Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Dec 12;69(Pt 1):i2. doi: 10.1107/S1600536812049884

β-K(VO2)2(PO4)

Safa Ezzine Yahmed a, Meriem Ayed a, Mohamed Faouzi Zid a,*, Ahmed Driss a
PMCID: PMC3588275  PMID: 23476311

Abstract

A new vanadium oxide, potassium bis­(dioxovanad­yl) phosphate, β-K(VO2)2(PO4), has been synthesized by a solid-state reaction. In the title compound, the [V2PO8] framework is built up from infinite pyramidal [V2O8] and [VPO7] chains linked together by V—O—P bridges, leading to a three-dimensional framework which delimits two types of inter­secting tunnels running along [100] and [010] in which the four unique K+ ions, showing coordination numbers of nine and ten, are located.

Related literature  

For α-K(VO2)2(PO4), see: Berrah et al. (1999). For background to the physico-chemical properties of related compounds, see: Daidouh et al. (1997); Pierini & Lombardo (2005). For details of structurally related compounds, see: Leclaire & Raveau (2006); Amoros & Le Bail (1992); Lii & Wang (1989); Daidouh et al. (1998); Benhamada et al. (1991). For the preparation, see: Ezzine et al. (2009). For bond-valence parameters, see: Brown & Altermatt (1985).

Experimental  

Crystal data  

  • K(VO2)2(PO4)

  • M r = 299.95

  • Triclinic, Inline graphic

  • a = 4.7438 (8) Å

  • b = 13.889 (2) Å

  • c = 21.201 (3) Å

  • α = 70.89 (2)°

  • β = 89.55 (3)°

  • γ = 88.66 (3)°

  • V = 1319.5 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 3.71 mm−1

  • T = 298 K

  • 0.28 × 0.18 × 0.12 mm

Data collection  

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.447, T max = 0.668

  • 7567 measured reflections

  • 5673 independent reflections

  • 4828 reflections with I > 2σ(I)

  • R int = 0.021

  • 2 standard reflections every 120 min intensity decay: 1.2%

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.030

  • wR(F 2) = 0.086

  • S = 1.08

  • 5673 reflections

  • 434 parameters

  • Δρmax = 0.80 e Å−3

  • Δρmin = −0.50 e Å−3

Data collection: CAD-4 EXPRESS (Duisenberg, 1992; Macíček & Yordanov, 1992); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1998); software used to prepare material for publication: WinGX (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812049884/fi2128sup1.cif

e-69-000i2-sup1.cif (29.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812049884/fi2128Isup2.hkl

e-69-000i2-Isup2.hkl (272.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Materials developed in the A—V—X—O systems (where A=Alkali, X= P or As) and having open mixed anionic frameworks (uni, bi, and three-dimensional) have interesting physical properties, especially catalytic (Pierini et al., 2005) and ionic conductivity (Daidouh et al., 1997). This has led to the synthesis, by a solid state reaction, of a new form of divanadium phosphate KV2PO8. The asymmetric unit, (Fig. 1) of the title compound, is built up from four double pyramidal units V2O9 (consisting of distorted vertices-sharing VO5 trigonal-bipyramids encountered in A6V6P6O31 (A= Rb and K (Benhamada et al., 1991; Leclaire & Raveau, 2006)) interconnected by corner-sharing PO4 single tetrahedra. The junction of each kind of V2O9 unit by V–O–V bridges leads to two types of infinite chains with formula (V2O8). The first kind is parallel to the b axis where two successive pairs of pyramids have their apical oxygen atoms pointing towards the same direction (Fig. 2a). The second type is parallel to the a axis (Fig. 3) and two successive pairs of pyramids have their apical oxygen atoms pointing towards opposite directions. The compound can be described as a connection between the (V2O8) chains by vertex sharing of VO5 pentahedra and PO4 tetrahedra. Projections of the structure along the a and b axis show that the VO5 and PO4 polyhedra alternate along the a axis to form infinite chains (VPO7) in which vanadium polyhedra share an oxygen with one neighboring chain, leading to double chains (V2P2O12). Adjacent (V2O8) chains running along b are connected by double chains of vanadyl phosphate via corner sharing. The structure is depicted in (Fig. 4) and (Fig. 5) and can be denoted as a three-dimensional framework with two types of tunnels running along a and b axis where the monovalent cations K+ are located.

The bond valence sums (BVS) calculations using the empirical formula of Brown (Brown & Altermatt, 1985) assuming cations bonds give the values: P1(5.045), P2(4.991), P3(5.013), P4(5.027), V1(5.106), V2(5.066), V3(5.028), V4(5.127), V5(5.056), V6(5.081), V7(5.087), V8(5.115), K1(1.029), K2(0.991), K3(1.031) and K4(1.004) which verify coordination geometries and oxidation states for each atom.

The comparison of our material with those found in the literature reveals the presence of infinite chains (VPO7), (V2P2O12) and (V2O8) in the noncentrosymmetric compound with similar formulation α-KV2PO8 (Berrah et al., 1999). However, two successive pairs of pyramids have their apical oxygen in a trans-position leading to the sequence "cis-trans-trans-cis" (Fig. 2b). This leads to eight-sided tunnels that are smaller than those encountered in our structure. (V2O8) chains similar to those found in our phase where two successive pairs of pyramids have their apical oxygen atoms pointing towards the same direction have already been observed for the ammonium hydrogenophosphate α-NH4VO2PO3OH (Amoros & Le Bail, 1992). Materials K3V3As2O14 (Ezzine et al., 2009) and A2VP2O8 (A = Rb, Cs (Lii & Wang, 1989) and Na, Rb (Daidouh et al., 1998)) also contain chains (VXO7) (X = As or P) whose linkage form infinite layers of type (V2As2O14) and (VP2O8). The junction of these chains along the three directions of the cell edges leads to three-dimensional structures with large tunnels for α-KV2PO8 and K3V3As2O14 compounds. As far as the series of A2VP2O8 (A= Alkali) compounds is concerned, they form by P–O–P bridges two-dimensional structures, characterized by the presence of interlayer space where the cations are located.

Experimental

In order to obtain a new phosphate isotypic with K3V3As2O14 (Ezzine et al., 2009), KNO3 (Fluka, 60415), NH4VO3 (Riedel-De Haën, 12739) and NH4H2PO4 (Scharlau, AM0335) were first mixed in the molar ratio 3:3:2 and heated at 573 K to decompose the ammonium phosphate and the nitrate. In a second step, the resulting mixture was crushed then heated at 793 K for two days, cooled slowly (5°C/24 h) down to 743 K and finally quenched to room temperature. From the resulting product, well-shaped crystals of various sizes, of satisfactory quality for analysis by X-ray diffraction, were retrieved. A yellow ochre parallelpipedic crystal was chosen from the selection for the determination of cell parameters.

Refinement

The electron density maximum and minimum in the remaining Fourier differences are acceptable and are located respectively at 0.88 Å from O25 and 0.73 Å from V2.

Figures

Fig. 1.

Fig. 1.

Asymmetric unit of β-K(VO2)2(PO4). Displacement ellipsoids are drawn at the 50% probability level. Symmetry codes:(i) x+1, y, z; (ii) - x+1, -y+2, -z+1; (iii) x-1, y, z; (iv) -x+1, -y+1, -z+1; (v) x, y, z+1; (vi) x-1, y, z+1; (vii) x, y, z-1.

Fig. 2.

Fig. 2.

Representation of the first type of infinite chains (V2O8)∞ showing the disposition of apical oxygen atoms: (a) in cis-cis position in β-K(VO2)2(PO4). (b) in cis-cis-trans-trans position in α-K(VO2)2(PO4).

Fig. 3.

Fig. 3.

Representation of the second type of (V2O8)∞ chains, running along a.

Fig. 4.

Fig. 4.

Projection of the structure of β-K(VO2)2(PO4) along a showing S shaped tunnels.

Fig. 5.

Fig. 5.

Projection of the structure of β-K(VO2)2(PO4) along b showing 'Pacman' shaped tunnels.

Crystal data

K(VO2)2(PO4) Z = 8
Mr = 299.95 F(000) = 1152
Triclinic, P1 Dx = 3.020 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 4.7438 (8) Å Cell parameters from 25 reflections
b = 13.889 (2) Å θ = 10–16°
c = 21.201 (3) Å µ = 3.71 mm1
α = 70.89 (2)° T = 298 K
β = 89.55 (3)° Prism, yellow ochre
γ = 88.66 (3)° 0.28 × 0.18 × 0.12 mm
V = 1319.5 (4) Å3

Data collection

Enraf–Nonius CAD-4 diffractometer 4828 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.021
Graphite monochromator θmax = 27.0°, θmin = 2.0°
ω/2θ scans h = −6→1
Absorption correction: ψ scan (North et al., 1968) k = −17→17
Tmin = 0.447, Tmax = 0.668 l = −27→27
7567 measured reflections 2 standard reflections every 120 min
5673 independent reflections intensity decay: 1.2%

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030 w = 1/[σ2(Fo2) + (0.045P)2 + 1.4475P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.086 (Δ/σ)max = 0.001
S = 1.08 Δρmax = 0.80 e Å3
5673 reflections Δρmin = −0.50 e Å3
434 parameters Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.0177 (5)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
P1 0.81894 (16) 0.82998 (6) 0.62044 (4) 0.00927 (16)
P2 0.30877 (16) 0.66561 (6) 0.38286 (4) 0.00846 (16)
P3 0.69764 (16) 0.95394 (6) 0.88110 (4) 0.00847 (16)
P4 0.18695 (16) 0.55208 (6) 0.11864 (4) 0.00897 (16)
V1 0.67895 (11) 0.62518 (4) 0.74349 (2) 0.01025 (12)
V2 0.20740 (11) 0.84522 (4) 0.97612 (2) 0.00914 (12)
V3 0.67812 (11) 0.86795 (4) 0.75923 (3) 0.01073 (12)
V4 0.33078 (11) 0.63012 (4) 0.24341 (3) 0.01087 (12)
V5 0.79712 (10) 0.68009 (4) 0.47752 (2) 0.00898 (12)
V6 0.32962 (11) 0.87164 (4) 0.25925 (3) 0.01096 (12)
V7 0.30088 (11) 0.82752 (4) 0.52064 (2) 0.00904 (12)
V8 0.70261 (11) 0.65479 (4) 0.01947 (2) 0.00902 (12)
K1 0.19194 (17) 0.53056 (6) 0.62537 (4) 0.02600 (18)
K2 0.80918 (17) 0.84200 (7) 0.12683 (4) 0.02642 (18)
K3 0.25658 (18) 0.65377 (7) 0.87178 (4) 0.02692 (19)
K4 0.74706 (18) 0.97341 (6) 0.36973 (4) 0.02608 (19)
O1 0.6015 (5) 0.78815 (16) 0.46573 (11) 0.0130 (4)
O2 0.4024 (4) 0.74851 (16) 0.96467 (11) 0.0132 (4)
O3 0.8822 (4) 0.93237 (16) 0.94288 (10) 0.0116 (4)
O4 0.1257 (4) 0.85042 (17) 0.59847 (11) 0.0146 (4)
O5 0.1243 (4) 0.62663 (16) 0.44482 (10) 0.0113 (4)
O6 0.9010 (4) 0.75197 (16) 0.02434 (11) 0.0135 (4)
O7 0.1026 (5) 0.72520 (17) 0.52599 (11) 0.0135 (4)
O8 0.8785 (4) 0.55572 (16) 0.09744 (11) 0.0145 (5)
O9 0.6199 (5) 0.65051 (17) 0.40334 (11) 0.0146 (4)
O10 0.2347 (5) 0.77905 (16) 0.34598 (11) 0.0143 (5)
O11 0.3322 (5) 0.86573 (18) 0.03997 (11) 0.0184 (5)
O12 0.3868 (4) 0.94798 (16) 0.90171 (11) 0.0136 (4)
O13 0.2543 (5) 0.93608 (16) 0.16436 (11) 0.0129 (4)
O14 0.6717 (5) 0.59606 (18) 0.54165 (11) 0.0177 (5)
O15 0.7832 (6) 0.71576 (17) 0.65851 (11) 0.0201 (5)
O16 0.3734 (4) 0.57915 (17) 0.05664 (11) 0.0141 (4)
O17 0.7492 (5) 0.89548 (16) 0.66473 (11) 0.0131 (4)
O18 0.2579 (5) 0.59998 (16) 0.33811 (11) 0.0126 (4)
O19 0.2327 (6) 0.62756 (17) 0.15666 (11) 0.0196 (5)
O20 0.1780 (5) 0.92122 (18) 0.46105 (12) 0.0195 (5)
O21 0.8267 (5) 0.62017 (18) 0.96030 (12) 0.0184 (5)
O22 0.7748 (5) 0.87717 (16) 0.84469 (11) 0.0143 (5)
O23 0.6303 (5) 0.86329 (17) 0.55904 (11) 0.0143 (4)
O24 0.2538 (5) 0.44138 (16) 0.16220 (11) 0.0131 (4)
O25 0.2320 (5) 0.98015 (16) 0.27381 (11) 0.0174 (5)
O26 0.7750 (5) 0.74426 (16) 0.77524 (11) 0.0163 (5)
O27 0.2304 (5) 0.75295 (16) 0.22901 (11) 0.0175 (5)
O28 0.7767 (5) 0.51742 (16) 0.72784 (11) 0.0166 (5)
O29 0.3424 (5) 0.62895 (19) 0.74222 (12) 0.0219 (5)
O30 0.6654 (5) 0.8693 (2) 0.25991 (13) 0.0236 (5)
O31 0.3413 (5) 0.86967 (19) 0.76068 (12) 0.0215 (5)
O32 0.6666 (5) 0.6285 (2) 0.24292 (13) 0.0231 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
P1 0.0107 (4) 0.0107 (3) 0.0072 (3) −0.0017 (3) 0.0015 (3) −0.0039 (3)
P2 0.0090 (4) 0.0101 (3) 0.0066 (3) −0.0001 (3) −0.0001 (3) −0.0032 (3)
P3 0.0086 (4) 0.0090 (3) 0.0070 (3) −0.0001 (3) 0.0002 (3) −0.0016 (3)
P4 0.0105 (4) 0.0087 (3) 0.0069 (3) −0.0003 (3) −0.0015 (3) −0.0013 (3)
V1 0.0148 (3) 0.0087 (2) 0.0071 (2) −0.00055 (19) −0.00053 (19) −0.00236 (19)
V2 0.0078 (2) 0.0107 (2) 0.0082 (2) 0.00032 (18) −0.00125 (18) −0.00212 (19)
V3 0.0153 (3) 0.0088 (2) 0.0081 (2) −0.00139 (19) 0.00208 (19) −0.00273 (19)
V4 0.0157 (3) 0.0089 (2) 0.0081 (2) −0.00129 (19) −0.0007 (2) −0.00267 (19)
V5 0.0072 (2) 0.0115 (2) 0.0083 (2) −0.00063 (18) 0.00118 (18) −0.00344 (19)
V6 0.0161 (3) 0.0088 (2) 0.0082 (2) −0.00082 (19) −0.0007 (2) −0.00290 (19)
V7 0.0077 (2) 0.0114 (2) 0.0083 (2) 0.00012 (18) −0.00159 (18) −0.00353 (19)
V8 0.0081 (2) 0.0101 (2) 0.0083 (2) −0.00074 (18) 0.00148 (19) −0.00222 (19)
K1 0.0215 (4) 0.0238 (4) 0.0267 (4) −0.0012 (3) 0.0034 (3) −0.0002 (3)
K2 0.0228 (4) 0.0352 (4) 0.0265 (4) 0.0008 (3) −0.0044 (3) −0.0173 (4)
K3 0.0252 (4) 0.0351 (4) 0.0268 (4) −0.0088 (3) 0.0098 (3) −0.0186 (4)
K4 0.0262 (4) 0.0217 (4) 0.0252 (4) −0.0035 (3) −0.0088 (3) −0.0003 (3)
O1 0.0112 (10) 0.0162 (11) 0.0130 (10) 0.0018 (8) −0.0012 (8) −0.0069 (9)
O2 0.0106 (10) 0.0134 (10) 0.0139 (11) −0.0001 (8) 0.0009 (8) −0.0023 (8)
O3 0.0109 (10) 0.0149 (10) 0.0085 (10) 0.0027 (8) −0.0021 (8) −0.0032 (8)
O4 0.0077 (10) 0.0244 (12) 0.0149 (11) −0.0013 (9) 0.0013 (8) −0.0110 (9)
O5 0.0090 (10) 0.0150 (10) 0.0085 (10) 0.0021 (8) 0.0012 (8) −0.0024 (8)
O6 0.0092 (10) 0.0120 (10) 0.0169 (11) −0.0007 (8) −0.0019 (9) −0.0014 (8)
O7 0.0099 (10) 0.0176 (11) 0.0160 (11) −0.0025 (8) 0.0016 (9) −0.0094 (9)
O8 0.0083 (10) 0.0172 (11) 0.0142 (11) −0.0006 (8) 0.0006 (8) 0.0001 (9)
O9 0.0095 (11) 0.0224 (11) 0.0156 (11) 0.0013 (9) −0.0015 (9) −0.0114 (9)
O10 0.0217 (12) 0.0102 (10) 0.0103 (10) 0.0013 (9) −0.0003 (9) −0.0025 (8)
O11 0.0184 (12) 0.0234 (12) 0.0137 (11) −0.0025 (9) −0.0029 (9) −0.0063 (9)
O12 0.0082 (10) 0.0146 (10) 0.0137 (11) 0.0003 (8) −0.0015 (8) 0.0011 (8)
O13 0.0190 (12) 0.0105 (10) 0.0087 (10) −0.0037 (8) 0.0014 (9) −0.0022 (8)
O14 0.0149 (11) 0.0218 (12) 0.0135 (11) −0.0046 (9) 0.0032 (9) −0.0015 (9)
O15 0.0389 (15) 0.0112 (11) 0.0105 (11) −0.0044 (10) 0.0079 (10) −0.0040 (9)
O16 0.0095 (10) 0.0193 (11) 0.0122 (10) −0.0033 (8) 0.0012 (8) −0.0030 (9)
O17 0.0187 (12) 0.0112 (10) 0.0097 (10) 0.0000 (8) 0.0032 (9) −0.0041 (8)
O18 0.0176 (11) 0.0128 (10) 0.0078 (10) −0.0019 (8) −0.0010 (8) −0.0037 (8)
O19 0.0354 (14) 0.0116 (11) 0.0119 (11) −0.0016 (10) −0.0066 (10) −0.0038 (9)
O20 0.0195 (12) 0.0199 (12) 0.0161 (12) 0.0051 (9) −0.0034 (10) −0.0021 (9)
O21 0.0183 (12) 0.0234 (12) 0.0150 (11) 0.0029 (9) 0.0039 (9) −0.0085 (9)
O22 0.0214 (12) 0.0105 (10) 0.0113 (11) 0.0003 (9) 0.0010 (9) −0.0041 (8)
O23 0.0105 (11) 0.0223 (11) 0.0117 (10) −0.0019 (9) −0.0019 (8) −0.0076 (9)
O24 0.0197 (12) 0.0095 (10) 0.0090 (10) 0.0015 (8) −0.0022 (9) −0.0017 (8)
O25 0.0343 (14) 0.0103 (10) 0.0075 (10) −0.0020 (9) 0.0023 (9) −0.0028 (8)
O26 0.0294 (13) 0.0107 (10) 0.0086 (10) 0.0004 (9) −0.0008 (9) −0.0029 (8)
O27 0.0334 (14) 0.0109 (10) 0.0075 (10) −0.0016 (9) −0.0031 (10) −0.0017 (8)
O28 0.0317 (13) 0.0099 (10) 0.0081 (10) −0.0020 (9) 0.0023 (9) −0.0027 (8)
O29 0.0166 (12) 0.0270 (13) 0.0201 (13) 0.0027 (10) −0.0033 (10) −0.0049 (10)
O30 0.0173 (13) 0.0282 (13) 0.0248 (13) 0.0003 (10) −0.0031 (10) −0.0082 (11)
O31 0.0165 (12) 0.0269 (13) 0.0213 (13) −0.0015 (10) 0.0030 (10) −0.0080 (10)
O32 0.0155 (12) 0.0304 (14) 0.0243 (13) −0.0037 (10) 0.0018 (10) −0.0098 (11)

Geometric parameters (Å, º)

P1—O23 1.521 (3) V7—O7 1.695 (2)
P1—O4i 1.529 (2) V7—O23 1.917 (2)
P1—O17 1.536 (2) V7—O4 1.955 (2)
P1—O15 1.539 (2) V7—O1 2.010 (3)
P2—O5 1.524 (2) V8—O21vii 1.588 (2)
P2—O9 1.532 (2) V8—O6 1.694 (2)
P2—O18 1.539 (2) V8—O16 1.918 (3)
P2—O10 1.546 (2) V8—O8 1.950 (3)
P3—O3 1.523 (2) V8—O2vii 2.005 (3)
P3—O12 1.531 (2) K1—O18viii 2.771 (3)
P3—O13ii 1.537 (2) K1—O14 2.852 (3)
P3—O22 1.544 (2) K1—O7 2.856 (3)
P4—O16 1.525 (3) K1—O28iii 2.885 (3)
P4—O8iii 1.529 (2) K1—O9iv 2.895 (3)
P4—O19 1.537 (2) K1—O14iii 2.996 (3)
P4—O24 1.539 (2) K1—O32iv 3.008 (4)
V1—O29 1.596 (2) K1—O18iv 3.097 (3)
V1—O28 1.690 (2) K1—O29 3.287 (3)
V1—O15 1.899 (3) K2—O13i 2.763 (3)
V1—O24iv 1.934 (2) K2—O6 2.866 (3)
V1—O26 2.041 (2) K2—O11 2.873 (3)
V2—O11v 1.593 (2) K2—O27i 2.901 (4)
V2—O2 1.694 (2) K2—O12ii 2.910 (3)
V2—O3iii 1.927 (3) K2—O11i 3.037 (3)
V2—O12 1.952 (3) K2—O30 3.038 (3)
V2—O6vi 2.008 (3) K2—O13 3.124 (3)
V3—O31 1.598 (2) K2—O32 3.256 (4)
V3—O26 1.692 (2) K3—O21iii 2.704 (3)
V3—O22 1.918 (2) K3—O2 2.802 (3)
V3—O17 1.941 (2) K3—O24iv 2.848 (3)
V3—O25ii 2.048 (2) K3—O8iv 2.853 (3)
V4—O32 1.592 (2) K3—O29 2.903 (3)
V4—O27 1.689 (2) K3—O24viii 2.988 (3)
V4—O19 1.912 (2) K3—O26iii 3.040 (4)
V4—O18 1.942 (2) K3—O31 3.181 (4)
V4—O28iv 2.014 (2) K3—O26 3.193 (4)
V5—O14 1.595 (3) K3—O21 3.240 (3)
V5—O1 1.694 (2) K4—O20i 2.744 (3)
V5—O5i 1.926 (2) K4—O1 2.806 (3)
V5—O9 1.952 (2) K4—O4ii 2.822 (3)
V5—O7i 2.009 (3) K4—O17ii 2.889 (3)
V6—O30 1.593 (3) K4—O31ii 2.933 (3)
V6—O25 1.688 (2) K4—O17ix 2.977 (3)
V6—O10 1.924 (3) K4—O25i 3.041 (3)
V6—O13 1.948 (2) K4—O30 3.147 (3)
V6—O27 2.021 (2) K4—O25 3.171 (3)
V7—O20 1.590 (3) K4—O20 3.264 (4)
O23—P1—O4i 109.01 (14) O22—V3—O25ii 83.48 (11)
O23—P1—O17 109.42 (14) O17—V3—O25ii 76.99 (11)
O4i—P1—O17 106.61 (14) O32—V4—O27 105.91 (15)
O23—P1—O15 110.17 (15) O32—V4—O19 103.89 (15)
O4i—P1—O15 109.90 (17) O27—V4—O19 95.54 (12)
O17—P1—O15 111.63 (13) O32—V4—O18 100.53 (14)
O5—P2—O9 109.44 (14) O27—V4—O18 90.26 (12)
O5—P2—O18 108.38 (13) O19—V4—O18 152.23 (11)
O9—P2—O18 106.84 (14) O32—V4—O28iv 105.13 (15)
O5—P2—O10 109.41 (14) O27—V4—O28iv 148.24 (12)
O9—P2—O10 111.43 (16) O19—V4—O28iv 83.39 (11)
O18—P2—O10 111.26 (13) O18—V4—O28iv 77.61 (11)
O3—P3—O12 109.42 (13) O14—V5—O1 106.78 (13)
O3—P3—O13ii 108.56 (14) O14—V5—O5i 110.53 (13)
O12—P3—O13ii 106.81 (15) O1—V5—O5i 142.54 (11)
O3—P3—O22 109.33 (14) O14—V5—O9 103.24 (12)
O12—P3—O22 111.71 (15) O1—V5—O9 93.29 (12)
O13ii—P3—O22 110.93 (13) O5i—V5—O9 81.56 (10)
O16—P4—O8iii 109.06 (13) O14—V5—O7i 96.23 (12)
O16—P4—O19 109.92 (14) O1—V5—O7i 93.05 (11)
O8iii—P4—O19 110.26 (15) O5i—V5—O7i 79.85 (10)
O16—P4—O24 108.94 (14) O9—V5—O7i 156.79 (10)
O8iii—P4—O24 106.65 (15) O30—V6—O25 105.48 (15)
O19—P4—O24 111.92 (13) O30—V6—O10 103.21 (15)
O29—V1—O28 105.95 (15) O25—V6—O10 96.97 (11)
O29—V1—O15 104.16 (15) O30—V6—O13 101.01 (15)
O28—V1—O15 95.75 (11) O25—V6—O13 90.43 (12)
O29—V1—O24iv 100.43 (15) O10—V6—O13 151.70 (10)
O28—V1—O24iv 90.45 (11) O30—V6—O27 103.95 (14)
O15—V1—O24iv 151.84 (11) O25—V6—O27 149.67 (12)
O29—V1—O26 102.98 (14) O10—V6—O27 83.24 (10)
O28—V1—O26 150.24 (12) O13—V6—O27 76.87 (10)
O15—V1—O26 83.72 (10) O20—V7—O7 107.46 (13)
O24iv—V1—O26 77.53 (10) O20—V7—O23 111.76 (13)
O11v—V2—O2 106.92 (13) O7—V7—O23 140.64 (12)
O11v—V2—O3iii 110.30 (13) O20—V7—O4 101.96 (12)
O2—V2—O3iii 142.66 (11) O7—V7—O4 94.01 (12)
O11v—V2—O12 103.25 (12) O23—V7—O4 81.21 (10)
O2—V2—O12 93.04 (11) O20—V7—O1 95.37 (13)
O3iii—V2—O12 81.45 (11) O7—V7—O1 93.37 (11)
O11v—V2—O6vi 96.50 (12) O23—V7—O1 80.05 (10)
O2—V2—O6vi 92.90 (11) O4—V7—O1 158.15 (10)
O3iii—V2—O6vi 80.19 (10) O21vii—V8—O6 107.21 (13)
O12—V2—O6vi 156.70 (10) O21vii—V8—O16 110.63 (12)
O31—V3—O26 105.43 (15) O6—V8—O16 142.02 (11)
O31—V3—O22 102.93 (14) O21vii—V8—O8 102.02 (12)
O26—V3—O22 97.24 (12) O6—V8—O8 93.61 (11)
O31—V3—O17 101.01 (14) O16—V8—O8 81.75 (11)
O26—V3—O17 90.49 (12) O21vii—V8—O2vii 95.70 (12)
O22—V3—O17 151.81 (10) O6—V8—O2vii 93.36 (10)
O31—V3—O25ii 102.47 (15) O16—V8—O2vii 79.98 (10)
O26—V3—O25ii 151.14 (12) O8—V8—O2vii 158.08 (10)

Symmetry codes: (i) x+1, y, z; (ii) −x+1, −y+2, −z+1; (iii) x−1, y, z; (iv) −x+1, −y+1, −z+1; (v) x, y, z+1; (vi) x−1, y, z+1; (vii) x, y, z−1; (viii) −x, −y+1, −z+1; (ix) −x+2, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FI2128).

References

  1. Amoros, P. & Le Bail, A. (1992). J. Solid State Chem. 97, 283–291.
  2. Benhamada, L., Grandin, A., Borel, M. M., Leclaire, A. & Raveau, B. (1991). J. Solid State Chem. 94, 274–280.
  3. Berrah, F., Borel, M. M., Leclaire, A., Daturi, M. & Raveau, B. (1999). J. Solid State Chem. 145, 643–648.
  4. Brandenburg, K. (1998). DIAMOND University of Bonn, Germany.
  5. Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.
  6. Daidouh, A., Veiga, M. L. & Pico, C. (1997). J. Solid State Chem. 130, 28–34.
  7. Daidouh, A., Veiga, M. L. & Pico, C. (1998). Solid State Ionics, 106, 103–112.
  8. Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92–96.
  9. Ezzine, S., Zid, M. F. & Driss, A. (2009). Acta Cryst. E65, i31. [DOI] [PMC free article] [PubMed]
  10. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  11. Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  12. Leclaire, A. & Raveau, B. (2006). J. Solid State Chem. 179, 205–211.
  13. Lii, K. H. & Wang, S. L. (1989). J. Solid State Chem. 82, 239–246.
  14. Macíček, J. & Yordanov, A. (1992). J. Appl. Cryst. 25, 73–80.
  15. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  16. Pierini, B. T. & Lombardo, E. A. (2005). Mater. Chem. Phys. 92, 197–204.
  17. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812049884/fi2128sup1.cif

e-69-000i2-sup1.cif (29.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812049884/fi2128Isup2.hkl

e-69-000i2-Isup2.hkl (272.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES