Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1994 Jul;14(7):4501–4508. doi: 10.1128/mcb.14.7.4501

sir2 mutants of Kluyveromyces lactis are hypersensitive to DNA-targeting drugs.

X J Chen 1, G D Clark-Walker 1
PMCID: PMC358822  PMID: 8007956

Abstract

A Kluyveromyces lactis mutant, hypersensitive to the DNA-targeting drugs ethidium bromide (EtBr), berenil, and HOE15030, can be complemented by a wild-type gene with homology to SIR2 of Saccharomyces cerevisiae (ScSIR2). The deduced amino acid sequence of the K. lactis Sir2 protein has 53% identity with ScSir2 protein but is 108 residues longer. K. lactis sir2 mutants show decreased mating efficiency, deficiency in sporulation, an increase in recombination at the ribosomal DNA locus, and EtBr-induced death. Some functional equivalence between the Sir2 proteins of K. lactis and S. cerevisiae has been demonstrated by introduction of ScSIR2 into a sir2 mutant of K. lactis. Expression of ScSIR2 on a multicopy plasmid restores resistance to EtBr and complements sporulation deficiency. Similarly, mating efficiency of a sir2 mutant of S. cerevisiae is partially restored by K. lactis SIR2 on a multicopy plasmid. Although these observations suggest that there has been some conservation of Sir2 protein function, a striking difference is that sir2 mutants of S. cerevisiae, unlike their K. lactis counterparts, are not hypersensitive to DNA-targeting drugs.

Full text

PDF
4501

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aparicio O. M., Billington B. L., Gottschling D. E. Modifiers of position effect are shared between telomeric and silent mating-type loci in S. cerevisiae. Cell. 1991 Sep 20;66(6):1279–1287. doi: 10.1016/0092-8674(91)90049-5. [DOI] [PubMed] [Google Scholar]
  2. Bonneaud N., Ozier-Kalogeropoulos O., Li G. Y., Labouesse M., Minvielle-Sebastia L., Lacroute F. A family of low and high copy replicative, integrative and single-stranded S. cerevisiae/E. coli shuttle vectors. Yeast. 1991 Aug-Sep;7(6):609–615. doi: 10.1002/yea.320070609. [DOI] [PubMed] [Google Scholar]
  3. Chen X. J., Clark-Walker G. D. Mutations in MGI genes convert Kluyveromyces lactis into a petite-positive yeast. Genetics. 1993 Mar;133(3):517–525. doi: 10.1093/genetics/133.3.517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chen X. J., Fukuhara H. A gene fusion system using the aminoglycoside 3'-phosphotransferase gene of the kanamycin-resistance transposon Tn903: use in the yeast Kluyveromyces lactis and Saccharomyces cerevisiae. Gene. 1988 Sep 30;69(2):181–192. doi: 10.1016/0378-1119(88)90429-5. [DOI] [PubMed] [Google Scholar]
  5. Chen X. J., Saliola M., Falcone C., Bianchi M. M., Fukuhara H. Sequence organization of the circular plasmid pKD1 from the yeast Kluyveromyces drosophilarum. Nucleic Acids Res. 1986 Jun 11;14(11):4471–4481. doi: 10.1093/nar/14.11.4471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chen X. J., Wésolowski-Louvel M., Fukuhara H. Glucose transport in the yeast Kluyveromyces lactis. II. Transcriptional regulation of the glucose transporter gene RAG1. Mol Gen Genet. 1992 May;233(1-2):97–105. doi: 10.1007/BF00587566. [DOI] [PubMed] [Google Scholar]
  7. Clark-Walker G. D. Isolation of circular DNA from a mitochondrial fraction from yeast. Proc Natl Acad Sci U S A. 1972 Feb;69(2):388–392. doi: 10.1073/pnas.69.2.388. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Falcone C., Saliola M., Chen X. J., Frontali L., Fukuhara H. Analysis of a 1.6-micron circular plasmid from the yeast Kluyveromyces drosophilarum: structure and molecular dimorphism. Plasmid. 1986 May;15(3):248–252. doi: 10.1016/0147-619x(86)90044-2. [DOI] [PubMed] [Google Scholar]
  9. Fenske H., Eichhorn I., Böttger M., Lindigkeit R. Evidence of altered histone interactions, as investigated by removal of histones, in chromatin isolated from rat liver nuclei by a conventional method. Nucleic Acids Res. 1975 Oct;2(10):1975–1985. doi: 10.1093/nar/2.10.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gietz D., St Jean A., Woods R. A., Schiestl R. H. Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res. 1992 Mar 25;20(6):1425–1425. doi: 10.1093/nar/20.6.1425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Goffrini P., Algeri A. A., Donnini C., Wesolowski-Louvel M., Ferrero I. RAG1 and RAG2: nuclear genes involved in the dependence/independence on mitochondrial respiratory function for growth on sugars. Yeast. 1989 Mar-Apr;5(2):99–106. doi: 10.1002/yea.320050205. [DOI] [PubMed] [Google Scholar]
  12. Gottlieb S., Esposito R. E. A new role for a yeast transcriptional silencer gene, SIR2, in regulation of recombination in ribosomal DNA. Cell. 1989 Mar 10;56(5):771–776. doi: 10.1016/0092-8674(89)90681-8. [DOI] [PubMed] [Google Scholar]
  13. Gottschling D. E. Telomere-proximal DNA in Saccharomyces cerevisiae is refractory to methyltransferase activity in vivo. Proc Natl Acad Sci U S A. 1992 May 1;89(9):4062–4065. doi: 10.1073/pnas.89.9.4062. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hardy C. M., Galeotti C. L., Clark-Walker G. D. Deletions and rearrangements in Kluyveromyces lactis mitochondrial DNA. Curr Genet. 1989 Dec;16(5-6):419–427. doi: 10.1007/BF00340721. [DOI] [PubMed] [Google Scholar]
  15. Harrison S. C. A structural taxonomy of DNA-binding domains. Nature. 1991 Oct 24;353(6346):715–719. doi: 10.1038/353715a0. [DOI] [PubMed] [Google Scholar]
  16. Hill J., Donald K. A., Griffiths D. E., Donald G. DMSO-enhanced whole cell yeast transformation. Nucleic Acids Res. 1991 Oct 25;19(20):5791–5791. doi: 10.1093/nar/19.20.5791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ivy J. M., Klar A. J., Hicks J. B. Cloning and characterization of four SIR genes of Saccharomyces cerevisiae. Mol Cell Biol. 1986 Feb;6(2):688–702. doi: 10.1128/mcb.6.2.688. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Klar A. J., Fogel S., Radin D. N. Switching of a mating-type a mutant allele in budding yeast Saccharomyces cerevisiae. Genetics. 1979 Jul;92(3):759–776. doi: 10.1093/genetics/92.3.759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Klar A. J., Strathern J. N., Broach J. R., Hicks J. B. Regulation of transcription in expressed and unexpressed mating type cassettes of yeast. Nature. 1981 Jan 22;289(5795):239–244. doi: 10.1038/289239a0. [DOI] [PubMed] [Google Scholar]
  20. Laurenson P., Rine J. Silencers, silencing, and heritable transcriptional states. Microbiol Rev. 1992 Dec;56(4):543–560. doi: 10.1128/mr.56.4.543-560.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Livingston D. M., Hahne S. Isolation of a condensed, intracellular form of the 2-micrometer DNA plasmid of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1979 Aug;76(8):3727–3731. doi: 10.1073/pnas.76.8.3727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. McMurray C. T., van Holde K. E. Binding of ethidium bromide causes dissociation of the nucleosome core particle. Proc Natl Acad Sci U S A. 1986 Nov;83(22):8472–8476. doi: 10.1073/pnas.83.22.8472. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Nasmyth K. A. The regulation of yeast mating-type chromatin structure by SIR: an action at a distance affecting both transcription and transposition. Cell. 1982 Sep;30(2):567–578. doi: 10.1016/0092-8674(82)90253-7. [DOI] [PubMed] [Google Scholar]
  24. Nelson R. G., Fangman W. L. Nucleosome organization of the yeast 2-micrometer DNA plasmid: a eukaryotic minichromosome. Proc Natl Acad Sci U S A. 1979 Dec;76(12):6515–6519. doi: 10.1073/pnas.76.12.6515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Prior C., Mamessier P., Fukuhara H., Chen X. J., Wesolowski-Louvel M. The hexokinase gene is required for transcriptional regulation of the glucose transporter gene RAG1 in Kluyveromyces lactis. Mol Cell Biol. 1993 Jul;13(7):3882–3889. doi: 10.1128/mcb.13.7.3882. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Rine J., Herskowitz I. Four genes responsible for a position effect on expression from HML and HMR in Saccharomyces cerevisiae. Genetics. 1987 May;116(1):9–22. doi: 10.1093/genetics/116.1.9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Seligy V. L., Thomas D. Y., Miki B. L. Saccharomyces cerevisiae plasmid, Scp or 2 mum: intracellular distribution, stability and nucleosomal-like packaging. Nucleic Acids Res. 1980 Aug 11;8(15):3371–3391. doi: 10.1093/nar/8.15.3371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Shore D., Squire M., Nasmyth K. A. Characterization of two genes required for the position-effect control of yeast mating-type genes. EMBO J. 1984 Dec 1;3(12):2817–2823. doi: 10.1002/j.1460-2075.1984.tb02214.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Shore D., Stillman D. J., Brand A. H., Nasmyth K. A. Identification of silencer binding proteins from yeast: possible roles in SIR control and DNA replication. EMBO J. 1987 Feb;6(2):461–467. doi: 10.1002/j.1460-2075.1987.tb04776.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Tingle M., Herman A., Halvorson H. O. Characterization and mapping of histidine genes in Saccharomyces lactis. Genetics. 1968 Mar;58(3):361–371. doi: 10.1093/genetics/58.3.361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Wesolowski-Louvel M., Tanguy-Rougeau C., Fukuhara H. A nuclear gene required for the expression of the linear DNA-associated killer system in the yeast Kluyveromyces lactis. Yeast. 1988 Mar;4(1):71–81. doi: 10.1002/yea.320040108. [DOI] [PubMed] [Google Scholar]
  33. Yao J., Lowary P. T., Widom J. Twist constraints on linker DNA in the 30-nm chromatin fiber: implications for nucleosome phasing. Proc Natl Acad Sci U S A. 1993 Oct 15;90(20):9364–9368. doi: 10.1073/pnas.90.20.9364. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES