Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Dec 19;69(Pt 1):o114. doi: 10.1107/S1600536812050878

1-(4-Nitro­phen­yl)-1H-imidazol-3-ium chloride

Halliru Ibrahim a, Muhammad D Bala a,*
PMCID: PMC3588291  PMID: 23476377

Abstract

In the title salt, C9H8N3O2 +·Cl, the least-squares planes of the imidazolium and benzene rings are almost coplanar, making a dihedral angle of 4.59 (1)°. In the crystal, the chloride anion links the organic mol­ecules through N—H⋯Cl hydrogen bonds, forming chains that run diagonally across the bc face, which compliment strong C—H⋯O hydrogen bonds between neighbouring mol­ecules. These chains are connected to adjacent chains through two weak C—H⋯Cl inter­actions, resulting in hydrogen-bonded sheets extending along the b and c axes. The absolute structure of the title compound was determined using a Flack x parameter of 0.00 (6) and a Hooft y parameter of 0.03 (2).

Related literature  

For the synthesis of the title compound, see: Gnanamgari et al. (2009); Coberan & Peris (2008); Singh et al., (2011). For the structure of imidazole with a bond to phenyl via carbon, see: Gayathri et al. (2010). For structure of imidazole with a bond to phenyl via nitro­gen, see: Zheng et al. (2011). For the structure of nitro­phenyl imidazole as a ligand in a complex, see: Singh et al. (2010, 2011). For related structures, see: Ishihara et al. (1992); Scheele et al., (2007). For our related work in this area, see: Ibrahim et al. (2012).graphic file with name e-69-0o114-scheme1.jpg

Experimental  

Crystal data  

  • C9H8N3O2 +·Cl

  • M r = 225.64

  • Orthorhombic, Inline graphic

  • a = 14.6042 (8) Å

  • b = 12.1781 (7) Å

  • c = 5.6070 (3) Å

  • V = 997.21 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 173 K

  • 0.54 × 0.16 × 0.15 mm

Data collection  

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008) T min = 0.524, T max = 0.746

  • 20153 measured reflections

  • 2217 independent reflections

  • 2120 reflections with I > 2σ(I)

  • R int = 0.060

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.029

  • wR(F 2) = 0.076

  • S = 1.09

  • 2217 reflections

  • 140 parameters

  • 8 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.22 e Å−3

  • Absolute structure: Flack (1983), Hooft et al. (2010), Spek (2009); Hooft parameter = 0.03 (2), 856 Bijvoet pairs

  • Flack parameter: 0.00 (6)

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT-Plus (Bruker, 2008); data reduction: SAINT-Plus and XPREP (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812050878/nr2034sup1.cif

e-69-0o114-sup1.cif (20.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812050878/nr2034Isup2.hkl

e-69-0o114-Isup2.hkl (106.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812050878/nr2034Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cl1i 0.92 (2) 2.08 (2) 2.9976 (17) 178 (2)
C9—H9⋯Cl1 0.93 2.80 3.5898 (19) 144
C2—H2⋯Cl1ii 0.93 2.52 3.4286 (17) 166
C4—H4⋯O2i 0.93 2.29 3.181 (2) 161

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

We thank the NRF and the University of KwaZulu-Natal for financial support.

supplementary crystallographic information

Comment

Since the isolation of the first stable free carbene, imidazolium based N-heterocyclic carbene ligands (NHC) ligands have recieved wide interest from researchers because substituted imidazolium salts are major precursors to the NHCs commonly employed in organometallic chemistry and catalysis for the stabilization of metal centers. Recently Gayathri et al., (2010) have reported structural analogues of the title compound with imidazole bond to phenyl via carbon, while Zheng et al., (2011) have reported the structure with imidazole bond to phenyl via nitrogen. For the structure of nitrophenyl imidazole as a ligand in a metal complex, see: (Singh et al., 2010 and 2011). Structures of related compounds were reported by Ishihara et al., (1992), Scheele et al., (2007) and Ibrahim et al., (2012). Hence, the title compound was obtained in an attempt to synthesize an imidazolium salt by the coupling of 2-chloromethylpyridine hydrochloride with p-nitrophenyl imidazole using the method reported by Gnanamgari et al., (2009). Coberan & Peris (2008) and Singh et al., (2011) have also reported synthesis of similar compounds. The grey solid obtained was recrystallized from methanol:ethyl acetate (1:1) solvent system. The planes of the imidazolium and phenyl rings in (I) are almost coplanar. Analysis of the absolute structure using likelihood methods (Hooft et al., 2010) was performed using PLATON (Spek, 2009). The Hooft y-parameter was determined to be 0.03 (2) which corroborated the Flack parameter x = 0.00 (6). These results in conjunction with a correlation coefficient of 0.997 for the Bijvoet normal probability plot indicate that the absolute structure is correctly assigned. In the title compound, C9H8N3O2.Cl, the L.S. planes of the imidazolium (N1—C4) and phenyl (C5—C10) rings are almost coplanar with a dihedral angle of 4.59 (1)°. In the crystal, the chloride atom links the organic molecules through N—H···Cl hydrogen bonds forming chains that run diagonally across the bc face which compliment strong intermolecular C—H···O hydrogen bonds between neighbouring molecules. These chains are connected to adjacent chains through two weak C—H···Cl interactions resulting in hydrogen bonded sheets extending along the b and c axes.

Experimental

To a 150 ml round bottom flask containing DMSO (30 ml, MERCK) was added imidazole (0.01 mol, 0.68 g, Fluka AG) and KOH (0.015 mol, 0.84 g, MERCK) then stirred at room temperature for 2 h. This was followed by the dropwise addition of a solution of 1-chloro-4-nitrobenzene (Fluka, 0.01 mol, 1.57 g) in DMSO (5 ml), and refluxed at 100 °C for 24 h. The resulting solution was first chilled and then dilute with distilled water until neutral. The organic component was extracted using CH2Cl2/CHCl3 (1:1, 3 x 20 ml) and then dried with anhydrous MgSO4 and concetrated under vacuum yielding 2.081 g of pure (I). 1H NMR (400 MHz, CDCl3): 8.36(d; 2H) 7.96(s; 1H), 7.57(d; 2H) and 7.25(1H) p.p.m.. 13C NMR (400 MHz, CDCl3): 146.6, 142.3, 135.7, 132.04, 126.1, 121.4 and 117.9 p.p.m.. IR (ATR): 3112(=C—H), 2924(sp3 C—H), 1596(C=N), 1503 and 1370(aromatic NO2), 1049 (C—N medium) and 845 (p-subsituted benzene) cm-1.

Refinement

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.93 Å for aromatic H atoms; Uiso(H) = 1.2Ueq(C)] and were included in the refinement in the riding model. The nitrogen-bound H atom was located on a difference Fourier map and refined freely with isotropic parameters.

Figures

Fig. 1.

Fig. 1.

ORTEP diagram of compound (I). Thermal ellipsoids are represented at the 50% probability level.

Fig. 2.

Fig. 2.

Packing diagram showing hydrogen bonding interactions in a crystal of (I) viewed along crystallographic c axis.

Crystal data

C9H8N3O2+·Cl F(000) = 464
Mr = 225.64 Dx = 1.503 Mg m3
Orthorhombic, Pna21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2n Cell parameters from 9896 reflections
a = 14.6042 (8) Å θ = 2.2–28.3°
b = 12.1781 (7) Å µ = 0.37 mm1
c = 5.6070 (3) Å T = 173 K
V = 997.21 (10) Å3 Block, colourless
Z = 4 0.54 × 0.16 × 0.15 mm

Data collection

Bruker SMART APEXII CCD diffractometer 2217 independent reflections
Radiation source: fine-focus sealed tube 2120 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.060
φ and ω scans θmax = 28.3°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −17→19
Tmin = 0.524, Tmax = 0.746 k = −16→16
20153 measured reflections l = −7→6

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.076 w = 1/[σ2(Fo2) + (0.0354P)2 + 0.3302P] where P = (Fo2 + 2Fc2)/3
S = 1.09 (Δ/σ)max < 0.001
2217 reflections Δρmax = 0.30 e Å3
140 parameters Δρmin = −0.22 e Å3
8 restraints Absolute structure: Flack (1983), Hooft et al. (2010) and Spek (2009); Hooft parameter = 0.03(2), 856 Bijvoet pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.00 (6)

Special details

Experimental. Carbon-bound H-atoms were placed in calculated positions [C—H = 0.93 Å for aromatic H atoms; Uiso(H) = 1.2Ueq(C)] and were included in the refinement in the riding model. The nitrogen-bound H atom was located on a difference Fourier map and refined freely with isotropic parameters.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C2 0.61881 (11) 0.39839 (13) −0.1020 (3) 0.0241 (5)
H2 0.5556 0.4068 −0.0918 0.029*
C4 0.76184 (13) 0.41464 (15) −0.2179 (4) 0.0308 (5)
H4 0.8131 0.4368 −0.3039 0.037*
C3 0.76136 (12) 0.34674 (15) −0.0291 (4) 0.0303 (4)
H3 0.8120 0.3132 0.0402 0.036*
N3 0.54484 (10) 0.08365 (11) 0.8199 (3) 0.0274 (3)
N2 0.67050 (9) 0.33611 (11) 0.0429 (3) 0.0210 (3)
N1 0.67229 (10) 0.44554 (12) −0.2608 (3) 0.0251 (3)
O1 0.46671 (9) 0.09724 (10) 0.8910 (3) 0.0323 (4)
O2 0.59895 (10) 0.01721 (12) 0.9069 (3) 0.0406 (4)
H1 0.6548 (14) 0.4898 (17) −0.386 (4) 0.030 (5)*
Cl1 0.88518 (2) 0.09410 (3) 0.84010 (10) 0.02647 (12)
C8 0.57713 (11) 0.14961 (13) 0.6161 (3) 0.0217 (3)
C9 0.66889 (12) 0.14545 (14) 0.5571 (4) 0.0303 (4)
H9 0.7093 0.1022 0.6443 0.036*
C10 0.69939 (11) 0.20704 (13) 0.3655 (4) 0.0300 (4)
H10 0.7608 0.2048 0.3216 0.036*
C5 0.63843 (11) 0.27213 (12) 0.2387 (3) 0.0204 (3)
C6 0.54623 (11) 0.27679 (13) 0.3038 (4) 0.0264 (4)
H6 0.5058 0.3212 0.2196 0.032*
C7 0.51553 (11) 0.21484 (13) 0.4943 (4) 0.0260 (4)
H7 0.4543 0.2170 0.5397 0.031*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C2 0.0202 (8) 0.0223 (7) 0.0297 (13) 0.0005 (6) −0.0001 (7) 0.0027 (7)
C4 0.0233 (9) 0.0369 (9) 0.0323 (13) 0.0006 (7) 0.0030 (8) 0.0051 (8)
C3 0.0172 (8) 0.0356 (10) 0.0380 (12) 0.0008 (7) 0.0036 (8) 0.0068 (8)
N3 0.0293 (7) 0.0286 (6) 0.0242 (9) −0.0071 (5) −0.0034 (8) 0.0010 (6)
N2 0.0173 (6) 0.0196 (6) 0.0262 (8) −0.0004 (5) 0.0005 (6) −0.0007 (6)
N1 0.0247 (7) 0.0232 (6) 0.0274 (8) −0.0002 (5) −0.0003 (6) 0.0013 (6)
O1 0.0286 (7) 0.0373 (6) 0.0311 (9) −0.0060 (5) 0.0047 (6) 0.0014 (6)
O2 0.0347 (7) 0.0438 (8) 0.0432 (10) −0.0032 (6) −0.0100 (6) 0.0205 (7)
Cl1 0.01823 (18) 0.02836 (18) 0.0328 (2) −0.00189 (13) −0.00026 (19) 0.0061 (2)
C8 0.0231 (8) 0.0202 (7) 0.0219 (9) −0.0046 (6) −0.0016 (7) 0.0000 (6)
C9 0.0231 (8) 0.0295 (9) 0.0382 (12) 0.0013 (7) −0.0040 (8) 0.0089 (8)
C10 0.0161 (7) 0.0326 (8) 0.0415 (12) 0.0018 (6) −0.0002 (8) 0.0085 (9)
C5 0.0210 (8) 0.0190 (6) 0.0214 (8) −0.0021 (6) −0.0001 (6) −0.0009 (6)
C6 0.0202 (7) 0.0256 (7) 0.0333 (12) 0.0044 (6) −0.0007 (8) 0.0034 (7)
C7 0.0196 (8) 0.0278 (8) 0.0307 (10) 0.0016 (6) 0.0022 (7) −0.0005 (7)

Geometric parameters (Å, º)

C2—N1 1.316 (2) N1—H1 0.92 (2)
C2—N2 1.343 (2) C8—C7 1.381 (2)
C2—H2 0.9300 C8—C9 1.381 (2)
C4—C3 1.343 (3) C9—C10 1.384 (3)
C4—N1 1.382 (2) C9—H9 0.9300
C4—H4 0.9300 C10—C5 1.388 (2)
C3—N2 1.393 (2) C10—H10 0.9300
C3—H3 0.9300 C5—C6 1.396 (2)
N3—O1 1.220 (2) C6—C7 1.382 (3)
N3—O2 1.232 (2) C6—H6 0.9300
N3—C8 1.474 (2) C7—H7 0.9300
N2—C5 1.425 (2)
N1—C2—N2 108.78 (15) C7—C8—C9 122.31 (17)
N1—C2—H2 125.6 C7—C8—N3 119.25 (15)
N2—C2—H2 125.6 C9—C8—N3 118.43 (16)
C3—C4—N1 107.45 (16) C8—C9—C10 118.58 (16)
C3—C4—H4 126.3 C8—C9—H9 120.7
N1—C4—H4 126.3 C10—C9—H9 120.7
C4—C3—N2 106.90 (16) C9—C10—C5 120.04 (15)
C4—C3—H3 126.5 C9—C10—H10 120.0
N2—C3—H3 126.5 C5—C10—H10 120.0
O1—N3—O2 124.04 (17) C10—C5—C6 120.53 (17)
O1—N3—C8 118.59 (14) C10—C5—N2 119.73 (15)
O2—N3—C8 117.37 (15) C6—C5—N2 119.73 (15)
C2—N2—C3 107.90 (15) C7—C6—C5 119.50 (15)
C2—N2—C5 126.14 (14) C7—C6—H6 120.2
C3—N2—C5 125.95 (15) C5—C6—H6 120.2
C2—N1—C4 108.96 (16) C8—C7—C6 119.02 (16)
C2—N1—H1 127.3 (13) C8—C7—H7 120.5
C4—N1—H1 123.7 (13) C6—C7—H7 120.5
N1—C4—C3—N2 0.1 (2) C8—C9—C10—C5 0.7 (3)
N1—C2—N2—C3 0.8 (2) C9—C10—C5—C6 0.4 (3)
N1—C2—N2—C5 179.69 (15) C9—C10—C5—N2 179.43 (17)
C4—C3—N2—C2 −0.6 (2) C2—N2—C5—C10 176.61 (17)
C4—C3—N2—C5 −179.45 (15) C3—N2—C5—C10 −4.7 (3)
N2—C2—N1—C4 −0.7 (2) C2—N2—C5—C6 −4.4 (3)
C3—C4—N1—C2 0.4 (2) C3—N2—C5—C6 174.27 (17)
O1—N3—C8—C7 −7.6 (2) C10—C5—C6—C7 −0.8 (3)
O2—N3—C8—C7 171.90 (17) N2—C5—C6—C7 −179.81 (15)
O1—N3—C8—C9 171.10 (16) C9—C8—C7—C6 1.1 (3)
O2—N3—C8—C9 −9.4 (2) N3—C8—C7—C6 179.81 (16)
C7—C8—C9—C10 −1.5 (3) C5—C6—C7—C8 0.0 (3)
N3—C8—C9—C10 179.81 (16)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···Cl1i 0.92 (2) 2.08 (2) 2.9976 (17) 178 (2)
C9—H9···Cl1 0.93 2.80 3.5898 (19) 144
C2—H2···Cl1ii 0.93 2.52 3.4286 (17) 166
C4—H4···O2i 0.93 2.29 3.181 (2) 161

Symmetry codes: (i) −x+3/2, y+1/2, z−3/2; (ii) x−1/2, −y+1/2, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NR2034).

References

  1. Bruker (2008). APEX2, SAINT-Plus, XPREP and SADABS Bruker AXS Inc., Madison, Wisconsin, USA..
  2. Coberan, R. & Peris, E. (2008). Organometallics, 27, 1954–1958.
  3. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  4. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  5. Gayathri, P., Thiruvalluvar, A., Srinivasan, N., Jayabharathi, J. & Butcher, R. J. (2010). Acta Cryst. E66, o2519. [DOI] [PMC free article] [PubMed]
  6. Gnanamgari, D., Sauer, E. L. O., Schley, N. D., Butler, C., Incarvito, C. D. & Crabtree, R. H. (2009). Organometallics, 28, 321–325.
  7. Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2010). J. Appl. Cryst. 43, 665–668.
  8. Ibrahim, H., Bala, M. D. & Omondi, B. (2012). Acta Cryst. E68, o2305. [DOI] [PMC free article] [PubMed]
  9. Ishihara, M., Tonogaki, M., Ohba, S., Saito, Y., Okazaki, M., Katoh, T. & Kamiyama, K. (1992). Acta Cryst. C48, 184–188.
  10. Scheele, U. J., Meyer, F. & Dechert, S. (2007). Tetrahedron Lett. 48, 8366–8370.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Singh, A. K., Kumar, P., Yadav, M. & Pandey, D. S. (2010). J. Organomet. Chem. 695, 567–573.
  13. Singh, A. K., Kumar, P., Yadav, M. & Pandey, D. S. (2011). Bull. Chem. Soc. Jpn, 84, 205–210.
  14. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  15. Zheng, Z., Geng, W.-Q., Wu, Z.-C. & Zhou, H.-P. (2011). Acta Cryst. E67, o524. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812050878/nr2034sup1.cif

e-69-0o114-sup1.cif (20.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812050878/nr2034Isup2.hkl

e-69-0o114-Isup2.hkl (106.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812050878/nr2034Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES