Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Dec 22;69(Pt 1):m67. doi: 10.1107/S1600536812050908

Diaqua­bis­[4-(1H-imidazol-2-yl)pyridine-κN]bis­(nitrato-κO)cadmium

Chuan-Yue Zhang a, Tao Wang a, Chuan-Ming Jin a,*
PMCID: PMC3588280  PMID: 23476357

Abstract

In the title compound, [Cd(NO3)2(C8H7N3)2(H2O)2], the CdII cation is situated on an inversion center and is coordinated by the O atoms of two nitrate anions, by the N atoms of two 4-(imidazol-2-yl)pyridine ligands and by two water O atoms in a slightly distorted N2O4 octa­hedral geometry. The dihedral angle between the imidazole and pyridine rings is 1.6 (2)°. In the crystal, mol­ecules are linked by N—H⋯O, O—H⋯N and O—H⋯O hydrogen bonds, forming a three-dimensional network.

Related literature  

For background to compounds with metal-organic framework (MOF) structures, see: Batten & Robson (1998); Burrows (2011); Jin et al. (2010); Tanabe & Cohen (2011). For the use of N,N′-type ligands in MOFs, see: Custelcean (2010); Pschirer et al. (2002). For the structural analysis of an imidazole closely related to the ligand, see: Voss et al. (2008).graphic file with name e-69-00m67-scheme1.jpg

Experimental  

Crystal data  

  • [Cd(NO3)2(C8H7N3)2(H2O)2]

  • M r = 562.78

  • Monoclinic, Inline graphic

  • a = 7.2508 (7) Å

  • b = 12.1372 (12) Å

  • c = 12.3509 (12) Å

  • β = 102.278 (2)°

  • V = 1062.07 (18) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.09 mm−1

  • T = 298 K

  • 0.16 × 0.12 × 0.10 mm

Data collection  

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.845, T max = 0.899

  • 6543 measured reflections

  • 2462 independent reflections

  • 2272 reflections with I > 2σ(I)

  • R int = 0.046

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.035

  • wR(F 2) = 0.084

  • S = 1.10

  • 2462 reflections

  • 157 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.73 e Å−3

  • Δρmin = −0.47 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812050908/im2415sup1.cif

e-69-00m67-sup1.cif (21.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812050908/im2415Isup2.hkl

e-69-00m67-Isup2.hkl (121KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O3i 0.86 2.10 2.923 (3) 160
O4—H4B⋯N2ii 0.82 (1) 1.98 (1) 2.796 (3) 174 (4)
O4—H4A⋯O2iii 0.81 (1) 2.14 (1) 2.946 (4) 174 (4)
O4—H4A⋯O3iii 0.81 (1) 2.65 (3) 3.197 (3) 126 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

We gratefully acknowledge financial support by the National Natural Science Foundation of China (21171053) and the Science Foundation of Hubei Provincial Department of Education (Z20102501).

supplementary crystallographic information

Comment

The construction of functional metal-organic frameworks is of great interest due to their intriguing network topologies and their potential applications as microporous, magnetism, catalysis, nonlinear optics, molecular separation, toxic materials adsorption and molecular sensors (Batten & Robson, 1998; Burrows, 2011; Jin et al., 2010; Tanabe & Cohen, 2011). The molecular geometry and flexibility of multidentate ligands play key roles in the field of supramolecular self-assemble on metal-organic frameworks. For example, 4, 4'-bipyridine, 1, 2- bis(4-pyridyl)ethane and trans-bis(4-pyridyl)ethene as ligands can form a lot of coordination polymers with different structure features (Custelcean, 2010; Pschirer et al., 2002). Our interest is to exploit the coordination chemistry of 2-pyridinyl-imidazole and its derivatives together with their potential application in material science.

In the report, the mono-nuclear cadmium(II) complex, [Cd(C8H7N3)2(NO3)2(H2O)2], was obtained via the reaction of 4-(1H-imidazol-2-yl)-pyridine and cadmium(II) nitrate. Single crystal X-ray diffraction analysis reveals that the cadmium(II) atom is six-coordinated in a slightly distorted octahedral geometry by two pyridine nitrogen atoms, two nitrate anions oxygen atoms and two aqua oxygen atoms forming N2O4 donor set (Figure 1). The cadmium atom is situated on an inversion center. Bond distances of Cd(1)—N(1), Cd(1)—O(1) and Cd(1)—O(4) are 2.276 (2), 2.503 (3) and 2.310 (2) Å, respectivity. The dihedral angle between the imidazole and pyridine rings is 1.6 (2)°. In the crystal, molecules are linked by N—H······O, O—H······N and O—H······O hydrogen bonds, forming a three-dimensional network (Figure 2).

Experimental

The organic ligand 4-(1H-imidazol-2-yl)-pyridine was prepared according to the previously reported literature methods (Voss et al., 2008). Cd(NO3)2 (24 mg, 0.1 mmol) dissolved in 5 ml ethanol and a solution of 4-(1H-imidazol-2-yl)-pyridine (29 mg, 0.2 mmol) in another 5 ml of ethanol were mixed, refluxed for 5 h and filtered. The filtrate was left at room temperature. Suitable single crystals for a X-ray diffraction study were obtained after a few days (yield: 73% based on Cd(II) salts).

Refinement

H atoms were positioned geometrically at distances of 0.93 (CH), and 0.86 (NH) from the respective parent atoms, a riding model was used during the refinement process. Uiso values were constrained to be 1.2 times Ueq of the carrier atom.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) with atom labels and 30% probability displacement ellipsoids for non-H atoms.

Fig. 2.

Fig. 2.

The three-dimensional supramolecular packing architecture of (I) with hydrogen-bonds depicted as dashed lines.

Crystal data

[Cd(NO3)2(C8H7N3)2(H2O)2] F(000) = 564
Mr = 562.78 Dx = 1.760 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 4257 reflections
a = 7.2508 (7) Å θ = 2.4–28.3°
b = 12.1372 (12) Å µ = 1.09 mm1
c = 12.3509 (12) Å T = 298 K
β = 102.278 (2)° Block, colorless
V = 1062.07 (18) Å3 0.16 × 0.12 × 0.10 mm
Z = 2

Data collection

Bruker APEXII CCD area-detector diffractometer 2462 independent reflections
Radiation source: fine-focus sealed tube 2272 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.046
phi and ω scans θmax = 28.0°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −7→9
Tmin = 0.845, Tmax = 0.899 k = −15→15
6543 measured reflections l = −14→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084 H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0252P)2 + 1.0694P] where P = (Fo2 + 2Fc2)/3
2462 reflections (Δ/σ)max = 0.001
157 parameters Δρmax = 0.73 e Å3
3 restraints Δρmin = −0.47 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cd1 1.0000 0.5000 0.5000 0.03811 (11)
C1 0.8396 (5) 0.6142 (2) 0.2671 (2) 0.0466 (7)
H1 0.8465 0.6754 0.3131 0.056*
C2 0.7823 (5) 0.6301 (2) 0.1550 (2) 0.0456 (7)
H2 0.7498 0.7002 0.1269 0.055*
C3 0.7732 (4) 0.5408 (2) 0.0842 (2) 0.0341 (5)
C4 0.8205 (5) 0.4390 (2) 0.1325 (2) 0.0499 (8)
H4 0.8146 0.3764 0.0885 0.060*
C5 0.8761 (5) 0.4304 (3) 0.2458 (2) 0.0497 (7)
H5 0.9086 0.3612 0.2762 0.060*
C6 0.7176 (4) 0.5554 (2) −0.0359 (2) 0.0337 (5)
C7 0.6323 (5) 0.6241 (3) −0.1984 (2) 0.0502 (7)
H7 0.5950 0.6748 −0.2552 0.060*
C8 0.6534 (5) 0.5154 (3) −0.2132 (3) 0.0506 (8)
H8 0.6350 0.4779 −0.2803 0.061*
N1 0.8860 (4) 0.51635 (18) 0.3142 (2) 0.0396 (5)
N2 0.6733 (4) 0.6497 (2) −0.08794 (19) 0.0426 (5)
N3 0.7075 (4) 0.4715 (2) −0.1096 (2) 0.0427 (6)
H3 0.7309 0.4032 −0.0939 0.051*
N4 0.7084 (3) 0.6785 (2) 0.5340 (2) 0.0411 (5)
O1 0.8766 (3) 0.6853 (3) 0.5384 (2) 0.0747 (8)
O2 0.6297 (5) 0.5914 (2) 0.5037 (3) 0.0965 (11)
O3 0.6156 (3) 0.75586 (18) 0.5590 (2) 0.0562 (6)
O4 1.2220 (3) 0.63059 (19) 0.4800 (2) 0.0573 (6)
H4B 1.200 (5) 0.6945 (15) 0.461 (4) 0.086*
H4A 1.334 (2) 0.617 (3) 0.490 (4) 0.086*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cd1 0.05052 (19) 0.03477 (16) 0.02528 (16) −0.00965 (11) −0.00034 (11) 0.00115 (10)
C1 0.071 (2) 0.0372 (14) 0.0297 (13) −0.0023 (14) 0.0073 (13) −0.0033 (11)
C2 0.069 (2) 0.0356 (14) 0.0303 (14) 0.0046 (14) 0.0079 (13) 0.0017 (11)
C3 0.0388 (13) 0.0346 (12) 0.0279 (12) −0.0030 (11) 0.0050 (10) 0.0008 (10)
C4 0.081 (2) 0.0318 (14) 0.0306 (14) −0.0012 (14) −0.0011 (14) −0.0041 (11)
C5 0.074 (2) 0.0355 (14) 0.0333 (15) −0.0032 (14) −0.0040 (13) 0.0036 (12)
C6 0.0389 (13) 0.0332 (13) 0.0285 (12) 0.0001 (10) 0.0059 (10) −0.0012 (10)
C7 0.065 (2) 0.0547 (18) 0.0284 (14) 0.0112 (15) 0.0049 (13) 0.0079 (12)
C8 0.069 (2) 0.0556 (19) 0.0252 (14) 0.0020 (15) 0.0045 (13) −0.0020 (12)
N1 0.0523 (14) 0.0368 (12) 0.0267 (12) −0.0080 (10) 0.0014 (10) 0.0007 (9)
N2 0.0578 (15) 0.0393 (12) 0.0303 (11) 0.0077 (11) 0.0083 (10) 0.0027 (9)
N3 0.0615 (16) 0.0356 (11) 0.0293 (12) 0.0016 (11) 0.0055 (11) −0.0029 (9)
N4 0.0460 (13) 0.0387 (13) 0.0408 (13) 0.0056 (10) 0.0142 (10) 0.0112 (10)
O1 0.0446 (13) 0.111 (2) 0.0681 (17) 0.0082 (14) 0.0112 (12) 0.0077 (16)
O2 0.114 (3) 0.0367 (14) 0.151 (3) −0.0131 (15) 0.055 (2) −0.0218 (17)
O3 0.0654 (14) 0.0389 (11) 0.0700 (16) 0.0107 (11) 0.0271 (12) 0.0021 (10)
O4 0.0418 (11) 0.0386 (12) 0.0886 (18) −0.0045 (9) 0.0075 (12) 0.0101 (12)

Geometric parameters (Å, º)

Cd1—N1 2.276 (2) C5—N1 1.335 (4)
Cd1—N1i 2.276 (2) C5—H5 0.9300
Cd1—O4 2.310 (2) C6—N2 1.319 (3)
Cd1—O4i 2.310 (2) C6—N3 1.357 (3)
Cd1—O1 2.503 (3) C7—C8 1.345 (4)
Cd1—O1i 2.503 (3) C7—N2 1.368 (4)
C1—N1 1.333 (4) C7—H7 0.9300
C1—C2 1.371 (4) C8—N3 1.364 (4)
C1—H1 0.9300 C8—H8 0.9300
C2—C3 1.386 (4) N3—H3 0.8600
C2—H2 0.9300 N4—O1 1.211 (3)
C3—C4 1.384 (4) N4—O2 1.222 (4)
C3—C6 1.463 (3) N4—O3 1.232 (3)
C4—C5 1.374 (4) O4—H4B 0.816 (10)
C4—H4 0.9300 O4—H4A 0.814 (10)
N1—Cd1—N1i 180.00 (4) N1—C5—C4 123.4 (3)
N1—Cd1—O4 86.81 (9) N1—C5—H5 118.3
N1i—Cd1—O4 93.19 (9) C4—C5—H5 118.3
N1—Cd1—O4i 93.19 (9) N2—C6—N3 110.6 (2)
N1i—Cd1—O4i 86.81 (9) N2—C6—C3 125.8 (2)
O4—Cd1—O4i 180.0 N3—C6—C3 123.6 (2)
N1—Cd1—O1 92.58 (9) C8—C7—N2 110.6 (3)
N1i—Cd1—O1 87.42 (9) C8—C7—H7 124.7
O4—Cd1—O1 71.89 (9) N2—C7—H7 124.7
O4i—Cd1—O1 108.11 (9) C7—C8—N3 105.9 (3)
N1—Cd1—O1i 87.42 (9) C7—C8—H8 127.1
N1i—Cd1—O1i 92.58 (9) N3—C8—H8 127.1
O4—Cd1—O1i 108.11 (9) C1—N1—C5 116.4 (3)
O4i—Cd1—O1i 71.89 (9) C1—N1—Cd1 121.42 (18)
O1—Cd1—O1i 180.00 (7) C5—N1—Cd1 121.97 (19)
N1—C1—C2 124.1 (3) C6—N2—C7 105.5 (2)
N1—C1—H1 118.0 C6—N3—C8 107.4 (3)
C2—C1—H1 118.0 C6—N3—H3 126.3
C1—C2—C3 119.4 (3) C8—N3—H3 126.3
C1—C2—H2 120.3 O1—N4—O2 118.2 (3)
C3—C2—H2 120.3 O1—N4—O3 122.4 (3)
C4—C3—C2 116.9 (2) O2—N4—O3 119.4 (3)
C4—C3—C6 122.3 (3) N4—O1—Cd1 109.1 (2)
C2—C3—C6 120.8 (2) Cd1—O4—H4B 126 (3)
C5—C4—C3 119.9 (3) Cd1—O4—H4A 123 (3)
C5—C4—H4 120.0 H4B—O4—H4A 111 (2)
C3—C4—H4 120.0
N1—C1—C2—C3 −0.9 (5) O1i—Cd1—N1—C1 −161.4 (3)
C1—C2—C3—C4 1.1 (5) N1i—Cd1—N1—C5 −114 (15)
C1—C2—C3—C6 −178.3 (3) O4—Cd1—N1—C5 121.5 (3)
C2—C3—C4—C5 −1.0 (5) O4i—Cd1—N1—C5 −58.5 (3)
C6—C3—C4—C5 178.4 (3) O1—Cd1—N1—C5 −166.8 (3)
C3—C4—C5—N1 0.7 (6) O1i—Cd1—N1—C5 13.2 (3)
C4—C3—C6—N2 −179.0 (3) N3—C6—N2—C7 0.5 (3)
C2—C3—C6—N2 0.4 (4) C3—C6—N2—C7 179.7 (3)
C4—C3—C6—N3 0.1 (4) C8—C7—N2—C6 −0.6 (4)
C2—C3—C6—N3 179.4 (3) N2—C6—N3—C8 −0.2 (4)
N2—C7—C8—N3 0.5 (4) C3—C6—N3—C8 −179.4 (3)
C2—C1—N1—C5 0.6 (5) C7—C8—N3—C6 −0.2 (4)
C2—C1—N1—Cd1 175.5 (3) O2—N4—O1—Cd1 −6.3 (4)
C4—C5—N1—C1 −0.5 (5) O3—N4—O1—Cd1 173.7 (2)
C4—C5—N1—Cd1 −175.3 (3) N1—Cd1—O1—N4 77.8 (2)
N1i—Cd1—N1—C1 72 (15) N1i—Cd1—O1—N4 −102.2 (2)
O4—Cd1—N1—C1 −53.1 (3) O4—Cd1—O1—N4 163.6 (2)
O4i—Cd1—N1—C1 126.9 (3) O4i—Cd1—O1—N4 −16.4 (2)
O1—Cd1—N1—C1 18.6 (3) O1i—Cd1—O1—N4 29 (12)

Symmetry code: (i) −x+2, −y+1, −z+1.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N3—H3···O3ii 0.86 2.10 2.923 (3) 160
O4—H4B···N2iii 0.82 (1) 1.98 (1) 2.796 (3) 174 (4)
O4—H4A···O2iv 0.81 (1) 2.14 (1) 2.946 (4) 174 (4)
O4—H4A···O3iv 0.81 (1) 2.65 (3) 3.197 (3) 126 (3)

Symmetry codes: (ii) −x+3/2, y−1/2, −z+1/2; (iii) x+1/2, −y+3/2, z+1/2; (iv) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2415).

References

  1. Batten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. Engl. 37, 1460–1494. [DOI] [PubMed]
  2. Bruker (2004). SAINT-Plus and APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Burrows, A. D. (2011). CrystEngComm, 13, 3623–3642.
  4. Custelcean, R. (2010). Chem. Soc. Rev. 39, 3675–3685. [DOI] [PubMed]
  5. Jin, C.-M., Zhu, Z., Chen, Z.-F., Hu, Y.-J. & Meng, X.-G. (2010). Cryst. Growth Des. 10, 2054–2056.
  6. Pschirer, N. G., Curtin, D. M., Smith, M. D., Bunz, U. H. F. & Zur Loye, H.-C. (2002). Angew. Chem. Int. Ed. Engl. 41, 583–585.
  7. Sheldrick, G. M. (1996). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Tanabe, K. K. & Cohen, S. M. (2011). Chem. Soc. Rev. 40, 498–519. [DOI] [PubMed]
  10. Voss, M. E., Beer, C. M., Mitchell, S. A., Blomgren, P. A. & Zhichkin, P. E. (2008). Tetrahedron, 64, 645–651.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812050908/im2415sup1.cif

e-69-00m67-sup1.cif (21.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812050908/im2415Isup2.hkl

e-69-00m67-Isup2.hkl (121KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES