Jun 1;148(11):3354–3360. [PubMed] [Google Scholar]
  26. Luciani M. F., Brunet J. F., Suzan M., Denizot F., Golstein P. Self-sparing of long-term in vitro-cloned or uncloned cytotoxic T lymphocytes. J Exp Med. 1986 Sep 1;164(3):962–967. doi: 10.1084/jem.164.3.962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. MacDonald H. R., Koch C. J. Energy metabolism and T-cell-mediated cytolysis. I. Synergism between inhibitors of respiration and glycolysis. J Exp Med. 1977 Sep 1;146(3):698–709. doi: 10.1084/jem.146.3.698. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Masson D., Tschopp J. A family of serine esterases in lytic granules of cytolytic T lymphocytes. Cell. 1987 Jun 5;49(5):679–685. doi: 10.1016/0092-8674(87)90544-7. [DOI] [PubMed] [Google Scholar]
  29. Millard P. J., Henkart M. P., Reynolds C. W., Henkart P. A. Purification and properties of cytoplasmic granules from cytotoxic rat LGL tumors. J Immunol. 1984 Jun;132(6):3197–3204. [PubMed] [Google Scholar]
  30. Nagler-Anderson C., Lichtenheld M., Eisen H. N., Podack E. R. Perforin mRNA in primary peritoneal exudate cytotoxic T lymphocytes. J Immunol. 1989 Dec 1;143(11):3440–3443. [PubMed] [Google Scholar]
  31. Nagler-Anderson C., Verret C. R., Firmenich A. A., Berne M., Eisen H. N. Resistance of primary CD8+ cytotoxic T lymphocytes to lysis by cytotoxic granules from cloned T cell lines. J Immunol. 1988 Nov 15;141(10):3299–3305. [PubMed] [Google Scholar]
  32. Nickas G., Meyers J., Hebshi L. D., Ashwell J. D., Gold D. P., Sydora B., Ucker D. S. Susceptibility to cell death is a dominant phenotype: triggering of activation-driven T-cell death independent of the T-cell antigen receptor complex. Mol Cell Biol. 1992 Jan;12(1):379–385. doi: 10.1128/mcb.12.1.379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Ojcius D. M., Zheng L. M., Sphicas E. C., Zychlinsky A., Young J. D. Subcellular localization of perforin and serine esterase in lymphokine-activated killer cells and cytotoxic T cells by immunogold labeling. J Immunol. 1991 Jun 15;146(12):4427–4432. [PubMed] [Google Scholar]
  34. Ojcius D. M., Zychlinsky A., Zheng L. M., Young J. D. Ionophore-induced apoptosis: role of DNA fragmentation and calcium fluxes. Exp Cell Res. 1991 Nov;197(1):43–49. doi: 10.1016/0014-4827(91)90477-c. [DOI] [PubMed] [Google Scholar]
  35. Ostergaard H. L., Clark W. R. Evidence for multiple lytic pathways used by cytotoxic T lymphocytes. J Immunol. 1989 Oct 1;143(7):2120–2126. [PubMed] [Google Scholar]
  36. Ostergaard H. L., Kane K. P., Mescher M. F., Clark W. R. Cytotoxic T lymphocyte mediated lysis without release of serine esterase. Nature. 1987 Nov 5;330(6143):71–72. doi: 10.1038/330071a0. [DOI] [PubMed] [Google Scholar]
  37. Ozato K., Hansen T. H., Sachs D. H. Monoclonal antibodies to mouse MHC antigens. II. Antibodies to the H-2Ld antigen, the products of a third polymorphic locus of the mouse major histocompatibility complex. J Immunol. 1980 Dec;125(6):2473–2477. [PubMed] [Google Scholar]
  38. Perez P., Hoffman R. W., Shaw S., Bluestone J. A., Segal D. M. Specific targeting of cytotoxic T cells by anti-T3 linked to anti-target cell antibody. Nature. 1985 Jul 25;316(6026):354–356. doi: 10.1038/316354a0. [DOI] [PubMed] [Google Scholar]
  39. Peters P. J., Borst J., Oorschot V., Fukuda M., Krähenbühl O., Tschopp J., Slot J. W., Geuze H. J. Cytotoxic T lymphocyte granules are secretory lysosomes, containing both perforin and granzymes. J Exp Med. 1991 May 1;173(5):1099–1109. doi: 10.1084/jem.173.5.1099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Poenie M., Tsien R. Y., Schmitt-Verhulst A. M. Sequential activation and lethal hit measured by [Ca2+]i in individual cytolytic T cells and targets. EMBO J. 1987 Aug;6(8):2223–2232. doi: 10.1002/j.1460-2075.1987.tb02494.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Redegeld F. A., Chatterjee S., Berger N. A., Sitkovsky M. V. Poly-(ADP-ribose) polymerase partially contributes to target cell death triggered by cytolytic T lymphocytes. J Immunol. 1992 Dec 1;149(11):3509–3516. [PubMed] [Google Scholar]
  42. Reynolds C. W., Reichardt D., Henkart M., Millard P., Henkart P. Inhibition of NK and ADCC activity by antibodies against purified cytoplasmic granules from rat LGL tumors. J Leukoc Biol. 1987 Dec;42(6):642–652. doi: 10.1002/jlb.42.6.642. [DOI] [PubMed] [Google Scholar]
  43. Richieri G. V., Kleinfeld A. M. Free fatty acids are produced in and secreted from target cells very early in cytotoxic T lymphocyte-mediated killing. J Immunol. 1991 Oct 15;147(8):2809–2815. [PubMed] [Google Scholar]
  44. Rouvier E., Luciani M. F., Golstein P. Fas involvement in Ca(2+)-independent T cell-mediated cytotoxicity. J Exp Med. 1993 Jan 1;177(1):195–200. doi: 10.1084/jem.177.1.195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Russell J. H., Dobos C. B. Characterization of a "heteroclitic" cytotoxic lymphocyte clone: heterogeneity of receptors or signals? J Immunol. 1983 Feb;130(2):538–541. [PubMed] [Google Scholar]
  46. Russell J. H. Internal disintegration model of cytotoxic lymphocyte-induced target damage. Immunol Rev. 1983;72:97–118. doi: 10.1111/j.1600-065x.1983.tb01074.x. [DOI] [PubMed] [Google Scholar]
  47. Russell J. H., Masakowski V. R., Dobos C. B. Mechanisms of immune lysis. I. Physiological distinction between target cell death mediated by cytotoxic T lymphocytes and antibody plus complement. J Immunol. 1980 Mar;124(3):1100–1105. [PubMed] [Google Scholar]
  48. Sandri-Goldin R. M., Goldin A. L., Levine M., Glorioso J. C. High-frequency transfer of cloned herpes simplex virus type 1 sequences to mammalian cells by protoplast fusion. Mol Cell Biol. 1981 Aug;1(8):743–752. doi: 10.1128/mcb.1.8.743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Shi L., Kam C. M., Powers J. C., Aebersold R., Greenberg A. H. Purification of three cytotoxic lymphocyte granule serine proteases that induce apoptosis through distinct substrate and target cell interactions. J Exp Med. 1992 Dec 1;176(6):1521–1529. doi: 10.1084/jem.176.6.1521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Shi L., Kraut R. P., Aebersold R., Greenberg A. H. A natural killer cell granule protein that induces DNA fragmentation and apoptosis. J Exp Med. 1992 Feb 1;175(2):553–566. doi: 10.1084/jem.175.2.553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Shiver J. W., Henkart P. A. A noncytotoxic mast cell tumor line exhibits potent IgE-dependent cytotoxicity after transfection with the cytolysin/perforin gene. Cell. 1991 Mar 22;64(6):1175–1181. doi: 10.1016/0092-8674(91)90272-z. [DOI] [PubMed] [Google Scholar]
  52. Shiver J. W., Su L., Henkart P. A. Cytotoxicity with target DNA breakdown by rat basophilic leukemia cells expressing both cytolysin and granzyme A. Cell. 1992 Oct 16;71(2):315–322. doi: 10.1016/0092-8674(92)90359-k. [DOI] [PubMed] [Google Scholar]
  53. Smyth M. J., Norihisa Y., Ortaldo J. R. Multiple cytolytic mechanisms displayed by activated human peripheral blood T cell subsets. J Immunol. 1992 Jan 1;148(1):55–62. [PubMed] [Google Scholar]
  54. Staerz U. D., Kanagawa O., Bevan M. J. Hybrid antibodies can target sites for attack by T cells. Nature. 1985 Apr 18;314(6012):628–631. doi: 10.1038/314628a0. [DOI] [PubMed] [Google Scholar]
  55. Stallcup K. C., Springer T. A., Mescher M. F. Characterization of an anti-H-2 monoclonal antibody and its use in large-scale antigen purification. J Immunol. 1981 Sep;127(3):923–930. [PubMed] [Google Scholar]
  56. Strack P., Martin C., Saito S., Dekruyff R. H., Ju S. T. Metabolic inhibitors distinguish cytolytic activity of CD4 and CD8 clones. Eur J Immunol. 1990 Jan;20(1):179–184. doi: 10.1002/eji.1830200126. [DOI] [PubMed] [Google Scholar]
  57. Talento A., Nguyen M., Law S., Wu J. K., Poe M., Blake J. T., Patel M., Wu T. J., Manyak C. L., Silberklang M. Transfection of mouse cytotoxic T lymphocyte with an antisense granzyme A vector reduces lytic activity. J Immunol. 1992 Dec 15;149(12):4009–4015. [PubMed] [Google Scholar]
  58. Tian Q., Streuli M., Saito H., Schlossman S. F., Anderson P. A polyadenylate binding protein localized to the granules of cytolytic lymphocytes induces DNA fragmentation in target cells. Cell. 1991 Nov 1;67(3):629–639. doi: 10.1016/0092-8674(91)90536-8. [DOI] [PubMed] [Google Scholar]
  59. Trenn G., Takayama H., Sitkovsky M. V. Exocytosis of cytolytic granules may not be required for target cell lysis by cytotoxic T-lymphocytes. Nature. 1987 Nov 5;330(6143):72–74. doi: 10.1038/330072a0. [DOI] [PubMed] [Google Scholar]
  60. Ucker D. S., Ashwell J. D., Nickas G. Activation-driven T cell death. I. Requirements for de novo transcription and translation and association with genome fragmentation. J Immunol. 1989 Dec 1;143(11):3461–3469. [PubMed] [Google Scholar]
  61. Ucker D. S. Cytotoxic T lymphocytes and glucocorticoids activate an endogenous suicide process in target cells. Nature. 1987 May 7;327(6117):62–64. doi: 10.1038/327062a0. [DOI] [PubMed] [Google Scholar]
  62. Ucker D. S. Death by suicide: one way to go in mammalian cellular development? New Biol. 1991 Feb;3(2):103–109. [PubMed] [Google Scholar]
  63. Ucker D. S., Meyers J., Obermiller P. S. Activation-driven T cell death. II. Quantitative differences alone distinguish stimuli triggering nontransformed T cell proliferation or death. J Immunol. 1992 Sep 1;149(5):1583–1592. [PubMed] [Google Scholar]
  64. Ucker D. S., Obermiller P. S., Eckhart W., Apgar J. R., Berger N. A., Meyers J. Genome digestion is a dispensable consequence of physiological cell death mediated by cytotoxic T lymphocytes. Mol Cell Biol. 1992 Jul;12(7):3060–3069. doi: 10.1128/mcb.12.7.3060. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Vaux D. L., Aguila H. L., Weissman I. L. Bcl-2 prevents death of factor-deprived cells but fails to prevent apoptosis in targets of cell mediated killing. Int Immunol. 1992 Jul;4(7):821–824. doi: 10.1093/intimm/4.7.821. [DOI] [PubMed] [Google Scholar]
  66. Verret C. R., Firmenich A. A., Kranz D. M., Eisen H. N. Resistance of cytotoxic T lymphocytes to the lytic effects of their toxic granules. J Exp Med. 1987 Nov 1;166(5):1536–1547. doi: 10.1084/jem.166.5.1536. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Vitiello A., Heath W. R., Sherman L. A. Consequences of self-presentation of peptide antigen by cytolytic T lymphocytes. J Immunol. 1989 Sep 1;143(5):1512–1517. [PubMed] [Google Scholar]
  68. Wyllie A. H., Morris R. G., Smith A. L., Dunlop D. Chromatin cleavage in apoptosis: association with condensed chromatin morphology and dependence on macromolecular synthesis. J Pathol. 1984 Jan;142(1):67–77. doi: 10.1002/path.1711420112. [DOI] [PubMed] [Google Scholar]
  69. Zanovello P., Bronte V., Rosato A., Pizzo P., Di Virgilio F. Responses of mouse lymphocytes to extracellular ATP. II. Extracellular ATP causes cell type-dependent lysis and DNA fragmentation. J Immunol. 1990 Sep 1;145(5):1545–1550. [PubMed] [Google Scholar]
  70. Zychlinsky A., Zheng L. M., Liu C. C., Young J. D. Cytolytic lymphocytes induce both apoptosis and necrosis in target cells. J Immunol. 1991 Jan 1;146(1):393–400. [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES