Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Dec 22;69(Pt 1):o144–o145. doi: 10.1107/S1600536812051161

(R,R)-1-Acetyl-1′-(2,4,6-trinitro­phen­yl)-2,2′-bipyrrolidine

Katarzyna Eichstaedt a,*, Teresa Olszewska a, Maria Gdaniec b
PMCID: PMC3588260  PMID: 23476399

Abstract

The structure of the title mol­ecule, C16H19N5O7, is mainly determined by the steric effect of a bulky 2,4,6-trinitro­phenyl group attached to the N atom of a pyrrolidine ring. Both pyrrolidine rings adopt an envelope conformation, with one of the methylene C atoms as the flap in each case, and the N—C—C—N torsion angle along the bond connecting the two pyrrolidine rings is −174.9 (2)°. The benzene ring of the 2,3,5-trinitro­phenyl substituent is deformed and the r.m.s. deviation of its six atoms from the best plane is 0.026 Å. The N atoms of the two nitro groups in the ortho positions deviate from the best plane of the benzene ring by −0.033 (5) and 0.385 (5) Å. These groups, as well as the pyrrolidine ring, are twisted relative to the aromatic ring in the same direction, their best planes forming dihedral angles of 30.2 (2), 64.8 (1) and 46.6 (2)°, respectively, with the ring. An intra­molecular C—H⋯O hydrogen bond occurs. In the crystal, there is a short [O⋯C = 3.019 (4) Å] contact between a nitro O atom and a C atom of the benzene ring bearing the nitro group and a C—H⋯O inter­action between a methyl H atom and another nitro O atom.

Related literature  

For crystal structures of related 1-amino-2,4,6-trinitro­benzenes, see: Butcher et al. (1992); Baggio et al. (1997).graphic file with name e-69-0o144-scheme1.jpg

Experimental  

Crystal data  

  • C16H19N5O7

  • M r = 393.36

  • Orthorhombic, Inline graphic

  • a = 8.1989 (5) Å

  • b = 10.4442 (6) Å

  • c = 20.8877 (13) Å

  • V = 1788.63 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.15 mm

Data collection  

  • Oxford Diffraction Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) T min = 0.990, T max = 1.000

  • 7678 measured reflections

  • 1818 independent reflections

  • 1477 reflections with I > 2σ(I)

  • R int = 0.040

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.090

  • S = 1.06

  • 1818 reflections

  • 254 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.16 e Å−3

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812051161/rz5033sup1.cif

e-69-0o144-sup1.cif (27.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812051161/rz5033Isup2.hkl

e-69-0o144-Isup2.hkl (87.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812051161/rz5033Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1 0.98 2.18 2.891 (4) 129
C18—H18C⋯O2i 0.96 2.51 3.454 (5) 168

Symmetry code: (i) Inline graphic.

supplementary crystallographic information

Comment

The title compound was synthesized as a part of a project aiming at the application of 2,4,6-trinitrophenyl chromophore for determination of absolute configuration of secondary diamines. The molecular structure of the title compound is shown in Fig. 1. Both pyrrolidine rings adopt an envelope conformation with the methylene C4 and C9 atoms forming a flap in each of the five-membered rings, respectively. The N7—C6—C2—N1 torsion angle along the bond connecting two pyrrolidine rings is -174.9 (2)°.

The benzene ring of the 2,3,5-trinitrophenyl substituent shows large deformation from planarity with r.m.s. deviation of 0.026 Å for the six fitted atoms and the maximum deviation from the best plane of 0.038 (2) Å for C11. Whereas N3 and N4 atoms of the nitro groups are vitrually in the mean plane of the benzene ring [their deviations from the plane being -0.050 (5), -0.033 (5) Å, respectively] the N1 atom from the pyrrolidine substituent and the N2 atom from one of the ortho nitro groups deviate strongly from this plane [deviations of -0.168 (4) and 0.385 (5) Å, respectively] reflecting steric effects within this overcrowded molecule. The nitro groups attached to C12 and C16 of the benzene ring are twisted in the same direction as the pyrrolidine ring attached to C11 forming the fragment of a propeller. The dihedral angles formed by these nitro groups and the planar C11, N1, C2, C5 fragment are 30.2 (2), 64.8 (1) 46.6 (2)°, respectively. The nitro group attached to C14 is only slightly twisted relative to the benzene ring with the dihedral angle of 4.9 (2)°. The conformation adopted by the molecule leads to two short intermolecular contacts between the pyrrolidine ring H atoms and O toms of the ortho nitro-groups (Table 1). Interestingly, the release of strain in the title molecule occurs differently than in 1-pyrrolidino-2,4,6-trinitrobenzene (Baggio et al., 1997) where the benzene ring adopted a sofa form with the flap formed by the C atom to which the pyrrolidine ring was attached. On the other hand, the release of strain is similar to that observed for N,N-dimethyl-2,4,6-trinitroaniline (Butcher et al., 1992), 1-piperidylo-2,4,6-trinitrobenzene and 1-morpholino-2,4,6-trinitrobenzene (Baggio et al., 1997)

Two short intermolecular contacts are observed in this crystal structure. One, O1···.C16(1/2 + x, 3/2 - y, 2 - z) of 3.019 (4) Å, is formed between the nitro group O atom and the carbon atom of the benzene ring bearing the nitro group. The second one, H18C···.O2(2 - x, 1/2 + y, 3/2 - z) of 2.51 Å, is formed between the methyl group H atom and the nitro group O atom. The crystal packing in the studied crystal is shown in Fig. 2.

Experimental

A mixture of (R,R)-2,2'-bipyrrolidine hydrochloride (280 mg, 1.31 mmol), 1-chloro-2,4,6-trinitrobenzene (650 mg, 2.63 mmol) and anhydrous sodium acetate (860 mg, 10.50 mmol) in anhydrous ethanol (10 ml) was heated under reflux for 30 min. The resulting suspension was cooled to room temperature and water (15 ml) was added into it. The aqueous layer was extracted with dichloromethane (2 x 15 ml). The combined organic extracts were dried over anhydrous magnesium sulfate. Filtration of the drying agent and removal the solvent in vacuo afforded the crude product, which was purified by means of column chromatography on silica gel using ethyl acetate to yield 0.12 g (23%) of product as a yellow solid. Crystals suitable for X-ray diffraction analysis were obtained by allowing a refluxed solution of the product in ethyl acetate to cool slowly at room temperature (without temperature control) and allowing the solvent to evaporate for 20 h, 1H NMR: (CDCl3, 500 MHz) δ: 8.66 (s, 2H); 4.49 (q, J=6.8 Hz, 1H); 4.09 (q, J=6.0 Hz, 1H); 3.56 (m, 1H); 3.43 (m, 1H); 3.36 (m, 1H); 3.20 (t, J=8.3 Hz, 1H); 2.10 (m, 2H); 1.92 (s, 3H); 1,88 (m, 5H); 1.73 (m, 1H), [α]D20 = -1430 (c 0.2 e thyl acetate).

Refinement

All H atoms were located in electron-density difference maps, however for further refinement their positions were determined geometrically with C—H bond lengths of 0.93 - 0.97 Å. All H atoms were refined in the riding-model approximation, with Uiso(H)=1.5Ueq(Cmethyl) or Uiso(H)=1.2Ueq(C) for the remaining H atoms. In the absence of significant anomalous dispersion effects, 1319 Friedel pairs were merged.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with displacement ellipsoids shown at the 50% probability level.

Fig. 2.

Fig. 2.

Crystal packing shown along the a axis. Short intermolecular contacts are shown as dashed lines.

Crystal data

C16H19N5O7 F(000) = 824
Mr = 393.36 Dx = 1.461 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 1951 reflections
a = 8.1989 (5) Å θ = 2.9–28.7°
b = 10.4442 (6) Å µ = 0.12 mm1
c = 20.8877 (13) Å T = 293 K
V = 1788.63 (19) Å3 Tabloid, orange
Z = 4 0.20 × 0.20 × 0.15 mm

Data collection

Oxford Diffraction Xcalibur Eos diffractometer 1818 independent reflections
Radiation source: Enhance (Mo) X-ray Source 1477 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.040
Detector resolution: 16.1544 pixels mm-1 θmax = 25.0°, θmin = 4.3°
ω scan h = −9→9
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) k = −12→12
Tmin = 0.990, Tmax = 1.000 l = −24→24
7678 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0351P)2 + 0.2637P] where P = (Fo2 + 2Fc2)/3
1818 reflections (Δ/σ)max = 0.001
254 parameters Δρmax = 0.14 e Å3
0 restraints Δρmin = −0.16 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.6350 (3) 0.9926 (2) 0.95416 (11) 0.0336 (6)
C2 0.7856 (4) 1.0547 (3) 0.93068 (14) 0.0360 (8)
H2 0.8740 0.9915 0.9309 0.043*
C3 0.8200 (5) 1.1543 (3) 0.98208 (15) 0.0496 (10)
H3A 0.9361 1.1704 0.9860 0.060*
H3B 0.7647 1.2343 0.9727 0.060*
C4 0.7528 (5) 1.0932 (4) 1.04212 (16) 0.0520 (10)
H4A 0.7335 1.1566 1.0752 0.062*
H4B 0.8264 1.0283 1.0585 0.062*
C5 0.5943 (5) 1.0343 (4) 1.01938 (16) 0.0498 (10)
H5A 0.5628 0.9623 1.0460 0.060*
H5B 0.5068 1.0968 1.0191 0.060*
C6 0.7620 (4) 1.1031 (3) 0.86178 (15) 0.0378 (8)
H6 0.7269 1.0313 0.8349 0.045*
N7 0.9150 (4) 1.1543 (3) 0.83607 (13) 0.0429 (7)
C8 0.9020 (6) 1.2884 (4) 0.81637 (19) 0.0625 (12)
H8A 0.8998 1.2957 0.7701 0.075*
H8B 0.9928 1.3381 0.8328 0.075*
C9 0.7443 (6) 1.3326 (4) 0.8449 (2) 0.0804 (15)
H9A 0.6904 1.3929 0.8166 0.097*
H9B 0.7632 1.3740 0.8859 0.097*
C10 0.6410 (5) 1.2131 (4) 0.85355 (18) 0.0562 (10)
H10A 0.5726 1.1991 0.8163 0.067*
H10B 0.5719 1.2209 0.8910 0.067*
C11 0.5621 (4) 0.8893 (3) 0.92546 (13) 0.0300 (7)
C12 0.6456 (4) 0.7851 (3) 0.89814 (14) 0.0331 (7)
C13 0.5699 (4) 0.6911 (3) 0.86275 (15) 0.0362 (8)
H13 0.6310 0.6270 0.8432 0.043*
C14 0.4047 (4) 0.6931 (3) 0.85668 (14) 0.0330 (7)
C15 0.3111 (4) 0.7849 (3) 0.88681 (14) 0.0350 (8)
H15 0.1978 0.7823 0.8849 0.042*
C16 0.3898 (4) 0.8793 (3) 0.91946 (14) 0.0332 (8)
C17 1.0360 (5) 1.0730 (5) 0.81772 (16) 0.0562 (11)
C18 1.1766 (6) 1.1325 (5) 0.78229 (19) 0.0863 (16)
H18A 1.2647 1.0721 0.7796 0.129*
H18B 1.2127 1.2076 0.8047 0.129*
H18C 1.1423 1.1557 0.7399 0.129*
O1 0.8695 (3) 0.7949 (2) 0.96552 (12) 0.0539 (7)
O2 0.8947 (3) 0.6887 (3) 0.87822 (14) 0.0715 (9)
O3 0.4126 (4) 0.5153 (3) 0.79145 (14) 0.0718 (9)
O4 0.1779 (3) 0.5873 (3) 0.81795 (14) 0.0696 (9)
O5 0.3003 (4) 1.0886 (2) 0.92558 (14) 0.0613 (8)
O6 0.1894 (3) 0.9500 (3) 0.98862 (14) 0.0702 (9)
O7 1.0284 (4) 0.9579 (3) 0.82913 (13) 0.0685 (8)
N2 0.8176 (4) 0.7573 (3) 0.91450 (16) 0.0424 (7)
N3 0.3249 (4) 0.5912 (3) 0.81954 (13) 0.0425 (7)
N4 0.2857 (4) 0.9810 (3) 0.94709 (15) 0.0451 (7)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0302 (16) 0.0338 (14) 0.0369 (14) −0.0035 (12) 0.0035 (13) −0.0049 (13)
C2 0.0333 (19) 0.0329 (17) 0.0416 (18) −0.0042 (15) −0.0008 (16) 0.0035 (15)
C3 0.056 (3) 0.047 (2) 0.0456 (19) −0.0165 (19) −0.0053 (19) −0.0037 (18)
C4 0.064 (3) 0.051 (2) 0.0407 (19) −0.011 (2) −0.0036 (19) −0.0070 (18)
C5 0.056 (2) 0.049 (2) 0.0438 (19) −0.007 (2) 0.0119 (19) −0.0098 (17)
C6 0.039 (2) 0.0334 (16) 0.0414 (17) −0.0030 (16) −0.0034 (16) 0.0017 (16)
N7 0.0406 (19) 0.0458 (16) 0.0425 (15) 0.0007 (15) 0.0052 (14) 0.0095 (14)
C8 0.076 (3) 0.045 (2) 0.066 (3) −0.011 (2) −0.005 (2) 0.015 (2)
C9 0.099 (4) 0.046 (2) 0.097 (3) 0.011 (3) 0.004 (3) 0.021 (2)
C10 0.051 (3) 0.060 (2) 0.058 (2) 0.012 (2) −0.006 (2) 0.010 (2)
C11 0.0288 (19) 0.0297 (16) 0.0316 (15) 0.0013 (15) 0.0019 (14) 0.0035 (14)
C12 0.0230 (18) 0.0348 (17) 0.0413 (17) 0.0034 (15) −0.0018 (15) 0.0006 (16)
C13 0.036 (2) 0.0318 (17) 0.0408 (17) 0.0057 (16) 0.0029 (16) −0.0019 (16)
C14 0.0320 (19) 0.0310 (17) 0.0358 (16) 0.0000 (15) −0.0035 (15) −0.0045 (15)
C15 0.0255 (18) 0.0355 (17) 0.0441 (17) −0.0003 (16) −0.0036 (15) −0.0027 (16)
C16 0.0283 (19) 0.0307 (17) 0.0407 (17) 0.0052 (15) 0.0022 (15) −0.0035 (15)
C17 0.047 (2) 0.086 (3) 0.036 (2) 0.006 (2) 0.0034 (19) 0.005 (2)
C18 0.055 (3) 0.147 (5) 0.056 (2) 0.006 (3) 0.017 (2) 0.016 (3)
O1 0.0466 (17) 0.0480 (15) 0.0671 (16) 0.0003 (14) −0.0241 (14) 0.0041 (14)
O2 0.0383 (16) 0.080 (2) 0.096 (2) 0.0216 (16) 0.0010 (16) −0.0242 (18)
O3 0.0569 (19) 0.0639 (17) 0.094 (2) 0.0079 (16) −0.0072 (16) −0.0447 (17)
O4 0.0368 (17) 0.0778 (19) 0.094 (2) −0.0062 (16) −0.0110 (16) −0.0304 (17)
O5 0.0602 (18) 0.0344 (14) 0.089 (2) 0.0120 (13) −0.0011 (16) −0.0061 (14)
O6 0.0522 (18) 0.075 (2) 0.0832 (19) 0.0180 (16) 0.0279 (17) −0.0056 (16)
O7 0.075 (2) 0.0656 (19) 0.0646 (16) 0.0316 (17) 0.0110 (16) 0.0027 (15)
N2 0.0293 (17) 0.0349 (16) 0.0631 (19) 0.0033 (13) −0.0052 (16) −0.0001 (15)
N3 0.0393 (19) 0.0414 (16) 0.0468 (17) −0.0003 (16) −0.0061 (15) −0.0078 (15)
N4 0.0324 (18) 0.0457 (18) 0.0572 (18) 0.0083 (15) −0.0044 (16) −0.0130 (17)

Geometric parameters (Å, º)

N1—C11 1.371 (4) C10—H10A 0.9700
N1—C5 1.469 (4) C10—H10B 0.9700
N1—C2 1.479 (4) C11—C12 1.407 (4)
C2—C3 1.522 (4) C11—C16 1.422 (4)
C2—C6 1.538 (4) C12—C13 1.376 (5)
C2—H2 0.9800 C12—N2 1.479 (4)
C3—C4 1.512 (5) C13—C14 1.361 (4)
C3—H3A 0.9700 C13—H13 0.9300
C3—H3B 0.9700 C14—C15 1.380 (4)
C4—C5 1.514 (5) C14—N3 1.471 (4)
C4—H4A 0.9700 C15—C16 1.362 (4)
C4—H4B 0.9700 C15—H15 0.9300
C5—H5A 0.9700 C16—N4 1.479 (4)
C5—H5B 0.9700 C17—O7 1.227 (5)
C6—N7 1.466 (4) C17—C18 1.504 (6)
C6—C10 1.527 (5) C18—H18A 0.9600
C6—H6 0.9800 C18—H18B 0.9600
N7—C17 1.361 (5) C18—H18C 0.9600
N7—C8 1.463 (4) O1—N2 1.213 (4)
C8—C9 1.497 (6) O2—N2 1.220 (4)
C8—H8A 0.9700 O3—N3 1.220 (4)
C8—H8B 0.9700 O4—N3 1.206 (4)
C9—C10 1.519 (6) O5—N4 1.216 (4)
C9—H9A 0.9700 O6—N4 1.217 (4)
C9—H9B 0.9700
C11—N1—C5 122.7 (3) C8—C9—H9B 110.5
C11—N1—C2 124.3 (2) C10—C9—H9B 110.5
C5—N1—C2 111.6 (2) H9A—C9—H9B 108.7
N1—C2—C3 102.8 (3) C9—C10—C6 105.6 (3)
N1—C2—C6 110.5 (3) C9—C10—H10A 110.6
C3—C2—C6 117.3 (3) C6—C10—H10A 110.6
N1—C2—H2 108.7 C9—C10—H10B 110.6
C3—C2—H2 108.7 C6—C10—H10B 110.6
C6—C2—H2 108.7 H10A—C10—H10B 108.7
C4—C3—C2 103.2 (3) N1—C11—C12 125.0 (3)
C4—C3—H3A 111.1 N1—C11—C16 122.0 (3)
C2—C3—H3A 111.1 C12—C11—C16 113.0 (3)
C4—C3—H3B 111.1 C13—C12—C11 123.4 (3)
C2—C3—H3B 111.1 C13—C12—N2 114.5 (3)
H3A—C3—H3B 109.1 C11—C12—N2 121.5 (3)
C3—C4—C5 103.0 (3) C14—C13—C12 119.2 (3)
C3—C4—H4A 111.2 C14—C13—H13 120.4
C5—C4—H4A 111.2 C12—C13—H13 120.4
C3—C4—H4B 111.2 C13—C14—C15 121.4 (3)
C5—C4—H4B 111.2 C13—C14—N3 118.8 (3)
H4A—C4—H4B 109.1 C15—C14—N3 119.7 (3)
N1—C5—C4 102.5 (3) C16—C15—C14 117.9 (3)
N1—C5—H5A 111.3 C16—C15—H15 121.0
C4—C5—H5A 111.3 C14—C15—H15 121.0
N1—C5—H5B 111.3 C15—C16—C11 124.6 (3)
C4—C5—H5B 111.3 C15—C16—N4 116.2 (3)
H5A—C5—H5B 109.2 C11—C16—N4 119.1 (3)
N7—C6—C10 103.9 (3) O7—C17—N7 121.3 (4)
N7—C6—C2 110.8 (3) O7—C17—C18 122.6 (4)
C10—C6—C2 115.8 (3) N7—C17—C18 116.1 (4)
N7—C6—H6 108.7 C17—C18—H18A 109.5
C10—C6—H6 108.7 C17—C18—H18B 109.5
C2—C6—H6 108.7 H18A—C18—H18B 109.5
C17—N7—C8 124.8 (3) C17—C18—H18C 109.5
C17—N7—C6 119.9 (3) H18A—C18—H18C 109.5
C8—N7—C6 113.0 (3) H18B—C18—H18C 109.5
N7—C8—C9 104.2 (3) O1—N2—O2 123.6 (3)
N7—C8—H8A 110.9 O1—N2—C12 118.3 (3)
C9—C8—H8A 110.9 O2—N2—C12 117.8 (3)
N7—C8—H8B 110.9 O4—N3—O3 123.6 (3)
C9—C8—H8B 110.9 O4—N3—C14 118.9 (3)
H8A—C8—H8B 108.9 O3—N3—C14 117.5 (3)
C8—C9—C10 106.0 (3) O5—N4—O6 124.9 (3)
C8—C9—H9A 110.5 O5—N4—C16 117.5 (3)
C10—C9—H9A 110.5 O6—N4—C16 117.5 (3)
C11—N1—C2—C3 −175.5 (3) N1—C11—C12—N2 18.7 (5)
C5—N1—C2—C3 −8.9 (3) C16—C11—C12—N2 −162.5 (3)
C11—N1—C2—C6 58.6 (4) C11—C12—C13—C14 −4.3 (5)
C5—N1—C2—C6 −134.7 (3) N2—C12—C13—C14 166.1 (3)
N1—C2—C3—C4 30.8 (3) C12—C13—C14—C15 −2.0 (5)
C6—C2—C3—C4 152.1 (3) C12—C13—C14—N3 −179.1 (3)
C2—C3—C4—C5 −41.6 (4) C13—C14—C15—C16 4.4 (5)
C11—N1—C5—C4 150.3 (3) N3—C14—C15—C16 −178.5 (3)
C2—N1—C5—C4 −16.5 (4) C14—C15—C16—C11 −0.9 (5)
C3—C4—C5—N1 35.4 (4) C14—C15—C16—N4 175.7 (3)
N1—C2—C6—N7 −174.9 (2) N1—C11—C16—C15 174.2 (3)
C3—C2—C6—N7 67.9 (4) C12—C11—C16—C15 −4.6 (5)
N1—C2—C6—C10 67.2 (4) N1—C11—C16—N4 −2.3 (5)
C3—C2—C6—C10 −50.0 (4) C12—C11—C16—N4 178.9 (3)
C10—C6—N7—C17 −160.1 (3) C8—N7—C17—O7 −170.4 (4)
C2—C6—N7—C17 74.9 (4) C6—N7—C17—O7 −8.8 (5)
C10—C6—N7—C8 3.5 (4) C8—N7—C17—C18 8.8 (5)
C2—C6—N7—C8 −121.4 (3) C6—N7—C17—C18 170.5 (3)
C17—N7—C8—C9 176.1 (3) C13—C12—N2—O1 −146.0 (3)
C6—N7—C8—C9 13.3 (4) C11—C12—N2—O1 24.5 (4)
N7—C8—C9—C10 −24.7 (4) C13—C12—N2—O2 28.0 (4)
C8—C9—C10—C6 27.4 (4) C11—C12—N2—O2 −161.5 (3)
N7—C6—C10—C9 −18.8 (4) C13—C14—N3—O4 174.7 (3)
C2—C6—C10—C9 102.9 (4) C15—C14—N3—O4 −2.5 (5)
C5—N1—C11—C12 −126.2 (3) C13—C14—N3—O3 −5.9 (5)
C2—N1—C11—C12 39.0 (4) C15—C14—N3—O3 176.9 (3)
C5—N1—C11—C16 55.2 (4) C15—C16—N4—O5 −114.2 (3)
C2—N1—C11—C16 −139.6 (3) C11—C16—N4—O5 62.5 (4)
N1—C11—C12—C13 −171.6 (3) C15—C16—N4—O6 64.1 (4)
C16—C11—C12—C13 7.2 (4) C11—C16—N4—O6 −119.1 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C2—H2···O1 0.98 2.18 2.891 (4) 129
C5—H5B···O5 0.97 2.59 3.157 (5) 118
C2—H2···O7 0.98 2.50 3.079 (4) 118
C18—H18C···O2i 0.96 2.51 3.454 (5) 168

Symmetry code: (i) −x+2, y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ5033).

References

  1. Agilent (2012). CrysAlis PRO Agilent Technologies, Yarnton, England.
  2. Baggio, R., Remedi, M. V., Garland, M. T. & Bujan, E. I. (1997). J. Chem. Crystallogr. 27, 499–505.
  3. Butcher, R. J., Gilardi, R., Flippen-Anderson, J. L. & George, C. (1992). New J. Chem. 16, 679–692.
  4. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  5. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812051161/rz5033sup1.cif

e-69-0o144-sup1.cif (27.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812051161/rz5033Isup2.hkl

e-69-0o144-Isup2.hkl (87.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812051161/rz5033Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES