Abstract
The importance of conserved amino acids in the amino and carboxyl non-Gly-X-Y domains of Caenorhabditis elegans cuticle collagens was examined by analyzing site-directed mutations of the sqt-1 and rol-6 collagen genes in transgenic animals. Altered collagen genes on transgenic arrays were shown to produce appropriate phenotypes by injecting in vivo cloned mutant alleles. Equivalent alterations in sqt-1 and rol-6 generally produced the same phenotypes, indicating that conserved amino acids in these two collagens have similar functions. Serine substitutions for either of two conserved carboxyl domain cysteines produced LRol phenotypes. Substitution for both cysteines in sqt-1 also resulted in an LRol phenotype, demonstrating that disulfide bonding is important for normal function but not required for assembly. Arg-1 or Arg-4 to Cys mutations in homology block A (HBA; consensus, 1-RXRRQ-5; in the amino non-Gly-X-Y domain) caused RRol phenotypes, while the same alteration at Arg-3 had no effect, indicating that Arg-3 is functionally different from Arg-1 and Arg-4. Substitutions of Arg-4 with Ser, Leu, or Glu also produced the RRol phenotype, while Lys substitutions for Arg-1 or Arg-4 did not generate any abnormal phenotypes. His substitutions for Arg-1 or Arg-4 caused somewhat less severe RRol phenotypes. Therefore, strong positively charged residues, Arg or Lys, are required at positions 1 and 4 for normal function. The conserved pattern of arginines in HBA matches the cleavage sites of the subtilisin-like endoproteinases. HBA may be a cleavage site for a subtilisin-like protease, and cleavage may be important for cuticle collagen processing.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barr P. J. Mammalian subtilisins: the long-sought dibasic processing endoproteases. Cell. 1991 Jul 12;66(1):1–3. doi: 10.1016/0092-8674(91)90129-m. [DOI] [PubMed] [Google Scholar]
- Betschart B., Wyss K. Analysis of the cuticular collagens of Ascaris suum. Acta Trop. 1990 Jul;47(5-6):297–305. doi: 10.1016/0001-706x(90)90031-t. [DOI] [PubMed] [Google Scholar]
- Brenner S. The genetics of Caenorhabditis elegans. Genetics. 1974 May;77(1):71–94. doi: 10.1093/genetics/77.1.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bruckner P., Eikenberry E. F. Formation of the triple helix of type I procollagen in cellulo. Temperature-dependent kinetics support a model based on cis in equilibrium trans isomerization of peptide bonds. Eur J Biochem. 1984 Apr 16;140(2):391–395. doi: 10.1111/j.1432-1033.1984.tb08114.x. [DOI] [PubMed] [Google Scholar]
- Byers P. H., Steiner R. D. Osteogenesis imperfecta. Annu Rev Med. 1992;43:269–282. doi: 10.1146/annurev.me.43.020192.001413. [DOI] [PubMed] [Google Scholar]
- Byers P. H., Wallis G. A., Willing M. C. Osteogenesis imperfecta: translation of mutation to phenotype. J Med Genet. 1991 Jul;28(7):433–442. doi: 10.1136/jmg.28.7.433. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bächinger H. P., Bruckner P., Timpl R., Prockop D. J., Engel J. Folding mechanism of the triple helix in type-III collagen and type-III pN-collagen. Role of disulfide bridges and peptide bond isomerization. Eur J Biochem. 1980 May;106(2):619–632. doi: 10.1111/j.1432-1033.1980.tb04610.x. [DOI] [PubMed] [Google Scholar]
- Bächinger H. P., Fessler L. I., Timpl R., Fessler J. H. Chain assembly intermediate in the biosynthesis of type III procollagen in chick embryo blood vessels. J Biol Chem. 1981 Dec 25;256(24):13193–13199. [PubMed] [Google Scholar]
- Cole W. G., Chan D., Chambers G. W., Walker I. D., Bateman J. F. Deletion of 24 amino acids from the pro-alpha 1(I) chain of type I procollagen in a patient with the Ehlers-Danlos syndrome type VII. J Biol Chem. 1986 Apr 25;261(12):5496–5503. [PubMed] [Google Scholar]
- Cox G. N., Carr S., Kramer J. M., Hirsh D. Genetic mapping of Caenorhabditis elegans collagen genes using DNA polymorphisms as phenotypic markers. Genetics. 1985 Mar;109(3):513–528. doi: 10.1093/genetics/109.3.513. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cox G. N., Fields C., Kramer J. M., Rosenzweig B., Hirsh D. Sequence comparisons of developmentally regulated collagen genes of Caenorhabditis elegans. Gene. 1989;76(2):331–344. doi: 10.1016/0378-1119(89)90173-x. [DOI] [PubMed] [Google Scholar]
- Cox G. N., Kramer J. M., Hirsh D. Number and organization of collagen genes in Caenorhabditis elegans. Mol Cell Biol. 1984 Nov;4(11):2389–2395. doi: 10.1128/mcb.4.11.2389. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cox G. N., Kusch M., Edgar R. S. Cuticle of Caenorhabditis elegans: its isolation and partial characterization. J Cell Biol. 1981 Jul;90(1):7–17. doi: 10.1083/jcb.90.1.7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cox G. N., Laufer J. S., Kusch M., Edgar R. S. Genetic and Phenotypic Characterization of Roller Mutants of CAENORHABDITIS ELEGANS. Genetics. 1980 Jun;95(2):317–339. doi: 10.1093/genetics/95.2.317. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cox G. N., Staprans S., Edgar R. S. The cuticle of Caenorhabditis elegans. II. Stage-specific changes in ultrastructure and protein composition during postembryonic development. Dev Biol. 1981 Sep;86(2):456–470. doi: 10.1016/0012-1606(81)90204-9. [DOI] [PubMed] [Google Scholar]
- Doege K. J., Fessler J. H. Folding of carboxyl domain and assembly of procollagen I. J Biol Chem. 1986 Jul 5;261(19):8924–8935. [PubMed] [Google Scholar]
- Engel J., Prockop D. J. The zipper-like folding of collagen triple helices and the effects of mutations that disrupt the zipper. Annu Rev Biophys Biophys Chem. 1991;20:137–152. doi: 10.1146/annurev.bb.20.060191.001033. [DOI] [PubMed] [Google Scholar]
- Fire A., Albertson D., Harrison S. W., Moerman D. G. Production of antisense RNA leads to effective and specific inhibition of gene expression in C. elegans muscle. Development. 1991 Oct;113(2):503–514. doi: 10.1242/dev.113.2.503. [DOI] [PubMed] [Google Scholar]
- Foster D. C., Sprecher C. A., Holly R. D., Gambee J. E., Walker K. M., Kumar A. A. Endoproteolytic processing of the dibasic cleavage site in the human protein C precursor in transfected mammalian cells: effects of sequence alterations on efficiency of cleavage. Biochemistry. 1990 Jan 16;29(2):347–354. doi: 10.1021/bi00454a007. [DOI] [PubMed] [Google Scholar]
- Fujimoto D., Horiuchi K., Hirama M. Isotrityrosine, a new crosslinking amino acid isolated from Ascaris cuticle collagen. Biochem Biophys Res Commun. 1981 Mar 31;99(2):637–643. doi: 10.1016/0006-291x(81)91792-7. [DOI] [PubMed] [Google Scholar]
- Fujimoto D., Kanaya S. Cuticlin: a noncollagen structural protein from Ascaris cuticle. Arch Biochem Biophys. 1973 Jul;157(1):1–6. doi: 10.1016/0003-9861(73)90382-2. [DOI] [PubMed] [Google Scholar]
- Hulmes D. J. The collagen superfamily--diverse structures and assemblies. Essays Biochem. 1992;27:49–67. [PubMed] [Google Scholar]
- Johnstone I. L., Shafi Y., Barry J. D. Molecular analysis of mutations in the Caenorhabditis elegans collagen gene dpy-7. EMBO J. 1992 Nov;11(11):3857–3863. doi: 10.1002/j.1460-2075.1992.tb05478.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kingston I. B., Pettitt J. Structure and expression of Ascaris suum collagen genes: a comparison with Caenorhabditis elegans. Acta Trop. 1990 Jul;47(5-6):283–287. doi: 10.1016/0001-706x(90)90029-y. [DOI] [PubMed] [Google Scholar]
- Kingston I. B., Wainwright S. M., Cooper D. Comparison of collagen gene sequences in Ascaris suum and Caenorhabditis elegans. Mol Biochem Parasitol. 1989 Nov;37(1):137–146. doi: 10.1016/0166-6851(89)90110-2. [DOI] [PubMed] [Google Scholar]
- Kramer J. M., Cox G. N., Hirsh D. Comparisons of the complete sequences of two collagen genes from Caenorhabditis elegans. Cell. 1982 Sep;30(2):599–606. doi: 10.1016/0092-8674(82)90256-2. [DOI] [PubMed] [Google Scholar]
- Kramer J. M., French R. P., Park E. C., Johnson J. J. The Caenorhabditis elegans rol-6 gene, which interacts with the sqt-1 collagen gene to determine organismal morphology, encodes a collagen. Mol Cell Biol. 1990 May;10(5):2081–2089. doi: 10.1128/mcb.10.5.2081. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kramer J. M., Johnson J. J. Analysis of mutations in the sqt-1 and rol-6 collagen genes of Caenorhabditis elegans. Genetics. 1993 Dec;135(4):1035–1045. doi: 10.1093/genetics/135.4.1035. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kramer J. M., Johnson J. J., Edgar R. S., Basch C., Roberts S. The sqt-1 gene of C. elegans encodes a collagen critical for organismal morphogenesis. Cell. 1988 Nov 18;55(4):555–565. doi: 10.1016/0092-8674(88)90214-0. [DOI] [PubMed] [Google Scholar]
- Kramer J. M. Structures and functions of collagens in Caenorhabditis elegans. FASEB J. 1994 Mar 1;8(3):329–336. doi: 10.1096/fasebj.8.3.8143939. [DOI] [PubMed] [Google Scholar]
- Kusch M., Edgar R. S. Genetic studies of unusual loci that affect body shape of the nematode Caenorhabditis elegans and may code for cuticle structural proteins. Genetics. 1986 Jul;113(3):621–639. doi: 10.1093/genetics/113.3.621. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Labourdette L., van der Rest M. Analysis of the role of the COL1 domain and its adjacent cysteine-containing sequence in the chain assembly of type IX collagen. FEBS Lett. 1993 Apr 12;320(3):211–214. doi: 10.1016/0014-5793(93)80588-l. [DOI] [PubMed] [Google Scholar]
- Lenaers A., Ansay M., Nusgens B. V., Lapière C. M. Collagen made of extended -chains, procollagen, in genetically-defective dermatosparaxic calves. Eur J Biochem. 1971 Dec 10;23(3):533–543. doi: 10.1111/j.1432-1033.1971.tb01651.x. [DOI] [PubMed] [Google Scholar]
- Levy A. D., Kramer J. M. Identification, sequence and expression patterns of the Caenorhabditis elegans col-36 and col-40 collagen-encoding genes. Gene. 1993 Dec 31;137(2):281–285. doi: 10.1016/0378-1119(93)90021-t. [DOI] [PubMed] [Google Scholar]
- Levy A. D., Yang J., Kramer J. M. Molecular and genetic analyses of the Caenorhabditis elegans dpy-2 and dpy-10 collagen genes: a variety of molecular alterations affect organismal morphology. Mol Biol Cell. 1993 Aug;4(8):803–817. doi: 10.1091/mbc.4.8.803. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mazzorana M., Gruffat H., Sergeant A., van der Rest M. Mechanisms of collagen trimer formation. Construction and expression of a recombinant minigene in HeLa cells reveals a direct effect of prolyl hydroxylation on chain assembly of type XII collagen. J Biol Chem. 1993 Feb 15;268(5):3029–3032. [PubMed] [Google Scholar]
- McBride D. J., Jr, Kadler K. E., Hojima Y., Prockop D. J. Self-assembly into fibrils of a homotrimer of type I collagen. Matrix. 1992 Aug;12(4):256–263. doi: 10.1016/s0934-8832(11)80077-6. [DOI] [PubMed] [Google Scholar]
- McBride O. W., Harrington W. F. Helix-coil transition in collagen. Evidence for a single-stranded triple helix. Biochemistry. 1967 May;6(5):1499–1514. doi: 10.1021/bi00857a036. [DOI] [PubMed] [Google Scholar]
- Mello C. C., Kramer J. M., Stinchcomb D., Ambros V. Efficient gene transfer in C.elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J. 1991 Dec;10(12):3959–3970. doi: 10.1002/j.1460-2075.1991.tb04966.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Okkema P. G., Harrison S. W., Plunger V., Aryana A., Fire A. Sequence requirements for myosin gene expression and regulation in Caenorhabditis elegans. Genetics. 1993 Oct;135(2):385–404. doi: 10.1093/genetics/135.2.385. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Park E. C., Horvitz H. R. Mutations with dominant effects on the behavior and morphology of the nematode Caenorhabditis elegans. Genetics. 1986 Aug;113(4):821–852. doi: 10.1093/genetics/113.4.821. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Park Y. S., Kramer J. M. Tandemly duplicated Caenorhabditis elegans collagen genes differ in their modes of splicing. J Mol Biol. 1990 Jan 20;211(2):395–406. doi: 10.1016/0022-2836(90)90360-X. [DOI] [PubMed] [Google Scholar]
- Peters K., McDowall J., Rose A. M. Mutations in the bli-4 (I) locus of Caenorhabditis elegans disrupt both adult cuticle and early larval development. Genetics. 1991 Sep;129(1):95–102. doi: 10.1093/genetics/129.1.95. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shaw L. M., Olsen B. R. FACIT collagens: diverse molecular bridges in extracellular matrices. Trends Biochem Sci. 1991 May;16(5):191–194. doi: 10.1016/0968-0004(91)90074-6. [DOI] [PubMed] [Google Scholar]
- Smith L. T., Wertelecki W., Milstone L. M., Petty E. M., Seashore M. R., Braverman I. M., Jenkins T. G., Byers P. H. Human dermatosparaxis: a form of Ehlers-Danlos syndrome that results from failure to remove the amino-terminal propeptide of type I procollagen. Am J Hum Genet. 1992 Aug;51(2):235–244. [PMC free article] [PubMed] [Google Scholar]
- Stinchcomb D. T., Shaw J. E., Carr S. H., Hirsh D. Extrachromosomal DNA transformation of Caenorhabditis elegans. Mol Cell Biol. 1985 Dec;5(12):3484–3496. doi: 10.1128/mcb.5.12.3484. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sykes B. Inherited collagen disorders. Mol Biol Med. 1989 Feb;6(1):19–26. [PubMed] [Google Scholar]
- Van de Ven W. J., Roebroek A. J., Van Duijnhoven H. L. Structure and function of eukaryotic proprotein processing enzymes of the subtilisin family of serine proteases. Crit Rev Oncog. 1993;4(2):115–136. [PubMed] [Google Scholar]
- Watanabe T., Murakami K., Nakayama K. Positional and additive effects of basic amino acids on processing of precursor proteins within the constitutive secretory pathway. FEBS Lett. 1993 Apr 12;320(3):215–218. doi: 10.1016/0014-5793(93)80589-m. [DOI] [PubMed] [Google Scholar]
- Weil D., D'Alessio M., Ramirez F., Eyre D. R. Structural and functional characterization of a splicing mutation in the pro-alpha 2(I) collagen gene of an Ehlers-Danlos type VII patient. J Biol Chem. 1990 Sep 15;265(26):16007–16011. [PubMed] [Google Scholar]
- Weil D., D'Alessio M., Ramirez F., de Wet W., Cole W. G., Chan D., Bateman J. F. A base substitution in the exon of a collagen gene causes alternative splicing and generates a structurally abnormal polypeptide in a patient with Ehlers-Danlos syndrome type VII. EMBO J. 1989 Jun;8(6):1705–1710. doi: 10.1002/j.1460-2075.1989.tb03562.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- von Mende N., Bird D. M., Albert P. S., Riddle D. L. dpy-13: a nematode collagen gene that affects body shape. Cell. 1988 Nov 18;55(4):567–576. doi: 10.1016/0092-8674(88)90215-2. [DOI] [PubMed] [Google Scholar]