Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Dec 8;69(Pt 1):o39. doi: 10.1107/S1600536812049628

2-(2,4-Dichloro­phen­yl)-N-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)acetamide

Ray J Butcher a,*, Aneeka Mahan b, P S Nayak c, B Narayana c, H S Yathirajan d
PMCID: PMC3588232  PMID: 23476425

Abstract

In the crystal structure of the title compound, C19H17Cl2N3O2, the mol­ecules form dimers of the R 2 2(10) type through N—H⋯O hydrogen bonding. As a result of steric repulsion, the amide group is rotated with respect to both the dichloro­phenyl and 2,3-dihydro-1H-pyrazol-4-yl rings, making dihedral angles of 80.70 (13) and 64.82 (12)°, respectively. The dihedral angle between the dichloro­phenyl and 2,3-dihydro-1H-pyrazol-4-yl rings is 48.45 (5)° while that between the 2,3-dihydro-1H-pyrazol-4-yl and phenyl rings is 56.33 (6)°.

Related literature  

For a description of the Cambridge Structural Database, see: Allen (2002). For hydrogen-bond motifs, see: Bernstein et al. (1995). For N-substituted 2-aryl­acetamides and amides, see: Mijin & Marinkovic (2006); Mijin et al. (2008); Fun et al. (2011a ,b ); Fun, Shahani et al. (2012); Fun, Quah et al. (2012); Wu et al. (2008, 2010).graphic file with name e-69-00o39-scheme1.jpg

Experimental  

Crystal data  

  • C19H17Cl2N3O2

  • M r = 390.26

  • Monoclinic, Inline graphic

  • a = 25.1853 (5) Å

  • b = 8.18108 (9) Å

  • c = 21.0978 (4) Å

  • β = 119.772 (3)°

  • V = 3773.26 (16) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 3.25 mm−1

  • T = 123 K

  • 0.59 × 0.22 × 0.08 mm

Data collection  

  • Agilent Xcalibur (Ruby, Gemini) diffractometer

  • Absorption correction: analytical [CrysAlis PRO (Agilent, 2011), based on expressions derived by Clark & Reid (1995)] T min = 0.429, T max = 0.804

  • 12628 measured reflections

  • 3849 independent reflections

  • 3663 reflections with I > 2σ(I)

  • R int = 0.027

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.035

  • wR(F 2) = 0.095

  • S = 1.05

  • 3849 reflections

  • 237 parameters

  • H-atom parameters constrained

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812049628/bt6879sup1.cif

e-69-00o39-sup1.cif (20.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812049628/bt6879Isup2.hkl

e-69-00o39-Isup2.hkl (188.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812049628/bt6879Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2i 0.88 1.92 2.7938 (15) 171

Symmetry code: (i) Inline graphic.

Acknowledgments

RJB acknowledges the NSF–MRI program (grant No. CHE-0619278) for funds to purchase the diffractometer.

supplementary crystallographic information

Comment

N-Substituted 2-arylacetamides are very interesting compounds because of their structural similarity to the lateral chain of natural benzylpenicillin (Mijin et al., 2006, 2008). Amides are also used as ligands due to their excellent coordination abilities (Wu et al., 2008, 2010). Crystal structures of some acetamide derivatives viz., (2E)-1-(2,5-dimethoxyphenyl)-3-(3-nitrophenyl)prop-2-en-1-one, N-(4-bromophenyl)-2-(naphthalen-1-yl)acetamide, N-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)-2-\[4-(methylsulfanyl)phenyl]acetamide, N-(4-bromophenyl)-2-(4-chlorophenyl)acetamide (Fun et al., 2011a; Fun et al., 2011b; Fun, Shahani et al., 2012; Fun, Quah et al., 2012) have been reported. In view of the importance of amides we report herein the crystal structure of the title compound (I).

In the title compound, I, C19H17Cl2N3O2 the amide group is planar and through N—H···O hydrogen bonding to an adjoining molecule forms dimers of the R22(10) type (Bernstein et al., 1995). Due to steric repulsion the amide group is rotated with respect to both the dichlorophenyl and 2,3-dihydro-1H-pyrazol-4-yl rings with dihedral angles of 80.70 (13)° and 64.82 (12)° respectively. The dihedral angles between the three rings are 48.45 (5)° for the dichlorophenyl and 2,3-dihydro-1H-pyrazol-4-yl rings and and 56.33 (6)° for the 2,3-dihydro-1H-pyrazol-4-yl and phenyl rings, respectively. All other metrical parameters are in the normal ranges (Allen, 2002).

Experimental

2,4-Dichlorophenylacetic acid (0.240 g, 1 mmol) and 4-aminoantipyrine (0.203 g, 1 mmol), 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride (1.0 g, 0.01 mol) and were dissolved in dichloromethane (20 ml). The mixture was stirred in presence of triethylamine at 273 K for about 3 h. The contents were poured into 100 ml of ice-cold aqueous hydrochloric acid with stirring, which was extracted thrice with dichloromethane. Organic layer was washed with saturated NaHCO3 solution and brine solution, dried and concentrated under reduced pressure to give the title compound (I). Single crystals were grown from methylene chloride by the slow evaporation method (m.p.: 473–475 K).

Refinement

The H atoms were placed in calculated positions and refined in the riding mode: N—H = 0.88 Å, C—H = 0.95–0.99 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and = 1.2Ueq(O,C) for other H atoms.

Figures

Fig. 1.

Fig. 1.

View of the molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level for non-hydrogen atoms.

Fig. 2.

Fig. 2.

The packing view viewed along the a axis. Dashed lines indicate intermolecular N—H···O hydrogen bonds (see Table 1 for details).

Crystal data

C19H17Cl2N3O2 F(000) = 1616
Mr = 390.26 Dx = 1.374 Mg m3
Monoclinic, C2/c Cu Kα radiation, λ = 1.54184 Å
a = 25.1853 (5) Å Cell parameters from 9236 reflections
b = 8.18108 (9) Å θ = 3.5–75.5°
c = 21.0978 (4) Å µ = 3.25 mm1
β = 119.772 (3)° T = 123 K
V = 3773.26 (16) Å3 Plate, colorless
Z = 8 0.59 × 0.22 × 0.08 mm

Data collection

Agilent Xcalibur (Ruby, Gemini) diffractometer 3849 independent reflections
Radiation source: Enhance (Cu) X-ray Source 3663 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.027
Detector resolution: 10.5081 pixels mm-1 θmax = 75.7°, θmin = 4.0°
ω scans h = −31→31
Absorption correction: analytical [CrysAlis PRO (Agilent, 2011), based on expressions derived by Clark & Reid (1995)] k = −5→10
Tmin = 0.429, Tmax = 0.804 l = −24→26
12628 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.053P)2 + 3.0975P] where P = (Fo2 + 2Fc2)/3
3849 reflections (Δ/σ)max = 0.001
237 parameters Δρmax = 0.57 e Å3
0 restraints Δρmin = −0.30 e Å3

Special details

Experimental. CrysAlisPro (Agilent Technologies, 2011) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by Clark & Reid (1995).
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.322039 (15) 0.55288 (4) 0.50139 (2) 0.03074 (11)
Cl2 0.26743 (2) 1.17963 (5) 0.42432 (2) 0.04088 (13)
O1 0.48051 (5) 0.65179 (13) 0.60154 (6) 0.0275 (2)
O2 0.58614 (5) 0.26875 (13) 0.77321 (5) 0.0281 (2)
N1 0.46909 (5) 0.42833 (14) 0.65739 (6) 0.0225 (2)
H1A 0.4505 0.3881 0.6799 0.027*
N2 0.54781 (5) 0.15657 (15) 0.59681 (6) 0.0229 (2)
N3 0.58823 (5) 0.16033 (15) 0.67299 (6) 0.0230 (2)
C1 0.37725 (6) 0.80141 (17) 0.59726 (8) 0.0237 (3)
C2 0.33397 (6) 0.75827 (17) 0.52636 (8) 0.0230 (3)
C3 0.29970 (6) 0.87188 (18) 0.47298 (8) 0.0255 (3)
H3A 0.2701 0.8385 0.4251 0.031*
C4 0.30983 (7) 1.03615 (18) 0.49149 (8) 0.0263 (3)
C5 0.35183 (7) 1.08602 (19) 0.56138 (9) 0.0299 (3)
H5A 0.3579 1.1989 0.5735 0.036*
C6 0.38487 (7) 0.96809 (19) 0.61340 (8) 0.0288 (3)
H6A 0.4136 1.0018 0.6616 0.035*
C7 0.41457 (7) 0.67467 (18) 0.65363 (8) 0.0276 (3)
H7A 0.3868 0.5946 0.6574 0.033*
H7B 0.4387 0.7282 0.7018 0.033*
C8 0.45797 (6) 0.58490 (17) 0.63435 (7) 0.0217 (3)
C9 0.50922 (6) 0.32646 (16) 0.64690 (7) 0.0212 (3)
C10 0.50219 (6) 0.26811 (17) 0.58283 (7) 0.0220 (3)
C11 0.45465 (7) 0.30761 (19) 0.50647 (8) 0.0278 (3)
H11A 0.4249 0.3838 0.5071 0.042*
H11B 0.4337 0.2070 0.4811 0.042*
H11C 0.4741 0.3580 0.4809 0.042*
C12 0.57913 (8) 0.1578 (2) 0.55384 (8) 0.0307 (3)
H12A 0.5490 0.1455 0.5019 0.046*
H12B 0.6084 0.0671 0.5694 0.046*
H12C 0.6010 0.2615 0.5615 0.046*
C13 0.56376 (6) 0.25707 (17) 0.70619 (7) 0.0219 (3)
C14 0.62640 (6) 0.02126 (18) 0.70612 (7) 0.0236 (3)
C15 0.60320 (8) −0.13441 (19) 0.68234 (8) 0.0305 (3)
H15A 0.5620 −0.1488 0.6446 0.037*
C16 0.64078 (10) −0.2690 (2) 0.71423 (10) 0.0428 (4)
H16A 0.6256 −0.3760 0.6978 0.051*
C17 0.70029 (10) −0.2473 (3) 0.76984 (10) 0.0494 (5)
H17A 0.7259 −0.3395 0.7917 0.059*
C18 0.72255 (9) −0.0917 (3) 0.79377 (10) 0.0491 (5)
H18A 0.7634 −0.0777 0.8323 0.059*
C19 0.68580 (7) 0.0448 (2) 0.76203 (9) 0.0352 (4)
H19A 0.7012 0.1518 0.7784 0.042*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.02802 (19) 0.01940 (18) 0.0432 (2) −0.00059 (12) 0.01644 (16) −0.00417 (13)
Cl2 0.0505 (2) 0.0273 (2) 0.0381 (2) 0.01167 (16) 0.01682 (19) 0.00933 (15)
O1 0.0318 (5) 0.0260 (5) 0.0317 (5) 0.0038 (4) 0.0210 (4) 0.0068 (4)
O2 0.0340 (5) 0.0323 (6) 0.0187 (5) 0.0082 (4) 0.0136 (4) 0.0003 (4)
N1 0.0281 (6) 0.0239 (6) 0.0229 (5) 0.0047 (5) 0.0182 (5) 0.0043 (4)
N2 0.0277 (6) 0.0261 (6) 0.0175 (5) 0.0045 (5) 0.0131 (5) 0.0010 (4)
N3 0.0270 (6) 0.0255 (6) 0.0182 (5) 0.0053 (5) 0.0126 (5) 0.0010 (4)
C1 0.0260 (6) 0.0233 (7) 0.0274 (7) 0.0042 (5) 0.0175 (6) 0.0007 (5)
C2 0.0237 (6) 0.0177 (6) 0.0317 (7) 0.0002 (5) 0.0169 (6) −0.0022 (5)
C3 0.0228 (6) 0.0252 (7) 0.0283 (7) 0.0023 (5) 0.0125 (6) −0.0013 (6)
C4 0.0279 (7) 0.0219 (7) 0.0313 (7) 0.0060 (5) 0.0163 (6) 0.0047 (5)
C5 0.0329 (7) 0.0199 (7) 0.0375 (8) 0.0013 (6) 0.0178 (6) −0.0024 (6)
C6 0.0306 (7) 0.0265 (7) 0.0279 (7) 0.0021 (6) 0.0134 (6) −0.0042 (6)
C7 0.0343 (7) 0.0284 (7) 0.0265 (7) 0.0083 (6) 0.0201 (6) 0.0035 (6)
C8 0.0239 (6) 0.0239 (7) 0.0182 (6) 0.0027 (5) 0.0112 (5) 0.0012 (5)
C9 0.0257 (6) 0.0212 (6) 0.0210 (6) 0.0022 (5) 0.0149 (5) 0.0028 (5)
C10 0.0259 (6) 0.0212 (6) 0.0222 (6) 0.0017 (5) 0.0143 (5) 0.0023 (5)
C11 0.0311 (7) 0.0315 (8) 0.0200 (6) 0.0054 (6) 0.0122 (6) 0.0016 (5)
C12 0.0407 (8) 0.0339 (8) 0.0276 (7) 0.0103 (6) 0.0247 (7) 0.0049 (6)
C13 0.0265 (6) 0.0215 (6) 0.0219 (6) 0.0011 (5) 0.0152 (5) 0.0005 (5)
C14 0.0269 (7) 0.0276 (7) 0.0212 (6) 0.0067 (5) 0.0157 (6) 0.0029 (5)
C15 0.0384 (8) 0.0285 (8) 0.0274 (7) 0.0029 (6) 0.0184 (6) 0.0018 (6)
C16 0.0682 (12) 0.0297 (8) 0.0372 (9) 0.0139 (8) 0.0312 (9) 0.0059 (7)
C17 0.0635 (12) 0.0501 (11) 0.0374 (9) 0.0336 (10) 0.0273 (9) 0.0158 (8)
C18 0.0354 (9) 0.0679 (13) 0.0355 (9) 0.0211 (9) 0.0112 (7) 0.0108 (9)
C19 0.0299 (7) 0.0423 (9) 0.0295 (7) 0.0038 (7) 0.0119 (6) 0.0006 (7)

Geometric parameters (Å, º)

Cl1—C2 1.7419 (14) C7—H7A 0.9900
Cl2—C4 1.7388 (15) C7—H7B 0.9900
O1—C8 1.2210 (17) C9—C10 1.3597 (19)
O2—C13 1.2390 (17) C9—C13 1.4378 (19)
N1—C8 1.3492 (18) C10—C11 1.4892 (19)
N1—C9 1.4097 (17) C11—H11A 0.9800
N1—H1A 0.8800 C11—H11B 0.9800
N2—C10 1.3796 (18) C11—H11C 0.9800
N2—N3 1.4128 (15) C12—H12A 0.9800
N2—C12 1.4678 (17) C12—H12B 0.9800
N3—C13 1.3874 (17) C12—H12C 0.9800
N3—C14 1.4282 (18) C14—C19 1.383 (2)
C1—C2 1.390 (2) C14—C15 1.387 (2)
C1—C6 1.395 (2) C15—C16 1.388 (2)
C1—C7 1.504 (2) C15—H15A 0.9500
C2—C3 1.383 (2) C16—C17 1.381 (3)
C3—C4 1.387 (2) C16—H16A 0.9500
C3—H3A 0.9500 C17—C18 1.382 (3)
C4—C5 1.382 (2) C17—H17A 0.9500
C5—C6 1.386 (2) C18—C19 1.392 (3)
C5—H5A 0.9500 C18—H18A 0.9500
C6—H6A 0.9500 C19—H19A 0.9500
C7—C8 1.5302 (18)
C8—N1—C9 122.77 (11) N1—C9—C13 123.13 (12)
C8—N1—H1A 118.6 C9—C10—N2 109.64 (12)
C9—N1—H1A 118.6 C9—C10—C11 129.58 (13)
C10—N2—N3 106.37 (10) N2—C10—C11 120.77 (12)
C10—N2—C12 120.64 (11) C10—C11—H11A 109.5
N3—N2—C12 113.45 (11) C10—C11—H11B 109.5
C13—N3—N2 109.70 (11) H11A—C11—H11B 109.5
C13—N3—C14 124.55 (11) C10—C11—H11C 109.5
N2—N3—C14 117.97 (11) H11A—C11—H11C 109.5
C2—C1—C6 116.75 (13) H11B—C11—H11C 109.5
C2—C1—C7 121.62 (13) N2—C12—H12A 109.5
C6—C1—C7 121.63 (13) N2—C12—H12B 109.5
C3—C2—C1 123.01 (13) H12A—C12—H12B 109.5
C3—C2—Cl1 117.25 (11) N2—C12—H12C 109.5
C1—C2—Cl1 119.73 (11) H12A—C12—H12C 109.5
C2—C3—C4 117.95 (13) H12B—C12—H12C 109.5
C2—C3—H3A 121.0 O2—C13—N3 123.76 (13)
C4—C3—H3A 121.0 O2—C13—C9 131.24 (13)
C5—C4—C3 121.51 (14) N3—C13—C9 104.95 (11)
C5—C4—Cl2 120.34 (12) C19—C14—C15 121.28 (14)
C3—C4—Cl2 118.15 (12) C19—C14—N3 119.11 (14)
C4—C5—C6 118.67 (14) C15—C14—N3 119.61 (13)
C4—C5—H5A 120.7 C14—C15—C16 119.30 (16)
C6—C5—H5A 120.7 C14—C15—H15A 120.4
C5—C6—C1 122.10 (14) C16—C15—H15A 120.4
C5—C6—H6A 119.0 C17—C16—C15 120.07 (18)
C1—C6—H6A 119.0 C17—C16—H16A 120.0
C1—C7—C8 111.65 (11) C15—C16—H16A 120.0
C1—C7—H7A 109.3 C16—C17—C18 120.05 (17)
C8—C7—H7A 109.3 C16—C17—H17A 120.0
C1—C7—H7B 109.3 C18—C17—H17A 120.0
C8—C7—H7B 109.3 C17—C18—C19 120.76 (18)
H7A—C7—H7B 108.0 C17—C18—H18A 119.6
O1—C8—N1 123.92 (12) C19—C18—H18A 119.6
O1—C8—C7 122.02 (13) C14—C19—C18 118.54 (17)
N1—C8—C7 114.06 (12) C14—C19—H19A 120.7
C10—C9—N1 127.88 (13) C18—C19—H19A 120.7
C10—C9—C13 108.83 (12)
C10—N2—N3—C13 7.36 (15) N1—C9—C10—C11 7.1 (2)
C12—N2—N3—C13 142.30 (12) C13—C9—C10—C11 −177.35 (14)
C10—N2—N3—C14 158.08 (12) N3—N2—C10—C9 −6.32 (15)
C12—N2—N3—C14 −66.98 (16) C12—N2—C10—C9 −137.32 (14)
C6—C1—C2—C3 0.5 (2) N3—N2—C10—C11 174.04 (12)
C7—C1—C2—C3 −178.87 (13) C12—N2—C10—C11 43.0 (2)
C6—C1—C2—Cl1 179.45 (10) N2—N3—C13—O2 172.17 (13)
C7—C1—C2—Cl1 0.12 (18) C14—N3—C13—O2 23.8 (2)
C1—C2—C3—C4 0.7 (2) N2—N3—C13—C9 −5.45 (15)
Cl1—C2—C3—C4 −178.31 (10) C14—N3—C13—C9 −153.82 (13)
C2—C3—C4—C5 −1.4 (2) C10—C9—C13—O2 −175.84 (15)
C2—C3—C4—Cl2 179.34 (10) N1—C9—C13—O2 0.0 (2)
C3—C4—C5—C6 0.9 (2) C10—C9—C13—N3 1.53 (15)
Cl2—C4—C5—C6 −179.86 (11) N1—C9—C13—N3 177.34 (12)
C4—C5—C6—C1 0.4 (2) C13—N3—C14—C19 −72.00 (19)
C2—C1—C6—C5 −1.0 (2) N2—N3—C14—C19 142.00 (13)
C7—C1—C6—C5 178.33 (14) C13—N3—C14—C15 107.33 (16)
C2—C1—C7—C8 66.19 (18) N2—N3—C14—C15 −38.67 (17)
C6—C1—C7—C8 −113.11 (15) C19—C14—C15—C16 −1.4 (2)
C9—N1—C8—O1 1.2 (2) N3—C14—C15—C16 179.28 (14)
C9—N1—C8—C7 −178.10 (13) C14—C15—C16—C17 1.1 (2)
C1—C7—C8—O1 31.9 (2) C15—C16—C17—C18 −0.1 (3)
C1—C7—C8—N1 −148.72 (13) C16—C17—C18—C19 −0.5 (3)
C8—N1—C9—C10 −67.1 (2) C15—C14—C19—C18 0.8 (2)
C8—N1—C9—C13 117.97 (15) N3—C14—C19—C18 −179.91 (15)
N1—C9—C10—N2 −172.50 (13) C17—C18—C19—C14 0.2 (3)
C13—C9—C10—N2 3.05 (16)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1A···O2i 0.88 1.92 2.7938 (15) 171

Symmetry code: (i) −x+1, y, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT6879).

References

  1. Agilent (2011). CrysAlis PRO and CrysAlis RED Agilent Technologies, Yarnton, England.
  2. Allen, F. H. (2002). Acta Cryst. B58, 380–388. [DOI] [PubMed]
  3. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  4. Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.
  5. Fun, H.-K., Quah, C. K., Narayana, B., Nayak, P. S. & Sarojini, B. K. (2011a). Acta Cryst. E67, o2926–o2927. [DOI] [PMC free article] [PubMed]
  6. Fun, H.-K., Quah, C. K., Narayana, B., Nayak, P. S. & Sarojini, B. K. (2011b). Acta Cryst. E67, o2941–o2942. [DOI] [PMC free article] [PubMed]
  7. Fun, H.-K., Quah, C. K., Nayak, P. S., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, o2677. [DOI] [PMC free article] [PubMed]
  8. Fun, H.-K., Shahani, T., Nayak, P. S., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, o519. [DOI] [PMC free article] [PubMed]
  9. Mijin, D. & Marinkovic, A. (2006). Synth. Commun. 36, 193–198.
  10. Mijin, D. Z., Prascevic, M. & Petrovic, S. D. (2008). J. Serb. Chem. Soc. 73, 945–950.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Wu, W.-N., Cheng, F.-X., Yan, L. & Tang, N. (2008). J. Coord. Chem. 61, 2207–2215.
  13. Wu, W.-N., Wang, Y., Zhang, A.-Y., Zhao, R.-Q. & Wang, Q.-F. (2010). Acta Cryst. E66, m288. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812049628/bt6879sup1.cif

e-69-00o39-sup1.cif (20.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812049628/bt6879Isup2.hkl

e-69-00o39-Isup2.hkl (188.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812049628/bt6879Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES