Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Dec 5;69(Pt 1):o20. doi: 10.1107/S1600536812049045

(Biphenyl-2,2′-di­yl)di-tert-butyl­phos­phonium trifluoro­methane­sulfonate

Alfred Muller a,*, Cedric W Holzapfel a
PMCID: PMC3588282  PMID: 23476408

Abstract

To aid in the elucidation of catalytic reaction mechanism of palladacycles, we found that reaction of trifluoro­methane­sulfonic acid with a phosphapalladacycle resulted in elimination of the palladium and formation of the title phospholium salt, C20H26P+·CF3SO3 . Selected geometrical parameters include P—biphenyl (av.) = 1.801 (3) Å and P—t-Bu (av.) = 1.858 (3) Å, and significant distortion of the tetra­hedral P-atom environment with biphen­yl—P—biphenyl = 93.93 (13)° and t-Bu—P—t-Bu = 118.82 (14)°. In the crystal, weak C—H⋯O inter­actions lead to channels along the c axis that are occupied by CF3SO3 anions.

Related literature  

For background to catalytic studies on palladacycles, see: Herrman et al. (2003); Beletskaya & Cheprakov (2004); Omondi et al. (2011); Williams et al. (2008); d’Orlye & Jutland (2005). For a description of the Cambridge Structural Database, see: Allen (2002).graphic file with name e-69-00o20-scheme1.jpg

Experimental  

Crystal data  

  • C20H26P+·CF3O3S

  • M r = 446.45

  • Tetragonal, Inline graphic

  • a = 12.1339 (10) Å

  • c = 30.057 (2) Å

  • V = 4425.4 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 293 K

  • 0.4 × 0.26 × 0.2 mm

Data collection  

  • Bruker SMART 1K CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008) T min = 0.902, T max = 0.949

  • 25275 measured reflections

  • 5502 independent reflections

  • 3241 reflections with I > 2σ(I)

  • R int = 0.101

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.054

  • wR(F 2) = 0.117

  • S = 0.99

  • 5502 reflections

  • 268 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.25 e Å−3

  • Absolute structure: Flack (1983), 2283 Friedel pairs

  • Flack parameter: 0.05 (11)

Data collection: SMART-NT (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 2008); data reduction: SAINT-Plus and XPREP (Bruker, 2008); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812049045/aa2079sup1.cif

e-69-00o20-sup1.cif (30.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812049045/aa2079Isup2.hkl

e-69-00o20-Isup2.hkl (264KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1i 0.93 2.49 3.381 (4) 161
C19—H19A⋯O2ii 0.96 2.52 3.458 (4) 165
C11—H11⋯O3iii 0.93 2.70 3.601 (4) 162
C15—H15B⋯O3iii 0.96 2.69 3.470 (4) 138

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The University of Witwatersrand is thanked for the use of their diffractometer. The research fund of the University of Johannesburg is gratefully acknowledged.

supplementary crystallographic information

Comment

The introduction of a cyclopalladated compound as a robust catalyst (Herrman et al., 2003) for Heck and cross-coupling reactions resulted in the design of structurally related palladacycles, phosphapalladacycles in particular (Beletskaya & Cheprakov, 2004). However, growing evidence suggests that palladacycles are disassembled during the pre-activation stage to yield low ligated Pd0 species as the actual catalyst (d'Orlye & Jutland, 2005). This is further exemplified by our finding that the use of palladacycle (II in Fig. 1), an effective amination catalyst (Beletskaya & Cheprakov, 2004), as a source of palladium together with triphenylphosphine and a strong acid provided an extremely active catalytic system for the hydromethoxylation of alkenes (Omondi et al., 2011 and Williams et al., 2008). In the reaction medium compound II (Fig. 1) was rapidly converted into tetrakistriphenylphosphinepalladium(0) which acted as the actual catalyst. The facile formation of Pd0 resulted from acid catalyzed elimination from the palladacycle. This treatment of II with ten equivalents of trifluoromethanesulfonic acid at room temperature resulted in the formation of colloidal palladium and the title compound (I in Fig. 1), the structure of which was confirmed by single-crystal X-ray crystallography.

The title compound I (Fig. 2 and Scheme 1) is a salt consisting of phospholium cations and trifluoromethanesulfonate anions. All ions lie on general positions in the unit cell with no discernible differences in the bond distances of the coordination polyhedron of the phosphorus environment. The bond angles at the phosphorus center shows significant deviations from the expected 109.5° for the tetrahedral shape with biphenyl—P—biphenyl = 93.93 (13)° and t-Bu—P—t-Bu = 118.82 (14)°. These deviations can be ascribed to the somewhat strained 5-membered cyclisation of the dibenzo fragment to form the phospholium ring. This pinching effect in turn allows for more space for the bulky tertiary butyl groups positioned above and below the plane formed by the tricyclic phospholium conjugate and hence the observed t-Bu—P—t-Bu angle. The tricyclic phospholium conjugate marginally deviates from planarity (C1—C6—C7—C12 = 1.9 (4)°), and would have been the primary route to alleviate stress from the pinching effect. Data extracted from the Cambridge Structural Database (Allen, 2002) for the torsion angle between the planes shows a mean value of 1.72° (126 observations). The general trend seems to be that substituents opposite the phospholium cycle forces it to be planar. The preferred orientation of the tertiary butyls are due to several weak C—H···O interactions observed between ions (see Table 1).

Experimental

Trifluorometanesulfonic acid (150 mg, 1 mmol) in 5 ml me thanol was added dropwise to a stirred solution of (acetato-κ2O,O')[2'-(di-tert- butylphosphanyl)-1,1'-biphenyl-κ2P,C2]palladium (462 mg, 1 mmol) in dichloromethane (30 ml) at room temperature under argon. The solution changed from colourless to deep purple and then to dark brown over a period of 10 min. After several hours at room temperature a fine precipitate of palladium black started to form. After 24 h the reaction mixture was filtered through celite to remove the palladium. The solvent was removed in vacuo and the residue distributed between water (15 ml) and ether (15 ml). The aqueous phase was extracted with dichloromethane (3 x 30 ml). The combined extract furnished crystalline (413 mg, 82%) on removal of the solvent in vacuo. Good crystals (mp. 157 – 159 °C) was obtained by diffusion of the vapours of ether into a solution in dichloromethane. Analytical data: 1H-NMR: δ 1.45 (18H, d, J = 17 Hz), 7.68 (2H, dt, J = 2.5 and 7.5 Hz), 7.85 (2H, t, J = 7.8 Hz), 7.99 (2H, t, J = 7.8 Hz), and 8.64 (2H, dd, J = 2.5 and 7.8 Hz) 13C{H}-NMR: δ 26.74 (s), 36.42 (d, J = 42 Hz), 118.72 (d, J = 101 Hz), 123.58 (d, J = 12.3 Hz), 130.90 (d, J = 14.0 Hz), 131.90 (d, J = 14.0 Hz), 131.67 (d, J = 11.4 Hz), 135.95 (d, J = 2.7 Hz), 144.97 (d, J = 17.4 Hz) 31P-NMR: δ 51.24

Refinement

All hydrogen atoms for methyl and aromatic H atoms were positioned in geometrically idealized positions with C—H = 0.96 Å and 0.93 Å respectively. Aromatic hydrogen atoms were allowed to ride on their parent atoms with Uiso(H) = 1.2Ueq, and for methyl hydrogen atoms Uiso(H) = 1.5Ueq was utilized. The initial positions of methyl hydrogen atoms were located from a Fourier difference map and refined as fixed rotor. The Flack parameter refined to 0.05 (11).

Figures

Fig. 1.

Fig. 1.

Proposed reaction scheme of the elimination of the palladium and formation of the title phospholium compound.

Fig. 2.

Fig. 2.

View of title compound showing displacement ellipsoids (drawn at a 30% probability level) and numbering scheme. Hydrogen atoms have been omitted for clarity.

Crystal data

C20H26P+·CF3O3S Dx = 1.34 Mg m3
Mr = 446.45 Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P41212 Cell parameters from 3572 reflections
Hall symbol: P 4abw 2nw θ = 2.5–21.9°
a = 12.1339 (10) Å µ = 0.26 mm1
c = 30.057 (2) Å T = 293 K
V = 4425.4 (6) Å3 Prism, yellow
Z = 8 0.4 × 0.26 × 0.2 mm
F(000) = 1872

Data collection

Bruker SMART 1K CCD diffractometer 3241 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.101
π scans θmax = 28.4°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −13→16
Tmin = 0.902, Tmax = 0.949 k = −11→16
25275 measured reflections l = −39→28
5502 independent reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054 H-atom parameters constrained
wR(F2) = 0.117 w = 1/[σ2(Fo2) + (0.0519P)2] where P = (Fo2 + 2Fc2)/3
S = 0.99 (Δ/σ)max = 0.001
5502 reflections Δρmax = 0.17 e Å3
268 parameters Δρmin = −0.25 e Å3
0 restraints Absolute structure: Flack (1983), 2283 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.05 (11)

Special details

Experimental. The intensity data was collected on a Bruker SMART 1 K CCD diffractometer using an exposure time of 20 s/frame. A total of 984 frames were collected with a frame width of 0.3° covering up to θ = 28.37° with 99.3% completeness accomplished.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
P1 0.60082 (6) 0.44749 (6) 0.87672 (2) 0.03329 (18)
C1 0.4783 (2) 0.4567 (2) 0.84292 (9) 0.0370 (7)
C2 0.4328 (2) 0.3813 (3) 0.81337 (9) 0.0454 (8)
H2 0.4651 0.3126 0.8092 0.054*
C3 0.3384 (3) 0.4104 (3) 0.79028 (11) 0.0576 (9)
H3 0.3082 0.3616 0.7698 0.069*
C4 0.2892 (3) 0.5108 (3) 0.79748 (13) 0.0744 (12)
H4 0.2255 0.5289 0.7819 0.089*
C5 0.3324 (3) 0.5852 (3) 0.82750 (13) 0.0746 (12)
H5 0.2979 0.6525 0.8322 0.09*
C6 0.4280 (2) 0.5587 (3) 0.85057 (10) 0.0472 (8)
C7 0.4846 (2) 0.6282 (2) 0.88434 (10) 0.0450 (7)
C8 0.4517 (3) 0.7307 (3) 0.89949 (13) 0.0692 (11)
H8 0.3888 0.7639 0.888 0.083*
C9 0.5129 (4) 0.7833 (3) 0.93185 (12) 0.0687 (11)
H9 0.4896 0.8516 0.9424 0.082*
C10 0.6074 (3) 0.7372 (3) 0.94885 (10) 0.0536 (9)
H10 0.6475 0.774 0.9706 0.064*
C11 0.6428 (3) 0.6358 (3) 0.93346 (9) 0.0427 (8)
H11 0.7076 0.6048 0.9443 0.051*
C12 0.5808 (2) 0.5806 (2) 0.90172 (9) 0.0359 (7)
C13 0.7242 (2) 0.4477 (3) 0.83999 (9) 0.0402 (7)
C14 0.7210 (3) 0.3492 (3) 0.80819 (11) 0.0714 (12)
H14A 0.7818 0.3538 0.7878 0.107*
H14B 0.653 0.3501 0.7918 0.107*
H14C 0.7262 0.2821 0.8249 0.107*
C15 0.8297 (3) 0.4475 (3) 0.86695 (11) 0.0643 (10)
H15A 0.8327 0.382 0.8848 0.096*
H15B 0.8314 0.5112 0.8859 0.096*
H15C 0.8919 0.4491 0.8472 0.096*
C16 0.7161 (3) 0.5544 (3) 0.81278 (12) 0.0724 (11)
H16A 0.7235 0.6167 0.8322 0.109*
H16B 0.6458 0.5573 0.7981 0.109*
H16C 0.7738 0.5558 0.7909 0.109*
C17 0.5876 (3) 0.3380 (2) 0.91950 (10) 0.0441 (8)
C18 0.6709 (3) 0.3567 (3) 0.95735 (11) 0.0679 (11)
H18A 0.6629 0.2996 0.9792 0.102*
H18B 0.6574 0.4271 0.9709 0.102*
H18C 0.7444 0.3552 0.9455 0.102*
C19 0.6031 (3) 0.2239 (3) 0.89885 (11) 0.0651 (10)
H19A 0.5876 0.1684 0.9207 0.098*
H19B 0.6777 0.2162 0.8887 0.098*
H19C 0.5536 0.2156 0.8742 0.098*
C20 0.4700 (3) 0.3478 (3) 0.93813 (13) 0.0797 (13)
H20A 0.4177 0.3361 0.9146 0.12*
H20B 0.4596 0.42 0.9505 0.12*
H20C 0.4592 0.2934 0.9609 0.12*
C21 0.1201 (3) 0.5421 (4) 0.93747 (13) 0.0681 (11)
S1 0.01008 (7) 0.49559 (7) 0.97325 (2) 0.0494 (2)
O1 −0.0109 (2) 0.3861 (2) 0.95856 (8) 0.0773 (8)
O2 0.0560 (2) 0.5059 (2) 1.01687 (8) 0.0780 (8)
O3 −0.0772 (2) 0.5722 (2) 0.96379 (8) 0.0762 (8)
F1 0.0927 (2) 0.5358 (2) 0.89479 (7) 0.0956 (8)
F2 0.2088 (2) 0.4800 (3) 0.94266 (10) 0.1323 (12)
F3 0.1493 (2) 0.6442 (2) 0.94525 (9) 0.1194 (10)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
P1 0.0327 (4) 0.0315 (4) 0.0357 (4) 0.0012 (3) −0.0020 (3) −0.0017 (3)
C1 0.0316 (17) 0.0394 (17) 0.0402 (17) −0.0015 (13) −0.0040 (12) −0.0074 (13)
C2 0.0408 (19) 0.046 (2) 0.0499 (18) −0.0048 (14) −0.0006 (14) −0.0101 (14)
C3 0.043 (2) 0.073 (3) 0.057 (2) −0.0074 (19) −0.0131 (16) −0.0140 (19)
C4 0.054 (2) 0.082 (3) 0.087 (3) 0.016 (2) −0.036 (2) −0.019 (2)
C5 0.059 (3) 0.068 (3) 0.097 (3) 0.025 (2) −0.031 (2) −0.023 (2)
C6 0.0405 (19) 0.0486 (19) 0.0527 (19) 0.0085 (15) −0.0091 (14) −0.0083 (16)
C7 0.0429 (19) 0.0394 (18) 0.0527 (19) 0.0092 (14) −0.0024 (14) −0.0075 (14)
C8 0.076 (3) 0.052 (2) 0.080 (3) 0.028 (2) −0.016 (2) −0.0170 (19)
C9 0.089 (3) 0.043 (2) 0.074 (3) 0.015 (2) −0.001 (2) −0.0187 (18)
C10 0.074 (3) 0.044 (2) 0.0424 (19) −0.0093 (19) 0.0009 (18) −0.0068 (15)
C11 0.0457 (19) 0.0417 (19) 0.0406 (18) −0.0064 (15) −0.0008 (14) −0.0039 (14)
C12 0.0392 (18) 0.0305 (17) 0.0379 (16) −0.0011 (12) 0.0000 (13) −0.0047 (12)
C13 0.0338 (17) 0.0500 (19) 0.0366 (17) 0.0014 (14) −0.0006 (13) −0.0024 (15)
C14 0.062 (3) 0.091 (3) 0.061 (2) 0.004 (2) 0.0162 (19) −0.030 (2)
C15 0.038 (2) 0.100 (3) 0.055 (2) 0.0045 (19) −0.0035 (16) −0.007 (2)
C16 0.059 (2) 0.084 (3) 0.075 (3) 0.001 (2) 0.0156 (19) 0.034 (2)
C17 0.048 (2) 0.0409 (19) 0.0433 (18) −0.0060 (14) 0.0026 (15) 0.0063 (13)
C18 0.088 (3) 0.061 (2) 0.055 (2) −0.008 (2) −0.019 (2) 0.0175 (18)
C19 0.090 (3) 0.042 (2) 0.063 (2) −0.0063 (19) −0.011 (2) 0.0065 (17)
C20 0.069 (3) 0.092 (3) 0.078 (3) −0.004 (2) 0.025 (2) 0.026 (2)
C21 0.065 (3) 0.072 (3) 0.068 (3) −0.002 (2) −0.002 (2) −0.003 (2)
S1 0.0554 (5) 0.0515 (5) 0.0412 (4) −0.0037 (4) −0.0034 (4) −0.0056 (4)
O1 0.103 (2) 0.0526 (16) 0.0761 (17) −0.0131 (15) −0.0052 (16) −0.0034 (13)
O2 0.0889 (19) 0.102 (2) 0.0427 (14) −0.0036 (16) −0.0149 (12) −0.0077 (13)
O3 0.0609 (18) 0.089 (2) 0.0783 (16) 0.0226 (14) −0.0057 (13) −0.0149 (15)
F1 0.109 (2) 0.125 (2) 0.0528 (13) −0.0194 (16) 0.0148 (12) 0.0069 (13)
F2 0.0551 (16) 0.197 (4) 0.145 (2) 0.036 (2) 0.0137 (16) −0.001 (2)
F3 0.139 (3) 0.092 (2) 0.128 (2) −0.0655 (18) 0.0139 (19) −0.0078 (16)

Geometric parameters (Å, º)

P1—C12 1.798 (3) C14—H14A 0.96
P1—C1 1.804 (3) C14—H14B 0.96
P1—C17 1.856 (3) C14—H14C 0.96
P1—C13 1.860 (3) C15—H15A 0.96
C1—C2 1.389 (4) C15—H15B 0.96
C1—C6 1.400 (4) C15—H15C 0.96
C2—C3 1.384 (4) C16—H16A 0.96
C2—H2 0.93 C16—H16B 0.96
C3—C4 1.374 (5) C16—H16C 0.96
C3—H3 0.93 C17—C19 1.529 (4)
C4—C5 1.380 (5) C17—C20 1.538 (5)
C4—H4 0.93 C17—C18 1.538 (4)
C5—C6 1.388 (4) C18—H18A 0.96
C5—H5 0.93 C18—H18B 0.96
C6—C7 1.487 (4) C18—H18C 0.96
C7—C8 1.383 (4) C19—H19A 0.96
C7—C12 1.403 (4) C19—H19B 0.96
C8—C9 1.380 (5) C19—H19C 0.96
C8—H8 0.93 C20—H20A 0.96
C9—C10 1.376 (5) C20—H20B 0.96
C9—H9 0.93 C20—H20C 0.96
C10—C11 1.382 (4) C21—F3 1.310 (4)
C10—H10 0.93 C21—F2 1.323 (5)
C11—C12 1.387 (4) C21—F1 1.327 (4)
C11—H11 0.93 C21—S1 1.805 (4)
C13—C15 1.515 (4) S1—O1 1.423 (3)
C13—C14 1.531 (4) S1—O2 1.430 (2)
C13—C16 1.534 (4) S1—O3 1.438 (2)
C12—P1—C1 93.93 (13) C13—C14—H14C 109.5
C12—P1—C17 109.98 (13) H14A—C14—H14C 109.5
C1—P1—C17 111.29 (14) H14B—C14—H14C 109.5
C12—P1—C13 110.82 (14) C13—C15—H15A 109.5
C1—P1—C13 109.20 (12) C13—C15—H15B 109.5
C17—P1—C13 118.82 (14) H15A—C15—H15B 109.5
C2—C1—C6 120.9 (3) C13—C15—H15C 109.5
C2—C1—P1 130.3 (2) H15A—C15—H15C 109.5
C6—C1—P1 108.8 (2) H15B—C15—H15C 109.5
C3—C2—C1 118.8 (3) C13—C16—H16A 109.5
C3—C2—H2 120.6 C13—C16—H16B 109.5
C1—C2—H2 120.6 H16A—C16—H16B 109.5
C4—C3—C2 120.4 (3) C13—C16—H16C 109.5
C4—C3—H3 119.8 H16A—C16—H16C 109.5
C2—C3—H3 119.8 H16B—C16—H16C 109.5
C3—C4—C5 121.2 (3) C19—C17—C20 109.4 (3)
C3—C4—H4 119.4 C19—C17—C18 110.7 (3)
C5—C4—H4 119.4 C20—C17—C18 109.2 (3)
C4—C5—C6 119.6 (3) C19—C17—P1 110.9 (2)
C4—C5—H5 120.2 C20—C17—P1 106.1 (2)
C6—C5—H5 120.2 C18—C17—P1 110.5 (2)
C5—C6—C1 119.1 (3) C17—C18—H18A 109.5
C5—C6—C7 126.6 (3) C17—C18—H18B 109.5
C1—C6—C7 114.3 (3) H18A—C18—H18B 109.5
C8—C7—C12 119.1 (3) C17—C18—H18C 109.5
C8—C7—C6 127.0 (3) H18A—C18—H18C 109.5
C12—C7—C6 113.9 (3) H18B—C18—H18C 109.5
C9—C8—C7 119.6 (3) C17—C19—H19A 109.5
C9—C8—H8 120.2 C17—C19—H19B 109.5
C7—C8—H8 120.2 H19A—C19—H19B 109.5
C10—C9—C8 121.5 (3) C17—C19—H19C 109.5
C10—C9—H9 119.3 H19A—C19—H19C 109.5
C8—C9—H9 119.3 H19B—C19—H19C 109.5
C9—C10—C11 119.8 (3) C17—C20—H20A 109.5
C9—C10—H10 120.1 C17—C20—H20B 109.5
C11—C10—H10 120.1 H20A—C20—H20B 109.5
C10—C11—C12 119.4 (3) C17—C20—H20C 109.5
C10—C11—H11 120.3 H20A—C20—H20C 109.5
C12—C11—H11 120.3 H20B—C20—H20C 109.5
C11—C12—C7 120.6 (3) F3—C21—F2 107.3 (4)
C11—C12—P1 130.3 (2) F3—C21—F1 107.1 (3)
C7—C12—P1 109.1 (2) F2—C21—F1 106.6 (3)
C15—C13—C14 110.7 (3) F3—C21—S1 112.9 (3)
C15—C13—C16 109.9 (3) F2—C21—S1 110.7 (3)
C14—C13—C16 108.9 (3) F1—C21—S1 111.9 (3)
C15—C13—P1 111.3 (2) O1—S1—O2 115.83 (15)
C14—C13—P1 110.4 (2) O1—S1—O3 114.24 (17)
C16—C13—P1 105.4 (2) O2—S1—O3 114.32 (15)
C13—C14—H14A 109.5 O1—S1—C21 103.84 (18)
C13—C14—H14B 109.5 O2—S1—C21 103.35 (17)
H14A—C14—H14B 109.5 O3—S1—C21 103.01 (18)
C12—P1—C1—C2 −178.5 (3) C17—P1—C12—C11 64.7 (3)
C17—P1—C1—C2 −65.2 (3) C13—P1—C12—C11 −68.7 (3)
C13—P1—C1—C2 67.9 (3) C1—P1—C12—C7 −0.2 (2)
C12—P1—C1—C6 1.2 (2) C17—P1—C12—C7 −114.5 (2)
C17—P1—C1—C6 114.4 (2) C13—P1—C12—C7 112.1 (2)
C13—P1—C1—C6 −112.5 (2) C12—P1—C13—C15 74.3 (3)
C6—C1—C2—C3 2.3 (4) C1—P1—C13—C15 176.4 (2)
P1—C1—C2—C3 −178.1 (2) C17—P1—C13—C15 −54.5 (3)
C1—C2—C3—C4 −1.8 (5) C12—P1—C13—C14 −162.4 (2)
C2—C3—C4—C5 0.4 (6) C1—P1—C13—C14 −60.2 (3)
C3—C4—C5—C6 0.6 (6) C17—P1—C13—C14 68.8 (3)
C4—C5—C6—C1 −0.1 (6) C12—P1—C13—C16 −44.9 (2)
C4—C5—C6—C7 −179.1 (4) C1—P1—C13—C16 57.2 (2)
C2—C1—C6—C5 −1.3 (5) C17—P1—C13—C16 −173.7 (2)
P1—C1—C6—C5 179.0 (3) C12—P1—C17—C19 179.3 (2)
C2—C1—C6—C7 177.8 (3) C1—P1—C17—C19 76.6 (3)
P1—C1—C6—C7 −1.9 (3) C13—P1—C17—C19 −51.5 (3)
C5—C6—C7—C8 1.2 (6) C12—P1—C17—C20 60.7 (3)
C1—C6—C7—C8 −177.9 (3) C1—P1—C17—C20 −42.0 (3)
C5—C6—C7—C12 −179.1 (3) C13—P1—C17—C20 −170.1 (2)
C1—C6—C7—C12 1.9 (4) C12—P1—C17—C18 −57.6 (3)
C12—C7—C8—C9 −1.1 (5) C1—P1—C17—C18 −160.3 (2)
C6—C7—C8—C9 178.6 (3) C13—P1—C17—C18 71.6 (3)
C7—C8—C9—C10 1.3 (6) F3—C21—S1—O1 178.2 (3)
C8—C9—C10—C11 0.0 (5) F2—C21—S1—O1 −61.4 (3)
C9—C10—C11—C12 −1.5 (5) F1—C21—S1—O1 57.3 (3)
C10—C11—C12—C7 1.8 (4) F3—C21—S1—O2 −60.5 (3)
C10—C11—C12—P1 −177.4 (2) F2—C21—S1—O2 59.9 (3)
C8—C7—C12—C11 −0.5 (5) F1—C21—S1—O2 178.6 (3)
C6—C7—C12—C11 179.8 (3) F3—C21—S1—O3 58.8 (3)
C8—C7—C12—P1 178.9 (3) F2—C21—S1—O3 179.2 (3)
C6—C7—C12—P1 −0.9 (3) F1—C21—S1—O3 −62.1 (3)
C1—P1—C12—C11 179.1 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C2—H2···O1i 0.93 2.49 3.381 (4) 161
C19—H19A···O2ii 0.96 2.52 3.458 (4) 165
C11—H11···O3iii 0.93 2.7 3.601 (4) 162
C15—H15B···O3iii 0.96 2.69 3.470 (4) 138

Symmetry codes: (i) x+1/2, −y+1/2, −z+7/4; (ii) y, x, −z+2; (iii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AA2079).

References

  1. Allen, F. H. (2002). Acta Cryst. B58, 380–388. [DOI] [PubMed]
  2. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  3. Beletskaya, I. P. & Cheprakov, A. V. (2004). J. Organomet. Chem. 689, 4055–4082.
  4. Brandenburg, K. & Putz, H. (2005). DIAMOND Crystal Impact GbR, Bonn, Germany.
  5. Bruker (1998). SMART-NT Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Bruker (2008). SADABS, SAINT-Plus and XPREP Bruker AXS Inc., Madison, Wisconsin, USA.
  7. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  8. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  9. Herrman, W. A., Ofele, K., Preysing, D. & Schneider, S. K. (2003). J. Organomet. Chem. 687, 229–248.
  10. Omondi, B., Shaw, M. L. & Holzapfel, C. W. (2011). J. Organomet. Chem. 696, 3091–3096.
  11. Orlye, E. d’ & Jutland, A. (2005). Tetrahedron, 61, 9670–9678.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Williams, D. G. B., Shaw, M. L., Green, M. J. & Holzapfel, C. W. (2008). Angew. Chem. Int. Ed. 47, 560–563. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812049045/aa2079sup1.cif

e-69-00o20-sup1.cif (30.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812049045/aa2079Isup2.hkl

e-69-00o20-Isup2.hkl (264KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES