Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Dec 8;69(Pt 1):m31–m32. doi: 10.1107/S1600536812049197

[2,6-Bis(5-eth­oxy-1,3-oxazol-2-yl)-4-meth­oxy­phenyl-κ3 N,C 1,N′]bromidopalladium(II)

Wen-Hui Nan a, Jian-Ping Tan a, Qun-Li Luo a,*
PMCID: PMC3588296  PMID: 23476330

Abstract

In the title compound, [PdBr(C17H17N2O5)], the PdII atom is coordinated by an N,C 1,N′-tridentate pincer ligand and a Br atom in a distorted square-planar geometry. In the crystal, mol­ecules are connected by C—H⋯Br and C—H⋯O hydrogen bonds, and π–π inter­actions between the oxazole and benzene rings [centroid–centroid distance = 3.7344 (19) Å], resulting in a three-dimensional supra­molecular structure.

Related literature  

For background to pincer palladium complexes, see: van Koten & Gebbink (2011); Moreno et al. (2010); Selander & Szabó (2011). For palladium complexes with NCN pincer ligands, see: Hao et al. (2010); Young et al. (2011). For studies on the chemistry of bis­(oxazole) pincer palladium complexes, see: Luo et al. (2007, 2011); Xu et al. (2011). For structures of related bis­(azole) pincer palladium complexes, see: Ghorai et al. (2012); Luo et al. (2012).graphic file with name e-69-00m31-scheme1.jpg

Experimental  

Crystal data  

  • [PdBr(C17H17N2O5)]

  • M r = 515.64

  • Triclinic, Inline graphic

  • a = 9.0209 (3) Å

  • b = 9.6544 (3) Å

  • c = 10.9200 (3) Å

  • α = 87.093 (2)°

  • β = 86.974 (1)°

  • γ = 85.793 (2)°

  • V = 946.11 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.12 mm−1

  • T = 296 K

  • 0.43 × 0.41 × 0.37 mm

Data collection  

  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.347, T max = 0.391

  • 15776 measured reflections

  • 4311 independent reflections

  • 3770 reflections with I > 2σ(I)

  • R int = 0.034

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.036

  • wR(F 2) = 0.113

  • S = 1.08

  • 4311 reflections

  • 235 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 0.72 e Å−3

  • Δρmin = −1.25 e Å−3

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812049197/hy2606sup1.cif

e-69-00m31-sup1.cif (21.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812049197/hy2606Isup2.hkl

e-69-00m31-Isup2.hkl (211.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Pd1—C11 1.954 (3)
Pd1—N1 2.056 (3)
Pd1—N2 2.055 (3)
Pd1—Br1 2.4941 (4)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯Br1i 0.97 2.80 3.526 (5) 132
C16—H16A⋯O2ii 0.96 2.44 3.391 (5) 170

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors appreciate financial support from the National Natural Science Foundation of China (grant No. 20971105) and the Fundamental Research Funds for the Central Universities (grant No. XDJK2012B011).

supplementary crystallographic information

Comment

Cross-coupling reactions catalyzed by palladium complexes are among the most important tools for C—C bond construction. Considerable attention has recently been devoted to pincer-Pd complexes due to their catalytic abilities (Ghorai et al., 2012; van Koten & Gebbink, 2011; Moreno et al., 2010; Selander & Szabó, 2011). We are interested in the NCN type of pincer-Pd complexes (Luo et al., 2007, 2011, 2012; Xu et al., 2011) as a variety of nonphosphine pincer catalytic system, that contains two nitrogen atoms as donating sites in the coordination sphere (Hao et al., 2010; Young et al., 2011)

The title compound was conveniently synthesized from the reaction of Pd(dba)2 (dba = dibenzylideneacetone) with 1-bromo-2,6-bis(5-ethoxyoxazol-2-yl)-4-methoxy benzene in dry benzene under reflux in an argon atmosphere. As a result, the title compound was isolated with 84% yield. Suitable single crystals were grown via vapor diffusion of hexane into a DMF solution of the soluble reaction product at room temperature for dozens of days.

The molecular structure is shown in Fig. 1 and selected bond lengths in Table 1. In the crystal, the molecules are linked by intermolecular C—H···Br and C—H···O hydrogen bonds (Table 2) and π–π interactions between the oxazole and benzene rings [centroid–centroid distance = 3.7344 (19) Å], resulting in a three-dimensional supramolecular structure.

Experimental

Under an argon atmosphere, a 25 ml Schlenk flask was charged with 1-bromo-2,6-bis(5-ethoxyoxazol-2-yl)-4-methoxybenzene (106 mg, 0.3 mmol), Pd(dba)2 (173 mg, 0.3 mmol) and dry benzene (15 ml). The reaction mixture was heated and refluxed for 2 h, and then cooled to room temperature and stirred for further 2 h. The resultant mixture was directly transferred on to a diatomite column and eluted first with hexane to remove dibenzylideneacetone and then with chloroform. The collected target compound was crystallized from CHCl3/MeOH as a slight yellow solid (yield: 84%). 1H NMR (300 MHz, CDCl3): δ 6.76 (s, 2H), 6.52 (s, 2H), 4.25 (q, 4H, 3J = 6.9 Hz), 3.83 (s, 3H), 1.49 (t, 6H, 3J = 7.0 Hz). 13C NMR (75 MHz, CDCl3): δ159.3, 158.5, 157.6, 154.7, 129.9, 107.3, 100.3, 55.8, 14.4. LRMS (ESI): m/z(%) 951 (100) (2M+–Br).

Refinement

H atoms were positioned geometrically and refined as riding atoms, with C–H = 0.93 (aromatic), 0.96 (CH3) and 0.97 (CH2) Å and with Uiso(H) = 1.2(1.5 for methyl)Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.

Crystal data

[PdBr(C17H17N2O5)] Z = 2
Mr = 515.64 F(000) = 508
Triclinic, P1 Dx = 1.810 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 9.0209 (3) Å Cell parameters from 15776 reflections
b = 9.6544 (3) Å θ = 1.9–27.5°
c = 10.9200 (3) Å µ = 3.12 mm1
α = 87.093 (2)° T = 296 K
β = 86.974 (1)° Block, yellow
γ = 85.793 (2)° 0.43 × 0.41 × 0.37 mm
V = 946.11 (5) Å3

Data collection

Bruker APEX CCD diffractometer 4311 independent reflections
Radiation source: fine-focus sealed tube 3770 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.034
Detector resolution: 0.01 pixels mm-1 θmax = 27.5°, θmin = 1.9°
φ and ω scans h = −11→11
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) k = −12→12
Tmin = 0.347, Tmax = 0.391 l = −14→13
15776 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113 H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.080P)2] where P = (Fo2 + 2Fc2)/3
4311 reflections (Δ/σ)max < 0.001
235 parameters Δρmax = 0.72 e Å3
6 restraints Δρmin = −1.25 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Pd1 0.75135 (2) 0.11221 (2) 0.04359 (2) 0.03536 (11)
Br1 0.73062 (5) 0.33747 (4) 0.14750 (4) 0.06338 (15)
O1 1.1647 (3) 0.2444 (3) −0.3330 (3) 0.0641 (8)
O2 1.0326 (3) 0.0693 (2) −0.2594 (2) 0.0427 (5)
O3 0.7890 (3) −0.4275 (2) −0.2212 (3) 0.0579 (7)
O4 0.4921 (3) −0.1921 (2) 0.1850 (2) 0.0442 (5)
O5 0.3381 (3) −0.1541 (3) 0.3498 (2) 0.0668 (8)
N1 0.9050 (3) 0.1515 (3) −0.0974 (2) 0.0396 (6)
N2 0.6019 (3) 0.0043 (3) 0.1522 (2) 0.0400 (6)
C1 1.3044 (8) 0.4175 (6) −0.4370 (6) 0.106 (2)
H1A 1.3264 0.5134 −0.4395 0.158*
H1B 1.2634 0.3971 −0.5128 0.158*
H1C 1.3941 0.3595 −0.4253 0.158*
C2 1.1945 (6) 0.3901 (4) −0.3332 (5) 0.0810 (14)
H2A 1.2346 0.4105 −0.2560 0.097*
H2B 1.1033 0.4483 −0.3439 0.097*
C3 1.0668 (4) 0.2043 (3) −0.2459 (3) 0.0447 (7)
C4 0.9916 (4) 0.2562 (3) −0.1487 (3) 0.0426 (7)
H4A 0.9957 0.3450 −0.1203 0.051*
C5 0.9345 (3) 0.0438 (3) −0.1655 (3) 0.0372 (6)
C6 0.8596 (3) −0.0824 (3) −0.1380 (3) 0.0372 (6)
C7 0.8675 (4) −0.2063 (3) −0.1977 (3) 0.0414 (7)
H7A 0.9331 −0.2201 −0.2653 0.050*
C8 0.7764 (4) −0.3086 (3) −0.1552 (3) 0.0436 (7)
C9 0.6796 (4) −0.2931 (3) −0.0517 (3) 0.0412 (7)
H9A 0.6196 −0.3635 −0.0233 0.049*
C10 0.6764 (3) −0.1684 (3) 0.0073 (3) 0.0376 (7)
C11 0.7643 (3) −0.0646 (3) −0.0372 (3) 0.0358 (6)
C12 0.5894 (3) −0.1220 (3) 0.1135 (3) 0.0384 (6)
C13 0.5062 (4) 0.0193 (4) 0.2543 (3) 0.0442 (7)
H13A 0.4905 0.0973 0.3011 0.053*
C14 0.4399 (4) −0.1014 (4) 0.2730 (3) 0.0464 (8)
C15 0.2843 (5) −0.0696 (5) 0.4494 (4) 0.0643 (11)
H15A 0.2321 0.0153 0.4183 0.077*
H15B 0.3666 −0.0450 0.4957 0.077*
C16 0.1823 (6) −0.1520 (5) 0.5285 (4) 0.0837 (16)
H16A 0.1440 −0.0984 0.5963 0.126*
H16B 0.2351 −0.2356 0.5588 0.126*
H16C 0.1013 −0.1755 0.4817 0.126*
C17 0.6779 (5) −0.5245 (4) −0.1992 (4) 0.0587 (10)
H17A 0.6999 −0.6018 −0.2508 0.088*
H17B 0.5824 −0.4801 −0.2174 0.088*
H17C 0.6766 −0.5571 −0.1147 0.088*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Pd1 0.03735 (16) 0.03482 (16) 0.03421 (16) −0.00236 (10) −0.00149 (10) −0.00492 (10)
Br1 0.0765 (3) 0.0515 (2) 0.0634 (3) −0.0026 (2) −0.0009 (2) −0.0195 (2)
O1 0.0782 (19) 0.0491 (15) 0.0652 (17) −0.0235 (14) 0.0259 (15) −0.0074 (13)
O2 0.0477 (12) 0.0354 (11) 0.0450 (12) −0.0084 (9) 0.0083 (10) −0.0061 (9)
O3 0.0664 (16) 0.0390 (13) 0.0692 (17) −0.0145 (11) 0.0214 (13) −0.0205 (12)
O4 0.0478 (12) 0.0430 (12) 0.0422 (12) −0.0101 (10) 0.0083 (10) −0.0052 (10)
O5 0.085 (2) 0.0609 (17) 0.0537 (16) −0.0198 (15) 0.0327 (14) −0.0159 (13)
N1 0.0395 (14) 0.0366 (14) 0.0430 (15) −0.0045 (11) −0.0020 (11) −0.0040 (11)
N2 0.0401 (14) 0.0455 (15) 0.0341 (13) −0.0022 (11) 0.0030 (11) −0.0050 (11)
C1 0.137 (5) 0.074 (3) 0.105 (4) −0.041 (3) 0.041 (4) 0.002 (3)
C2 0.099 (4) 0.046 (2) 0.097 (4) −0.021 (2) 0.031 (3) 0.002 (2)
C3 0.0479 (17) 0.0368 (16) 0.0498 (19) −0.0109 (13) 0.0022 (15) 0.0012 (14)
C4 0.0460 (17) 0.0358 (16) 0.0465 (18) −0.0063 (13) −0.0014 (14) −0.0026 (13)
C5 0.0371 (15) 0.0365 (15) 0.0382 (16) −0.0038 (12) −0.0014 (12) −0.0021 (12)
C6 0.0366 (15) 0.0359 (15) 0.0391 (16) −0.0016 (12) −0.0028 (13) −0.0008 (12)
C7 0.0407 (16) 0.0411 (17) 0.0419 (17) −0.0036 (13) 0.0063 (13) −0.0057 (13)
C8 0.0475 (18) 0.0355 (16) 0.0480 (19) −0.0047 (13) 0.0041 (15) −0.0090 (14)
C9 0.0419 (16) 0.0346 (15) 0.0471 (18) −0.0078 (13) 0.0031 (14) −0.0017 (13)
C10 0.0364 (15) 0.0415 (16) 0.0346 (16) −0.0018 (12) 0.0016 (12) −0.0029 (13)
C11 0.0336 (14) 0.0361 (15) 0.0380 (16) −0.0044 (11) −0.0021 (12) −0.0007 (12)
C12 0.0405 (16) 0.0390 (16) 0.0359 (16) −0.0048 (12) 0.0022 (13) −0.0042 (12)
C13 0.0464 (18) 0.053 (2) 0.0333 (16) −0.0022 (15) 0.0019 (14) −0.0073 (14)
C14 0.0500 (19) 0.0526 (19) 0.0363 (17) −0.0082 (15) 0.0096 (14) −0.0059 (14)
C15 0.075 (3) 0.076 (3) 0.044 (2) −0.017 (2) 0.0166 (19) −0.0172 (18)
C16 0.112 (4) 0.081 (3) 0.054 (3) −0.005 (3) 0.040 (3) −0.011 (2)
C17 0.067 (2) 0.047 (2) 0.064 (2) −0.0161 (18) 0.003 (2) −0.0165 (18)

Geometric parameters (Å, º)

Pd1—C11 1.954 (3) C3—C4 1.328 (5)
Pd1—N1 2.056 (3) C4—H4A 0.9300
Pd1—N2 2.055 (3) C5—C6 1.447 (4)
Pd1—Br1 2.4941 (4) C6—C11 1.371 (5)
O1—C3 1.326 (4) C6—C7 1.387 (4)
O1—C2 1.451 (5) C7—C8 1.378 (4)
O2—C5 1.344 (4) C7—H7A 0.9300
O2—C3 1.378 (4) C8—C9 1.399 (5)
O3—C8 1.380 (4) C9—C10 1.392 (5)
O3—C17 1.425 (4) C9—H9A 0.9300
O4—C12 1.342 (4) C10—C11 1.377 (4)
O4—C14 1.374 (4) C10—C12 1.438 (4)
O5—C14 1.323 (4) C13—C14 1.350 (5)
O5—C15 1.435 (5) C13—H13A 0.9300
N1—C5 1.312 (4) C15—C16 1.475 (6)
N1—C4 1.400 (4) C15—H15A 0.9700
N2—C12 1.325 (4) C15—H15B 0.9700
N2—C13 1.380 (4) C16—H16A 0.9600
C1—C2 1.492 (7) C16—H16B 0.9600
C1—H1A 0.9600 C16—H16C 0.9600
C1—H1B 0.9600 C17—H17A 0.9600
C1—H1C 0.9600 C17—H17B 0.9600
C2—H2A 0.9700 C17—H17C 0.9600
C2—H2B 0.9700
C11—Pd1—N2 79.26 (12) C8—C7—H7A 120.6
C11—Pd1—N1 79.31 (11) C6—C7—H7A 120.6
N2—Pd1—N1 158.57 (11) C7—C8—O3 115.2 (3)
C11—Pd1—Br1 179.10 (9) C7—C8—C9 122.1 (3)
N2—Pd1—Br1 100.00 (8) O3—C8—C9 122.7 (3)
N1—Pd1—Br1 101.42 (7) C10—C9—C8 117.5 (3)
C3—O1—C2 114.6 (3) C10—C9—H9A 121.3
C5—O2—C3 104.3 (2) C8—C9—H9A 121.3
C8—O3—C17 118.0 (3) C11—C10—C9 120.4 (3)
C12—O4—C14 104.9 (2) C11—C10—C12 109.2 (3)
C14—O5—C15 116.3 (3) C9—C10—C12 130.4 (3)
C5—N1—C4 106.2 (3) C6—C11—C10 121.2 (3)
C5—N1—Pd1 112.1 (2) C6—C11—Pd1 119.3 (2)
C4—N1—Pd1 141.7 (2) C10—C11—Pd1 119.5 (2)
C12—N2—C13 107.0 (3) N2—C12—O4 111.8 (3)
C12—N2—Pd1 112.0 (2) N2—C12—C10 120.0 (3)
C13—N2—Pd1 141.0 (2) O4—C12—C10 128.2 (3)
C2—C1—H1A 109.5 C14—C13—N2 106.6 (3)
C2—C1—H1B 109.5 C14—C13—H13A 126.7
H1A—C1—H1B 109.5 N2—C13—H13A 126.7
C2—C1—H1C 109.5 O5—C14—C13 137.7 (3)
H1A—C1—H1C 109.5 O5—C14—O4 112.5 (3)
H1B—C1—H1C 109.5 C13—C14—O4 109.7 (3)
O1—C2—C1 107.5 (4) O5—C15—C16 107.2 (4)
O1—C2—H2A 110.2 O5—C15—H15A 110.3
C1—C2—H2A 110.2 C16—C15—H15A 110.3
O1—C2—H2B 110.2 O5—C15—H15B 110.3
C1—C2—H2B 110.2 C16—C15—H15B 110.3
H2A—C2—H2B 108.5 H15A—C15—H15B 108.5
O1—C3—C4 138.5 (3) C15—C16—H16A 109.5
O1—C3—O2 111.2 (3) C15—C16—H16B 109.5
C4—C3—O2 110.2 (3) H16A—C16—H16B 109.5
C3—C4—N1 106.7 (3) C15—C16—H16C 109.5
C3—C4—H4A 126.6 H16A—C16—H16C 109.5
N1—C4—H4A 126.6 H16B—C16—H16C 109.5
N1—C5—O2 112.5 (3) O3—C17—H17A 109.5
N1—C5—C6 120.1 (3) O3—C17—H17B 109.5
O2—C5—C6 127.3 (3) H17A—C17—H17B 109.5
C11—C6—C7 119.9 (3) O3—C17—H17C 109.5
C11—C6—C5 109.2 (3) H17A—C17—H17C 109.5
C7—C6—C5 130.9 (3) H17B—C17—H17C 109.5
C8—C7—C6 118.9 (3)
C11—Pd1—N1—C5 −1.0 (2) C17—O3—C8—C9 13.7 (5)
N2—Pd1—N1—C5 −1.9 (4) C7—C8—C9—C10 0.8 (5)
Br1—Pd1—N1—C5 179.6 (2) O3—C8—C9—C10 −179.9 (3)
C11—Pd1—N1—C4 178.5 (4) C8—C9—C10—C11 1.1 (5)
N2—Pd1—N1—C4 177.5 (3) C8—C9—C10—C12 179.5 (3)
Br1—Pd1—N1—C4 −1.0 (4) C7—C6—C11—C10 0.7 (5)
C11—Pd1—N2—C12 −0.9 (2) C5—C6—C11—C10 178.7 (3)
N1—Pd1—N2—C12 0.1 (4) C7—C6—C11—Pd1 −178.6 (2)
Br1—Pd1—N2—C12 178.6 (2) C5—C6—C11—Pd1 −0.6 (4)
C11—Pd1—N2—C13 179.9 (4) C9—C10—C11—C6 −1.9 (5)
N1—Pd1—N2—C13 −179.2 (3) C12—C10—C11—C6 179.4 (3)
Br1—Pd1—N2—C13 −0.6 (4) C9—C10—C11—Pd1 177.5 (2)
C3—O1—C2—C1 −179.3 (4) C12—C10—C11—Pd1 −1.3 (4)
C2—O1—C3—C4 −6.5 (7) N2—Pd1—C11—C6 −179.4 (3)
C2—O1—C3—O2 173.7 (4) N1—Pd1—C11—C6 0.9 (2)
C5—O2—C3—O1 179.6 (3) N2—Pd1—C11—C10 1.2 (2)
C5—O2—C3—C4 −0.3 (4) N1—Pd1—C11—C10 −178.5 (3)
O1—C3—C4—N1 179.9 (4) C13—N2—C12—O4 −0.7 (4)
O2—C3—C4—N1 −0.2 (4) Pd1—N2—C12—O4 179.8 (2)
C5—N1—C4—C3 0.6 (4) C13—N2—C12—C10 180.0 (3)
Pd1—N1—C4—C3 −178.8 (3) Pd1—N2—C12—C10 0.5 (4)
C4—N1—C5—O2 −0.9 (3) C14—O4—C12—N2 0.8 (4)
Pd1—N1—C5—O2 178.8 (2) C14—O4—C12—C10 −180.0 (3)
C4—N1—C5—C6 −178.7 (3) C11—C10—C12—N2 0.5 (4)
Pd1—N1—C5—C6 1.0 (4) C9—C10—C12—N2 −178.1 (3)
C3—O2—C5—N1 0.7 (4) C11—C10—C12—O4 −178.8 (3)
C3—O2—C5—C6 178.3 (3) C9—C10—C12—O4 2.7 (6)
N1—C5—C6—C11 −0.3 (4) C12—N2—C13—C14 0.3 (4)
O2—C5—C6—C11 −177.7 (3) Pd1—N2—C13—C14 179.6 (3)
N1—C5—C6—C7 177.4 (3) C15—O5—C14—C13 −5.6 (7)
O2—C5—C6—C7 0.0 (6) C15—O5—C14—O4 176.2 (3)
C11—C6—C7—C8 1.2 (5) N2—C13—C14—O5 −178.1 (4)
C5—C6—C7—C8 −176.3 (3) N2—C13—C14—O4 0.1 (4)
C6—C7—C8—O3 178.8 (3) C12—O4—C14—O5 178.2 (3)
C6—C7—C8—C9 −2.0 (5) C12—O4—C14—C13 −0.5 (4)
C17—O3—C8—C7 −167.0 (3) C14—O5—C15—C16 −175.5 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C2—H2A···Br1i 0.97 2.80 3.526 (5) 132
C16—H16A···O2ii 0.96 2.44 3.391 (5) 170

Symmetry codes: (i) −x+2, −y+1, −z; (ii) x−1, y, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2606).

References

  1. Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Ghorai, D., Kumar, S. & Mani, G. (2012). Dalton Trans. 41, 9503–9512. [DOI] [PubMed]
  3. Hao, X.-Q., Wang, Y.-N., Liu, J.-R., Wang, K.-L., Gong, J.-F. & Song, M.-P. (2010). J. Organomet. Chem. 695, 82–89.
  4. Koten, G. van & Gebbink, R. J. M. K. (2011). Dalton Trans. 40, 8731–8732. [DOI] [PubMed]
  5. Luo, Q., Eibauer, S. & Reiser, O. (2007). J. Mol. Catal. A Chem. 268, 65–69.
  6. Luo, Q.-L., Tan, J.-P., Li, Z.-F., Nan, W.-H. & Xiao, D.-R. (2012). J. Org. Chem. 77, 8332–8337. [DOI] [PubMed]
  7. Luo, Q.-L., Tan, J.-P., Li, Z.-F., Qin, Y., Ma, L. & Xiao, D.-R. (2011). Dalton Trans. 40, 3601–3609. [DOI] [PubMed]
  8. Moreno, I., SanMartin, R., Inés, B., Churruca, F. & Domínguez, E. (2010). Inorg. Chim. Acta, 363, 1903–1911.
  9. Selander, N. & Szabó, K. J. (2011). Chem. Rev. 111, 2048–2076. [DOI] [PubMed]
  10. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Xu, G., Luo, Q., Eibauer, S., Rausch, A. F., Stempfhuber, S., Zabel, M., Yersin, H. & Reiser, O. (2011). Dalton Trans. 40, 8800–8806. [DOI] [PubMed]
  13. Young, K. J. H., Bu, X. & Kaska, W. C. (2011). J. Organomet. Chem. 696, 3992–3997.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812049197/hy2606sup1.cif

e-69-00m31-sup1.cif (21.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812049197/hy2606Isup2.hkl

e-69-00m31-Isup2.hkl (211.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES