Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Dec 12;69(Pt 1):m49. doi: 10.1107/S1600536812050106

Dibromido(2,9-dimethyl-1,10-phenanthroline-κ2 N,N′)(dimethyl sulfoxide-κO)cadmium

Khadijeh Moghanlou a,*
PMCID: PMC3588265  PMID: 23476344

Abstract

In the mol­ecule of the title compound, [CdBr2(C14H12N2)(C2H6OS)], the CdII atom is five-coordinated in a distorted trigonal–bipyramidal configuration by two N atoms from a 2,9-dimethyl-1,10-phenanthroline ligand, one O atom from a dimethyl sulfoxide ligand and two Br atoms. In the crystal, π–π contacts between the pyridine and benzene rings [centroid–centroid distances = 3.710 (5), 3.711 (6) and 3.627 (5) Å] stabilize the structure.

Related literature  

For related structures, see: Akbarzadeh Torbati et al. (2010); Alizadeh et al. (2009); Armentano et al. (2006); Ding et al. (2006); Fanizzi et al. (1991); Lemoine et al. (2003); Robinson & Sinn (1975).graphic file with name e-69-00m49-scheme1.jpg

Experimental  

Crystal data  

  • [CdBr2(C14H12N2)(C2H6OS)]

  • M r = 558.60

  • Monoclinic, Inline graphic

  • a = 8.1468 (9) Å

  • b = 17.3814 (15) Å

  • c = 13.6369 (13) Å

  • β = 95.724 (9)°

  • V = 1921.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.42 mm−1

  • T = 298 K

  • 0.42 × 0.22 × 0.17 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001) T min = 0.222, T max = 0.325

  • 15831 measured reflections

  • 3766 independent reflections

  • 2196 reflections with I > 2σ(I)

  • R int = 0.108

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.057

  • wR(F 2) = 0.127

  • S = 0.94

  • 3766 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 1.02 e Å−3

  • Δρmin = −1.06 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812050106/hy2608sup1.cif

e-69-00m49-sup1.cif (19.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812050106/hy2608Isup2.hkl

e-69-00m49-Isup2.hkl (184.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Cd1—N1 2.386 (6)
Cd1—N2 2.331 (6)
Cd1—O1 2.361 (6)
Cd1—Br1 2.5483 (11)
Cd1—Br2 2.6335 (11)

Acknowledgments

The author thanks the Graduate Study Councils of the Islamic Azad University, North Tehran Branch, for financial support.

supplementary crystallographic information

Comment

2,9-Dimethyl-1,10-phenanthroline (Me2phen) is a good bidentate ligand, and numerous complexes with Me2phen have been prepared, such as that of mercury (Alizadeh et al., 2009), iron (Armentano et al., 2006), copper (Lemoine et al., 2003), nickel (Ding et al., 2006), gold (Robinson & Sinn, 1975), platinum (Fanizzi et al., 1991) and cobalt (Akbarzadeh Torbati et al., 2010). Here, we report the synthesis and structure of the title compound.

In the title compound (Fig. 1), the CdII atom is five-coordinated in a distorted trigonal-bipyramidal configuration by two N atoms from a 2,9-dimethyl-1,10-phenanthroline ligand, one O atom from a dimethyl sulfoxide ligand and two Br atoms (Table 1). In the crystal, π–π contacts between the pyridine and benzene rings, Cg2···Cg3i, Cg2···Cg4i and Cg3···Cg4ii [symmetry codes: (i) -x, 1-y, 2-z; (ii) 1-x, 1-y, 2-z, Cg2, Cg3 and Cg4 are the centroids of the N1/C2–C5/C14, N2/C8–C11/C13 and C5–C8/C13/C14 rings, respectively], with centroid–centroid distances of 3.710 (5), 3.711 (6) and 3.627 (5) Å, stabilize the structure (Fig. 2).

Experimental

For the preparation of the title compound, a solution of 2,9-dimethyl-1,10-phenanthroline (0.42 g, 2.00 mmol) in methanol (15 ml) was added to a solution of CdBr2.4H2O, (0.69 g, 2.00 mmol) in methanol (15 ml) at room temperature. Crystals suitable for X-ray diffraction experiment were obtained by methanol diffusion into a colorless solution in DMSO after five days (yield: 0.85 g, 76.1%).

Refinement

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (CH) and 0.96 (CH3) Å and with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

Crystal packing diagram for the title compound.

Crystal data

[CdBr2(C14H12N2)(C2H6OS)] F(000) = 1080
Mr = 558.60 Dx = 1.936 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 15831 reflections
a = 8.1468 (9) Å θ = 1.9–26.0°
b = 17.3814 (15) Å µ = 5.42 mm1
c = 13.6369 (13) Å T = 298 K
β = 95.724 (9)° Block, colorless
V = 1921.4 (3) Å3 0.42 × 0.22 × 0.17 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer 3766 independent reflections
Radiation source: fine-focus sealed tube 2196 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.108
φ and ω scans θmax = 26.0°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2001) h = −10→10
Tmin = 0.222, Tmax = 0.325 k = −21→21
15831 measured reflections l = −15→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127 H-atom parameters constrained
S = 0.94 w = 1/[σ2(Fo2) + (0.062P)2] where P = (Fo2 + 2Fc2)/3
3766 reflections (Δ/σ)max = 0.004
208 parameters Δρmax = 1.02 e Å3
0 restraints Δρmin = −1.06 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 −0.0593 (14) 0.2673 (6) 0.8844 (10) 0.096 (4)
H1A 0.0219 0.2463 0.8456 0.115*
H1B −0.1421 0.2938 0.8423 0.115*
H1C −0.1097 0.2263 0.9180 0.115*
C2 0.0215 (11) 0.3221 (5) 0.9583 (8) 0.064 (3)
C3 0.0114 (13) 0.3105 (7) 1.0594 (10) 0.085 (4)
H3 −0.0431 0.2677 1.0810 0.102*
C4 0.0811 (14) 0.3619 (8) 1.1251 (9) 0.085 (3)
H4 0.0748 0.3545 1.1921 0.102*
C5 0.1625 (11) 0.4262 (6) 1.0924 (7) 0.062 (2)
C6 0.2357 (14) 0.4818 (7) 1.1589 (7) 0.075 (3)
H6 0.2307 0.4759 1.2263 0.090*
C7 0.3105 (13) 0.5414 (7) 1.1252 (7) 0.076 (3)
H7 0.3584 0.5773 1.1699 0.091*
C8 0.3216 (9) 0.5535 (5) 1.0220 (6) 0.051 (2)
C9 0.3992 (11) 0.6171 (6) 0.9837 (8) 0.068 (3)
H9 0.4516 0.6532 1.0264 0.082*
C10 0.3987 (11) 0.6265 (5) 0.8869 (9) 0.070 (3)
H10 0.4490 0.6692 0.8617 0.084*
C11 0.3206 (11) 0.5706 (5) 0.8227 (7) 0.059 (2)
C12 0.3144 (15) 0.5823 (6) 0.7120 (8) 0.089 (4)
H12A 0.2016 0.5831 0.6839 0.107*
H12B 0.3717 0.5410 0.6834 0.107*
H12C 0.3660 0.6304 0.6987 0.107*
C13 0.2514 (9) 0.4992 (4) 0.9535 (6) 0.0415 (18)
C14 0.1699 (9) 0.4338 (5) 0.9909 (6) 0.048 (2)
C15 0.5347 (12) 0.3392 (7) 0.5318 (8) 0.091 (4)
H15A 0.5942 0.3188 0.5904 0.110*
H15B 0.5888 0.3848 0.5118 0.110*
H15C 0.5318 0.3015 0.4801 0.110*
C16 0.2687 (17) 0.4141 (8) 0.4484 (8) 0.105 (4)
H16A 0.3515 0.4513 0.4365 0.126*
H16B 0.1670 0.4400 0.4568 0.126*
H16C 0.2524 0.3796 0.3933 0.126*
N1 0.0990 (8) 0.3812 (4) 0.9263 (5) 0.0505 (17)
N2 0.2556 (7) 0.5071 (3) 0.8554 (4) 0.0434 (15)
O1 0.3558 (8) 0.4221 (4) 0.6386 (4) 0.0707 (17)
Cd1 0.18778 (7) 0.39536 (3) 0.76580 (4) 0.04942 (19)
Br1 −0.07113 (13) 0.39818 (7) 0.64445 (8) 0.0862 (4)
Br2 0.36845 (12) 0.27030 (5) 0.79524 (7) 0.0636 (3)
S1 0.3331 (3) 0.36172 (15) 0.55550 (18) 0.0659 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.072 (7) 0.067 (7) 0.154 (12) −0.016 (6) 0.041 (7) 0.003 (7)
C2 0.055 (5) 0.044 (5) 0.093 (8) 0.007 (4) 0.017 (5) 0.013 (5)
C3 0.070 (7) 0.075 (8) 0.118 (10) 0.024 (6) 0.052 (7) 0.047 (7)
C4 0.086 (8) 0.104 (9) 0.068 (7) 0.038 (7) 0.025 (6) 0.032 (7)
C5 0.062 (6) 0.075 (6) 0.052 (6) 0.029 (5) 0.021 (5) 0.019 (5)
C6 0.091 (8) 0.088 (8) 0.047 (6) 0.038 (7) 0.011 (5) 0.014 (6)
C7 0.081 (7) 0.093 (9) 0.050 (6) 0.038 (6) −0.010 (5) −0.025 (5)
C8 0.042 (4) 0.049 (5) 0.061 (6) 0.010 (4) 0.005 (4) −0.013 (4)
C9 0.055 (5) 0.069 (7) 0.080 (7) 0.010 (5) 0.004 (5) −0.028 (5)
C10 0.057 (6) 0.051 (6) 0.106 (9) −0.001 (4) 0.025 (6) −0.021 (5)
C11 0.064 (6) 0.043 (5) 0.076 (6) 0.007 (4) 0.033 (5) −0.007 (4)
C12 0.140 (10) 0.049 (6) 0.087 (8) −0.008 (6) 0.050 (8) 0.014 (5)
C13 0.035 (4) 0.042 (5) 0.048 (5) 0.009 (3) 0.004 (3) −0.006 (3)
C14 0.037 (4) 0.055 (5) 0.052 (5) 0.023 (4) 0.011 (4) 0.002 (4)
C15 0.072 (7) 0.109 (10) 0.091 (8) 0.012 (6) 0.003 (6) −0.037 (7)
C16 0.123 (10) 0.116 (11) 0.073 (8) 0.033 (8) −0.006 (7) 0.006 (7)
N1 0.040 (4) 0.050 (4) 0.062 (5) 0.007 (3) 0.011 (3) 0.008 (3)
N2 0.049 (4) 0.041 (4) 0.043 (4) 0.001 (3) 0.018 (3) −0.004 (3)
O1 0.090 (5) 0.066 (4) 0.058 (4) −0.004 (3) 0.016 (3) −0.011 (3)
Cd1 0.0506 (3) 0.0497 (3) 0.0470 (3) 0.0041 (3) 0.0002 (2) −0.0050 (3)
Br1 0.0643 (6) 0.0998 (9) 0.0882 (8) 0.0266 (6) −0.0238 (5) −0.0290 (6)
Br2 0.0725 (6) 0.0576 (6) 0.0593 (6) 0.0198 (5) −0.0008 (4) −0.0025 (4)
S1 0.0765 (16) 0.0627 (15) 0.0587 (15) −0.0006 (12) 0.0080 (12) −0.0057 (11)

Geometric parameters (Å, º)

C1—C2 1.491 (15) C11—N2 1.321 (10)
C1—H1A 0.9600 C11—C12 1.519 (13)
C1—H1B 0.9600 C12—H12A 0.9600
C1—H1C 0.9600 C12—H12B 0.9600
C2—N1 1.304 (10) C12—H12C 0.9600
C2—C3 1.404 (14) C13—N2 1.349 (9)
C3—C4 1.349 (16) C13—C14 1.435 (11)
C3—H3 0.9300 C14—N1 1.358 (11)
C4—C5 1.395 (15) C15—S1 1.750 (10)
C4—H4 0.9300 C15—H15A 0.9600
C5—C14 1.398 (11) C15—H15B 0.9600
C5—C6 1.415 (15) C15—H15C 0.9600
C6—C7 1.309 (14) C16—S1 1.757 (11)
C6—H6 0.9300 C16—H16A 0.9600
C7—C8 1.435 (13) C16—H16B 0.9600
C7—H7 0.9300 C16—H16C 0.9600
C8—C9 1.399 (13) Cd1—N1 2.386 (6)
C8—C13 1.409 (11) Cd1—N2 2.331 (6)
C9—C10 1.330 (14) O1—S1 1.542 (6)
C9—H9 0.9300 Cd1—O1 2.361 (6)
C10—C11 1.416 (13) Cd1—Br1 2.5483 (11)
C10—H10 0.9300 Cd1—Br2 2.6335 (11)
C2—C1—H1A 109.5 H12A—C12—H12C 109.5
C2—C1—H1B 109.5 H12B—C12—H12C 109.5
H1A—C1—H1B 109.5 N2—C13—C8 122.7 (7)
C2—C1—H1C 109.5 N2—C13—C14 119.4 (7)
H1A—C1—H1C 109.5 C8—C13—C14 117.8 (7)
H1B—C1—H1C 109.5 N1—C14—C5 121.4 (8)
N1—C2—C3 121.3 (10) N1—C14—C13 119.0 (7)
N1—C2—C1 118.3 (9) C5—C14—C13 119.7 (8)
C3—C2—C1 120.4 (10) S1—C15—H15A 109.5
C4—C3—C2 119.7 (10) S1—C15—H15B 109.5
C4—C3—H3 120.2 H15A—C15—H15B 109.5
C2—C3—H3 120.2 S1—C15—H15C 109.5
C3—C4—C5 120.0 (10) H15A—C15—H15C 109.5
C3—C4—H4 120.0 H15B—C15—H15C 109.5
C5—C4—H4 120.0 S1—C16—H16A 109.5
C4—C5—C14 117.5 (10) S1—C16—H16B 109.5
C4—C5—C6 121.7 (10) H16A—C16—H16B 109.5
C14—C5—C6 120.8 (9) S1—C16—H16C 109.5
C7—C6—C5 119.8 (9) H16A—C16—H16C 109.5
C7—C6—H6 120.1 H16B—C16—H16C 109.5
C5—C6—H6 120.1 C2—N1—C14 120.2 (8)
C6—C7—C8 122.5 (10) C2—N1—Cd1 126.1 (6)
C6—C7—H7 118.7 C14—N1—Cd1 112.2 (5)
C8—C7—H7 118.7 C11—N2—C13 118.0 (7)
C9—C8—C13 116.8 (8) C11—N2—Cd1 127.0 (5)
C9—C8—C7 123.8 (9) C13—N2—Cd1 114.0 (5)
C13—C8—C7 119.4 (9) S1—O1—Cd1 111.7 (3)
C10—C9—C8 120.7 (9) N2—Cd1—O1 95.5 (2)
C10—C9—H9 119.6 N2—Cd1—N1 71.5 (2)
C8—C9—H9 119.6 O1—Cd1—N1 161.0 (2)
C9—C10—C11 119.0 (9) N2—Cd1—Br1 117.50 (16)
C9—C10—H10 120.5 O1—Cd1—Br1 91.26 (17)
C11—C10—H10 120.5 N1—Cd1—Br1 106.91 (16)
N2—C11—C10 122.4 (9) N2—Cd1—Br2 120.54 (16)
N2—C11—C12 118.2 (8) O1—Cd1—Br2 85.32 (17)
C10—C11—C12 119.3 (9) N1—Cd1—Br2 89.49 (15)
C11—C12—H12A 109.5 Br1—Cd1—Br2 121.92 (4)
C11—C12—H12B 109.5 O1—S1—C15 104.0 (5)
H12A—C12—H12B 109.5 O1—S1—C16 105.2 (5)
C11—C12—H12C 109.5 C15—S1—C16 99.8 (6)
N1—C2—C3—C4 0.9 (14) C5—C14—N1—Cd1 −166.5 (6)
C1—C2—C3—C4 −178.1 (10) C13—C14—N1—Cd1 14.6 (8)
C2—C3—C4—C5 0.1 (15) C10—C11—N2—C13 6.0 (11)
C3—C4—C5—C14 −0.8 (14) C12—C11—N2—C13 −175.7 (8)
C3—C4—C5—C6 179.4 (9) C10—C11—N2—Cd1 −162.1 (6)
C4—C5—C6—C7 −179.8 (9) C12—C11—N2—Cd1 16.2 (11)
C14—C5—C6—C7 0.4 (14) C8—C13—N2—C11 −3.7 (10)
C5—C6—C7—C8 0.2 (15) C14—C13—N2—C11 175.0 (7)
C6—C7—C8—C9 179.3 (9) C8—C13—N2—Cd1 165.9 (5)
C6—C7—C8—C13 −0.7 (13) C14—C13—N2—Cd1 −15.3 (8)
C13—C8—C9—C10 3.0 (12) C11—N2—Cd1—O1 19.0 (7)
C7—C8—C9—C10 −177.0 (8) C13—N2—Cd1—O1 −149.5 (5)
C8—C9—C10—C11 −1.0 (13) C11—N2—Cd1—N1 −175.2 (7)
C9—C10—C11—N2 −3.7 (13) C13—N2—Cd1—N1 16.3 (5)
C9—C10—C11—C12 177.9 (9) C11—N2—Cd1—Br1 −75.4 (7)
C9—C8—C13—N2 −0.6 (11) C13—N2—Cd1—Br1 116.1 (5)
C7—C8—C13—N2 179.4 (7) C11—N2—Cd1—Br2 106.8 (7)
C9—C8—C13—C14 −179.5 (7) C13—N2—Cd1—Br2 −61.7 (5)
C7—C8—C13—C14 0.5 (10) S1—O1—Cd1—N2 −175.0 (4)
C4—C5—C14—N1 0.7 (11) S1—O1—Cd1—N1 139.3 (6)
C6—C5—C14—N1 −179.5 (8) S1—O1—Cd1—Br1 −57.2 (4)
C4—C5—C14—C13 179.6 (8) S1—O1—Cd1—Br2 64.7 (4)
C6—C5—C14—C13 −0.6 (11) C2—N1—Cd1—N2 178.3 (7)
N2—C13—C14—N1 0.2 (10) C14—N1—Cd1—N2 −15.9 (5)
C8—C13—C14—N1 179.0 (6) C2—N1—Cd1—O1 −133.1 (8)
N2—C13—C14—C5 −178.8 (7) C14—N1—Cd1—O1 32.7 (10)
C8—C13—C14—C5 0.1 (10) C2—N1—Cd1—Br1 64.2 (7)
C3—C2—N1—C14 −1.0 (12) C14—N1—Cd1—Br1 −130.0 (5)
C1—C2—N1—C14 177.9 (8) C2—N1—Cd1—Br2 −59.1 (7)
C3—C2—N1—Cd1 163.7 (6) C14—N1—Cd1—Br2 106.7 (5)
C1—C2—N1—Cd1 −17.3 (11) Cd1—O1—S1—C15 −134.0 (5)
C5—C14—N1—C2 0.2 (11) Cd1—O1—S1—C16 121.6 (5)
C13—C14—N1—C2 −178.7 (7)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2608).

References

  1. Akbarzadeh Torbati, N., Rezvani, A. R., Safari, N., Saravani, H. & Amani, V. (2010). Acta Cryst. E66, m1284. [DOI] [PMC free article] [PubMed]
  2. Alizadeh, R., Heidari, A., Ahmadi, R. & Amani, V. (2009). Acta Cryst. E65, m483–m484. [DOI] [PMC free article] [PubMed]
  3. Armentano, D., Munno, G. D., Guerra, F., Julve, M. & Lloret, F. (2006). Inorg. Chem. 45, 4626–4636. [DOI] [PubMed]
  4. Bruker (2001). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Ding, C.-F., Miao, Y.-F., Tian, B.-Q., Li, X.-M. & Zhang, S.-S. (2006). Acta Cryst. E62, m1062–m1063.
  7. Fanizzi, F. P., Intini, F. P., Maresca, L., Natile, G., Lanfranchi, M. & Tiripicchio, A. (1991). J. Chem. Soc. Dalton Trans. pp. 1007–1015.
  8. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  9. Lemoine, P., Viossat, B. & Daran, J.-C. (2003). Acta Cryst. E59, m17–m19.
  10. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  11. Robinson, W. T. & Sinn, E. (1975). J. Chem. Soc. Dalton Trans. pp. 726–731.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812050106/hy2608sup1.cif

e-69-00m49-sup1.cif (19.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812050106/hy2608Isup2.hkl

e-69-00m49-Isup2.hkl (184.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES