Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Dec 15;69(Pt 1):o83. doi: 10.1107/S160053681205012X

4-(4-Iodo­anilino)-2-methyl­ene-4-oxo­butanoic acid

Prakash S Nayak a, Badiadka Narayana a, Hemmige S Yathirajan b, Thomas Gerber c, Benjamin van Brecht c, Richard Betz c,*
PMCID: PMC3588263  PMID: 23476465

Abstract

In the title compound, C11H10INO3, an addition product of itaconic acid anhydride and 4-iodo­aniline, the least-squares planes defined by the atoms of the aromatic moiety and the non-H atoms of the carb­oxy­lic acid group enclose an angle of 74.82 (11)°. In the crystal, classical O—H⋯O hydrogen bonds formed by carb­oxy­lic groups, as well as N—H⋯O hydrogen bonds formed by amide groups, are present along with C—H⋯O contacts. Together, these connect the mol­ecules into dimeric chains along the b-axis direction.

Related literature  

For applications of itaconic acid anhydride, see: Oishi (1980); Urzua et al. (1998); Shetgiri & Nayak (2005); Katla et al. (2011); Hanoon (2011). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995).graphic file with name e-69-00o83-scheme1.jpg

Experimental  

Crystal data  

  • C11H10INO3

  • M r = 331.10

  • Monoclinic, Inline graphic

  • a = 23.1111 (6) Å

  • b = 4.7863 (1) Å

  • c = 10.4262 (2) Å

  • β = 97.071 (1)°

  • V = 1144.54 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.79 mm−1

  • T = 200 K

  • 0.29 × 0.16 × 0.10 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008) T min = 0.503, T max = 0.776

  • 12435 measured reflections

  • 2839 independent reflections

  • 2612 reflections with I > 2σ(I)

  • R int = 0.015

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.018

  • wR(F 2) = 0.047

  • S = 1.06

  • 2839 reflections

  • 150 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.73 e Å−3

  • Δρmin = −0.61 e Å−3

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681205012X/gk2533sup1.cif

e-69-00o83-sup1.cif (18.7KB, cif)

Supplementary material file. DOI: 10.1107/S160053681205012X/gk2533Isup2.cdx

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681205012X/gk2533Isup3.hkl

e-69-00o83-Isup3.hkl (139.4KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681205012X/gk2533Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.84 1.83 2.6597 (19) 170
N1—H71⋯O3ii 0.83 (2) 2.10 (2) 2.8963 (18) 161 (2)
C3—H3B⋯O3ii 0.99 2.51 3.266 (2) 134

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

BN thanks the UGC for financial assistance through a BSR one-time grant for the purchase of chemicals. PSN thanks Mangalore University for research facilities and the DST–PURSE for financial assistance.

supplementary crystallographic information

Comment

Itaconic acid anhydride is a monomeric building block obtained from renewable sources. Copolymers containing both hydrophilic and hydrophobic segments are drawing considerable attention because of their possible use in biological systems. In this aspect, N-substituted itaconamic acid derivatives have attracted attention due to their amphiphilic properties. Being more reactive than maleic anhydride, itaconic anhydride has already been applied for introducing polar functional groups into polymers (Oishi, 1980; Urzua et al.,1998). In addition, the basic skeleton of itaconic anhydride is useful for the synthesis of cyclic derivatives of imides (Shetgiri & Nayak, 2005), pyridazines (Katla et al., 2011), oxazepines and diazepines (Hanoon, 2011) which show pharmacological activity. In continuation of our studies of pharmacologically active compounds, the crystal structure of the title compound was determined.

The C=C bond is present as its anti-Saytzeff tautomer. The N–C(=O) bond length of 1.351 (2) Å is indicative of amide-type resonance. The least-squares plane defined by the atoms of the aromatic moiety on the one hand and the non-hydrogen atoms of the carboxylic acid group on the other hand enclose an angle of 74.82 (11) ° (Fig. 1).

In the crystal, C–H···O contatcs whose range falls by more than 0.1 Å below the sum of van-der-Waals radii are observed next to classical hydrogen bonds of the N–H···O and C–H···O type. The N–H···O hydrogen bonds are supported by the carbonyl oxygen atom of the amide functionality as acceptor. Simultaneously, one of the hydrogen atoms of the methylene group forms a C–H···O contact to the same oxygen atom which, therefore, acts as twofold acceptor. The carboxylic acid groups engage in the common dimeric hydrogen bonding pattern frequently encountered for many carboxylic acids. In total, the molecules are connected to dimeric chains along the crystallographic b axis. Metrical parameters as well as information about the symmetry of these contacts are summarized in Table 1. In terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995), the descriptor for these contacts is C11(4)C11(4)R22(8) on the unary level. The shortest intercentroid distance between two aromatic systems was found at 4.7863 (11) Å which is about the length of axis b (Fig. 2).

The packing of the title compound in the crystal structure is shown in Figure 3.

Experimental

Itaconic anhydride (0.112 g, 1 mmol) was dissolved in acetone (30 ml) and 4-iodoaniline (0.219 g, 1 mmol) was added in small portions under stirring at room temperature over a timespan of 30 minutes. The mixture turned into a yellow slurry. Stirring was continued for 1.5 h after which the slurry was filtered and the solid obtained was washed with acetone and dried to yield the title compound. Single crystals suitable for the X-ray diffraction study were grown from methanol by slow evaporation at room temperature.

Refinement

Carbon-bound H atoms were placed in calculated positions (C–H 0.95 Å for aromatic and vinylic carbon atoms, C–H 0.99 Å for methylene groups) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C). The H atom of the hydroxyl group was allowed to rotate with a fixed angle around the C–O bond to best fit the experimental electron density (HFIX 147 in the SHELX program suite (Sheldrick, 2008)), with U(H) set to 1.5Ueq(O). The nitrogen-bound H atom was located on a difference Fourier map and refined freely.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids drawn at 50% probability level.

Fig. 2.

Fig. 2.

Intermolecular contacts, viewed along [0 0 - 1]. Symmetry operators: ix, y - 1, z; iix, y + 1, z; iii -x + 1, -y, -z + 1.

Fig. 3.

Fig. 3.

Molecular packing of the title compound, viewed along [0 1 0] (anisotropic displacement ellipsoids drawn at 50% probability level). Blue dashed lines indicate hydrogen bonds between the carboxylic acid groups.

Crystal data

C11H10INO3 F(000) = 640
Mr = 331.10 Dx = 1.921 Mg m3
Monoclinic, P21/c Melting point = 447–445 K
Hall symbol: -P 2ybc Mo Kα radiation, λ = 0.71073 Å
a = 23.1111 (6) Å Cell parameters from 9343 reflections
b = 4.7863 (1) Å θ = 2.7–28.3°
c = 10.4262 (2) Å µ = 2.79 mm1
β = 97.071 (1)° T = 200 K
V = 1144.54 (4) Å3 Rectangular, colourless
Z = 4 0.29 × 0.16 × 0.10 mm

Data collection

Bruker APEXII CCD diffractometer 2839 independent reflections
Radiation source: fine-focus sealed tube 2612 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.015
φ and ω scans θmax = 28.3°, θmin = 2.7°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −30→30
Tmin = 0.503, Tmax = 0.776 k = −6→6
12435 measured reflections l = −8→13

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.018 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.047 H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0202P)2 + 0.979P] where P = (Fo2 + 2Fc2)/3
2839 reflections (Δ/σ)max = 0.002
150 parameters Δρmax = 0.73 e Å3
0 restraints Δρmin = −0.61 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
I1 0.056006 (5) −0.19408 (3) 0.680940 (13) 0.03784 (5)
O1 0.48205 (6) −0.1867 (3) 0.34828 (13) 0.0334 (3)
H1 0.5045 −0.1852 0.4180 0.050*
O2 0.43726 (6) 0.1500 (3) 0.44728 (13) 0.0335 (3)
O3 0.30129 (6) −0.2166 (2) 0.35760 (14) 0.0301 (3)
N1 0.26626 (6) 0.2123 (3) 0.39810 (15) 0.0238 (3)
H71 0.2679 (10) 0.382 (5) 0.380 (2) 0.031 (6)*
C1 0.43994 (7) −0.0058 (4) 0.35485 (16) 0.0232 (3)
C2 0.39444 (7) 0.0026 (3) 0.24115 (16) 0.0225 (3)
C3 0.34191 (7) 0.1767 (3) 0.25648 (16) 0.0232 (3)
H3A 0.3198 0.2104 0.1703 0.028*
H3B 0.3547 0.3601 0.2937 0.028*
C4 0.30202 (7) 0.0375 (3) 0.34331 (15) 0.0202 (3)
C5 0.40223 (8) −0.1299 (4) 0.13366 (18) 0.0330 (4)
H5A 0.4371 −0.2318 0.1286 0.040*
H5B 0.3729 −0.1235 0.0614 0.040*
C11 0.21964 (7) 0.1204 (3) 0.46527 (16) 0.0218 (3)
C12 0.22773 (7) −0.0842 (4) 0.55994 (17) 0.0263 (3)
H12 0.2652 −0.1644 0.5823 0.032*
C13 0.18104 (8) −0.1721 (4) 0.62227 (18) 0.0284 (4)
H13 0.1864 −0.3137 0.6865 0.034*
C14 0.12659 (7) −0.0515 (4) 0.58994 (16) 0.0265 (3)
C15 0.11850 (8) 0.1576 (4) 0.49805 (19) 0.0308 (4)
H15 0.0813 0.2421 0.4777 0.037*
C16 0.16521 (8) 0.2432 (4) 0.43571 (18) 0.0290 (4)
H16 0.1599 0.3867 0.3724 0.035*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
I1 0.02465 (7) 0.04793 (9) 0.04370 (9) −0.00628 (5) 0.01530 (5) −0.00051 (6)
O1 0.0276 (6) 0.0373 (7) 0.0342 (7) 0.0105 (5) −0.0003 (5) −0.0044 (6)
O2 0.0336 (7) 0.0386 (8) 0.0276 (6) 0.0087 (6) 0.0003 (5) −0.0064 (5)
O3 0.0333 (7) 0.0172 (5) 0.0428 (7) 0.0000 (5) 0.0167 (6) 0.0006 (5)
N1 0.0239 (7) 0.0160 (6) 0.0331 (7) 0.0002 (5) 0.0096 (6) 0.0033 (6)
C1 0.0217 (7) 0.0230 (7) 0.0258 (7) 0.0002 (6) 0.0066 (6) 0.0026 (6)
C2 0.0204 (7) 0.0216 (7) 0.0262 (7) −0.0017 (6) 0.0060 (6) 0.0036 (6)
C3 0.0205 (7) 0.0223 (8) 0.0274 (8) 0.0007 (6) 0.0050 (6) 0.0052 (6)
C4 0.0179 (7) 0.0194 (7) 0.0230 (7) −0.0010 (5) 0.0011 (5) 0.0009 (6)
C5 0.0271 (9) 0.0400 (10) 0.0320 (9) 0.0016 (7) 0.0040 (7) −0.0066 (8)
C11 0.0201 (7) 0.0201 (7) 0.0261 (7) −0.0020 (6) 0.0064 (6) −0.0024 (6)
C12 0.0194 (7) 0.0279 (8) 0.0318 (8) 0.0017 (6) 0.0046 (6) 0.0035 (7)
C13 0.0251 (8) 0.0316 (9) 0.0294 (8) −0.0007 (7) 0.0072 (7) 0.0045 (7)
C14 0.0194 (7) 0.0323 (9) 0.0291 (8) −0.0046 (6) 0.0083 (6) −0.0042 (7)
C15 0.0182 (7) 0.0390 (10) 0.0356 (9) 0.0038 (7) 0.0055 (7) 0.0012 (8)
C16 0.0246 (8) 0.0306 (9) 0.0324 (9) 0.0044 (7) 0.0060 (7) 0.0070 (7)

Geometric parameters (Å, º)

I1—C14 2.0994 (16) C3—H3B 0.9900
O1—C1 1.311 (2) C5—H5A 0.9500
O1—H1 0.8400 C5—H5B 0.9500
O2—C1 1.226 (2) C11—C12 1.387 (2)
O3—C4 1.2258 (19) C11—C16 1.388 (2)
N1—C4 1.351 (2) C12—C13 1.392 (2)
N1—C11 1.425 (2) C12—H12 0.9500
N1—H71 0.83 (2) C13—C14 1.388 (2)
C1—C2 1.485 (2) C13—H13 0.9500
C2—C5 1.319 (2) C14—C15 1.382 (3)
C2—C3 1.497 (2) C15—C16 1.389 (3)
C3—C4 1.523 (2) C15—H15 0.9500
C3—H3A 0.9900 C16—H16 0.9500
C1—O1—H1 109.5 C2—C5—H5B 120.0
C4—N1—C11 123.75 (14) H5A—C5—H5B 120.0
C4—N1—H71 117.5 (16) C12—C11—C16 119.74 (15)
C11—N1—H71 117.8 (16) C12—C11—N1 121.60 (15)
O2—C1—O1 123.55 (16) C16—C11—N1 118.65 (15)
O2—C1—C2 120.76 (15) C11—C12—C13 120.12 (16)
O1—C1—C2 115.69 (15) C11—C12—H12 119.9
C5—C2—C1 120.52 (16) C13—C12—H12 119.9
C5—C2—C3 123.74 (16) C14—C13—C12 119.52 (16)
C1—C2—C3 115.70 (14) C14—C13—H13 120.2
C2—C3—C4 112.22 (13) C12—C13—H13 120.2
C2—C3—H3A 109.2 C15—C14—C13 120.72 (16)
C4—C3—H3A 109.2 C15—C14—I1 120.15 (13)
C2—C3—H3B 109.2 C13—C14—I1 119.13 (13)
C4—C3—H3B 109.2 C14—C15—C16 119.43 (16)
H3A—C3—H3B 107.9 C14—C15—H15 120.3
O3—C4—N1 123.00 (15) C16—C15—H15 120.3
O3—C4—C3 121.66 (15) C11—C16—C15 120.43 (17)
N1—C4—C3 115.28 (14) C11—C16—H16 119.8
C2—C5—H5A 120.0 C15—C16—H16 119.8
O2—C1—C2—C5 168.65 (18) C4—N1—C11—C16 −131.82 (18)
O1—C1—C2—C5 −11.0 (2) C16—C11—C12—C13 2.0 (3)
O2—C1—C2—C3 −9.2 (2) N1—C11—C12—C13 −179.01 (16)
O1—C1—C2—C3 171.13 (14) C11—C12—C13—C14 −0.7 (3)
C5—C2—C3—C4 108.2 (2) C12—C13—C14—C15 −1.0 (3)
C1—C2—C3—C4 −74.03 (18) C12—C13—C14—I1 178.29 (14)
C11—N1—C4—O3 −7.6 (3) C13—C14—C15—C16 1.4 (3)
C11—N1—C4—C3 169.68 (15) I1—C14—C15—C16 −177.91 (14)
C2—C3—C4—O3 −25.0 (2) C12—C11—C16—C15 −1.6 (3)
C2—C3—C4—N1 157.71 (14) N1—C11—C16—C15 179.35 (17)
C4—N1—C11—C12 49.1 (2) C14—C15—C16—C11 −0.1 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1···O2i 0.84 1.83 2.6597 (19) 170
N1—H71···O3ii 0.83 (2) 2.10 (2) 2.8963 (18) 161 (2)
C3—H3B···O3ii 0.99 2.51 3.266 (2) 134

Symmetry codes: (i) −x+1, −y, −z+1; (ii) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2533).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  2. Bruker (2008). SADABS. Bruker Inc., Madison, Wisconsin, USA.
  3. Bruker (2010). APEX2 and SAINT Bruker AXS Inc., Madison, USA.
  4. Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [DOI] [PubMed]
  5. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  6. Hanoon, H. D. (2011). Nat. J. Chem. 41, 77–89.
  7. Katla, S., Pothana, P., Gubba, B. & Manda, S. (2011). Der Chem. Sin. 2, 47–53.
  8. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  9. Oishi, T. (1980). Polym. J. 12, 719–727.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Shetgiri, N. P. & Nayak, B. K. (2005). Indian J. Chem. Sect. B, 44, 1933–1936.
  12. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  13. Urzua, M., Opazo, A., Gargallo, L. & Radic, D. (1998). Polym. Bull. 40, 63–67.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681205012X/gk2533sup1.cif

e-69-00o83-sup1.cif (18.7KB, cif)

Supplementary material file. DOI: 10.1107/S160053681205012X/gk2533Isup2.cdx

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681205012X/gk2533Isup3.hkl

e-69-00o83-Isup3.hkl (139.4KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681205012X/gk2533Isup4.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES