Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Dec 8;69(Pt 1):o61. doi: 10.1107/S1600536812049847

2-[(E)-2-Hy­droxy-3-methoxy­benzyl­idene]-N-methyl­hydrazinecarbothio­amide

B S Shankara a, N Shashidhar b, Yogesh Prakash Patil c, P Murali Krishna d,*, Munirathinam Nethaji c
PMCID: PMC3588310  PMID: 23476442

Abstract

In the crystal structure of the title compound, C11H15N3O2S, mol­ecules are linked by pairs of N—H⋯O and O—H⋯S hydrogen, forming inversion dimers. These dimers are linked by N—H⋯S hydrogen bonds, forming double-stranded chains propagating along the b-axis direction. The two C atoms of the end chain of the mol­ecule are disordered over two sets os sites [occupancy ratio 0.574 (9):0.426 (9)].

Related literature  

For related structures, see: Joseph et al. (2006); Ren-Gao Zhao et al.(2008). For the biological activity of thio­semicarbazone Schiff bases, see: Kasuga et al. (2003); Murali et al. (2008, 2009); Paterson & Donnelly (2011).graphic file with name e-69-00o61-scheme1.jpg

Experimental  

Crystal data  

  • C11H15N3O2S

  • M r = 253.32

  • Monoclinic, Inline graphic

  • a = 13.251 (6) Å

  • b = 6.185 (3) Å

  • c = 16.380 (8) Å

  • β = 113.153 (7)°

  • V = 1234.4 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 293 K

  • 0.26 × 0.09 × 0.05 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2006) T min = 0.936, T max = 0.987

  • 7373 measured reflections

  • 2433 independent reflections

  • 1666 reflections with I > 2σ(I)

  • R int = 0.030

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.064

  • wR(F 2) = 0.180

  • S = 1.06

  • 2433 reflections

  • 175 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.37 e Å−3

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812049847/gw2126sup1.cif

e-69-00o61-sup1.cif (22.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812049847/gw2126Isup2.hkl

e-69-00o61-Isup2.hkl (117.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812049847/gw2126Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯S1i 0.87 (4) 2.42 (4) 3.169 (3) 145 (3)
N2—H2⋯O1i 0.82 (3) 2.29 (4) 3.010 (4) 147 (3)

Symmetry code: (i) Inline graphic.

Acknowledgments

The work was financed by a grant (project No: VTU/Aca./2010–11/A–9/11341) from Visvesvaraya Technological University. YPP thanks the CSIR, India, for a fellowship.

supplementary crystallographic information

Comment

Thiosemicarbazones emerged an important class of sulfur and nitrogen containing Schiff-bases due to their chemistry and potentially beneficial biological activities, such as antitumor,antibacterial, antiviral and antimalarial activities (Kasuga et al., 2003; Paterson & Donnelly, 2011). In a continuation of our studies on thiosemicarbazone Schiff-bases, we report the synthesis and crystal structure of the title compound, (I).

In (I) (Fig. 1), all bond lengths and angles are normal and in a good agreement with those found in the literature (Joseph et al., 2006).There is one molecule in the assymetric unit with the end atoms thermally disordered. This molecule exhibits intermolecular N—H···O and O—H···S hydrogen bonds (Table 2) forming a dimer along b axis. These dimers give rise to a zigzag pattern seen along c axis. Further the molecules are packed by weak π···π interactions [centroid–centroid distance 4.495 (5) Å]

Experimental

The title compound (I)was synthesized by the reaction of 2-hydroxy-3-methoxy benzaldehyde (10 g, 0.1 mol) in 250 ml round bottom flask, 5% acetic acid-water solution of 4 N-methyl hydrazinecarbothioamide (0.1 mol) in ethanol solution and refluxed on a steam bath for 30–45 minutes. The crystalline product which formed was collected by filtration, washed several times with hot water and, then ether, finally dried in vacuo. Then good quality crystals (I)were obtained in a 1:1 mixture of ethanol and n-hexane.

Refinement

The hydrogen atoms were located with the help of difference fourier maps. Hydrogen atoms for C7, C6 were positioned geometrically and refined using a riding model.

The end group of N-Et was disordered and modelled with the help of part command. The major component i.e. N3–C10–C11 is depicted in the ORTEP diagram. since this group is diordered over two positions, isotropic refinement is done for these 3 atoms. SADI and DFIX commands were used to model the disordered atoms. The hydrogen atoms were fixed for these atoms.

There are two reflections missing from the fcf file according to check cif which may be at high angle beyond the limiting sphere and not possible for recording despite the fact the data was recollected with another crystal.

Figures

Fig. 1.

Fig. 1.

The structure of title the compound (I)

Fig. 2.

Fig. 2.

Packing diagram of (I)

Crystal data

C11H15N3O2S F(000) = 536
Mr = 253.32 Dx = 1.363 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 1499 reflections
a = 13.251 (6) Å θ = 2.6–25.6°
b = 6.185 (3) Å µ = 0.26 mm1
c = 16.380 (8) Å T = 293 K
β = 113.153 (7)° Rectangular plate like, yellow
V = 1234.4 (11) Å3 0.26 × 0.09 × 0.05 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer 2433 independent reflections
Radiation source: fine-focus sealed tube 1666 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.030
Detector resolution: 0.3 pixels mm-1 θmax = 26.0°, θmin = 1.7°
φ and ω scans h = −16→16
Absorption correction: multi-scan (SADABS; Bruker, 2006) k = −6→7
Tmin = 0.936, Tmax = 0.987 l = −20→20
7373 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.180 H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0756P)2 + 1.2001P] where P = (Fo2 + 2Fc2)/3
2433 reflections (Δ/σ)max < 0.001
175 parameters Δρmax = 0.46 e Å3
4 restraints Δρmin = −0.37 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
S1 0.87523 (8) 0.71851 (17) 0.56230 (8) 0.0642 (4)
O1 0.37812 (19) 0.2015 (4) 0.55013 (16) 0.0483 (6)
O2 0.28859 (18) −0.1250 (4) 0.60039 (16) 0.0515 (7)
N1 0.7027 (2) 0.2534 (4) 0.60644 (18) 0.0419 (7)
N2 0.7343 (2) 0.4427 (5) 0.5791 (2) 0.0462 (7)
C1 0.5554 (2) 0.0466 (5) 0.61505 (19) 0.0355 (7)
C2 0.4438 (2) 0.0358 (5) 0.59547 (19) 0.0356 (7)
C3 0.3996 (3) −0.1393 (5) 0.6244 (2) 0.0393 (7)
C4 0.4666 (3) −0.3038 (6) 0.6715 (2) 0.0457 (8)
C5 0.5792 (3) −0.2945 (6) 0.6909 (2) 0.0473 (8)
C6 0.6224 (3) −0.1240 (5) 0.6625 (2) 0.0420 (8)
H6 0.6972 −0.1211 0.6748 0.050*
C7 0.2363 (3) −0.2905 (7) 0.6292 (3) 0.0617 (11)
H7A 0.2530 −0.4284 0.6107 0.093*
H7B 0.1583 −0.2680 0.6036 0.093*
H7C 0.2621 −0.2871 0.6927 0.093*
C8 0.5999 (3) 0.2336 (5) 0.5868 (2) 0.0386 (7)
C9 0.8392 (3) 0.4794 (6) 0.5909 (2) 0.0491 (9)
N3 0.9010 (4) 0.2968 (11) 0.6089 (5) 0.0524 (17)* 0.574 (9)
H3 0.8756 0.1678 0.5955 0.063* 0.574 (9)
C10 1.0329 (6) 0.3596 (12) 0.6605 (6) 0.076 (3)* 0.574 (9)
H10A 1.0552 0.4659 0.6273 0.092* 0.574 (9)
H10B 1.0491 0.4138 0.7199 0.092* 0.574 (9)
C11 1.0867 (7) 0.1453 (13) 0.6627 (7) 0.079 (3)* 0.574 (9)
H11A 1.0750 0.0528 0.7052 0.119* 0.574 (9)
H11B 1.1641 0.1661 0.6793 0.119* 0.574 (9)
H11C 1.0556 0.0797 0.6050 0.119* 0.574 (9)
N3A 0.9128 (5) 0.3405 (12) 0.6420 (6) 0.043 (2)* 0.426 (9)
H3A 0.9109 0.2887 0.6901 0.051* 0.426 (9)
C10A 1.0095 (7) 0.2744 (17) 0.6053 (6) 0.065 (3)* 0.426 (9)
H10C 0.9888 0.1537 0.5641 0.078* 0.426 (9)
H10D 1.0334 0.3959 0.5799 0.078* 0.426 (9)
C11A 1.0909 (11) 0.213 (3) 0.6964 (8) 0.111 (5)* 0.426 (9)
H11D 1.0844 0.3111 0.7395 0.167* 0.426 (9)
H11E 1.1639 0.2207 0.6977 0.167* 0.426 (9)
H11F 1.0763 0.0684 0.7100 0.167* 0.426 (9)
H1 0.309 (3) 0.176 (6) 0.535 (2) 0.055 (11)*
H2 0.687 (3) 0.534 (6) 0.556 (2) 0.048 (11)*
H4 0.435 (3) −0.420 (6) 0.688 (2) 0.050 (10)*
H5 0.634 (3) −0.414 (6) 0.726 (2) 0.060 (10)*
H8 0.553 (3) 0.336 (5) 0.557 (2) 0.040 (9)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0450 (6) 0.0550 (6) 0.0933 (8) −0.0108 (4) 0.0280 (5) 0.0119 (5)
O1 0.0348 (13) 0.0452 (14) 0.0638 (16) 0.0000 (11) 0.0181 (12) 0.0143 (12)
O2 0.0413 (13) 0.0519 (15) 0.0639 (15) −0.0080 (11) 0.0236 (12) 0.0098 (12)
N1 0.0391 (15) 0.0401 (15) 0.0505 (16) −0.0012 (12) 0.0217 (13) 0.0044 (13)
N2 0.0349 (15) 0.0393 (16) 0.066 (2) 0.0004 (13) 0.0212 (14) 0.0096 (15)
C1 0.0404 (17) 0.0351 (17) 0.0342 (16) −0.0023 (13) 0.0181 (14) −0.0020 (13)
C2 0.0396 (17) 0.0325 (16) 0.0359 (16) 0.0003 (13) 0.0160 (14) 0.0013 (13)
C3 0.0423 (18) 0.0400 (18) 0.0408 (17) −0.0068 (15) 0.0218 (15) −0.0035 (15)
C4 0.057 (2) 0.0352 (18) 0.051 (2) −0.0042 (16) 0.0276 (18) 0.0058 (15)
C5 0.053 (2) 0.0410 (19) 0.051 (2) 0.0068 (16) 0.0245 (17) 0.0094 (16)
C6 0.0388 (17) 0.0431 (18) 0.0468 (19) 0.0040 (15) 0.0197 (15) 0.0012 (15)
C7 0.055 (2) 0.063 (3) 0.075 (3) −0.0192 (19) 0.035 (2) 0.004 (2)
C8 0.0355 (17) 0.0373 (17) 0.0426 (18) −0.0004 (15) 0.0151 (14) 0.0042 (15)
C9 0.0367 (18) 0.051 (2) 0.059 (2) −0.0024 (16) 0.0194 (16) 0.0060 (17)

Geometric parameters (Å, º)

S1—C9 1.676 (4) C7—H7C 0.9600
O1—C2 1.360 (4) C8—H8 0.89 (3)
O1—H1 0.87 (4) C9—N3A 1.322 (8)
O2—C3 1.367 (4) C9—N3 1.358 (7)
O2—C7 1.416 (4) N3—C10 1.661 (8)
N1—C8 1.277 (4) N3—H3 0.8600
N1—N2 1.376 (4) C10—C11 1.499 (7)
N2—C9 1.346 (4) C10—H10A 0.9700
N2—H2 0.82 (3) C10—H10B 0.9700
C1—C2 1.387 (4) C11—H11A 0.9600
C1—C6 1.401 (4) C11—H11B 0.9600
C1—C8 1.454 (4) C11—H11C 0.9600
C2—C3 1.399 (4) N3A—C10A 1.667 (8)
C3—C4 1.371 (5) N3A—H3A 0.8600
C4—C5 1.399 (5) C10A—C11A 1.506 (7)
C4—H4 0.93 (4) C10A—H10C 0.9700
C5—C6 1.366 (5) C10A—H10D 0.9700
C5—H5 1.04 (4) C11A—H11D 0.9600
C6—H6 0.9300 C11A—H11E 0.9600
C7—H7A 0.9600 C11A—H11F 0.9600
C7—H7B 0.9600
C2—O1—H1 113 (3) N1—C8—H8 121 (2)
C3—O2—C7 118.0 (3) C1—C8—H8 118 (2)
C8—N1—N2 115.5 (3) N3A—C9—N2 116.4 (4)
C9—N2—N1 121.7 (3) N2—C9—N3 113.1 (4)
C9—N2—H2 120 (2) N3A—C9—S1 122.0 (4)
N1—N2—H2 118 (2) N2—C9—S1 120.0 (3)
C2—C1—C6 118.5 (3) N3—C9—S1 125.5 (3)
C2—C1—C8 119.6 (3) C9—N3—C10 109.9 (5)
C6—C1—C8 121.9 (3) C9—N3—H3 125.1
O1—C2—C1 119.0 (3) C10—N3—H3 125.1
O1—C2—C3 120.3 (3) C11—C10—N3 101.6 (6)
C1—C2—C3 120.6 (3) C11—C10—H10A 111.4
O2—C3—C4 126.5 (3) N3—C10—H10A 111.4
O2—C3—C2 113.5 (3) C11—C10—H10B 111.4
C4—C3—C2 120.0 (3) N3—C10—H10B 111.4
C3—C4—C5 119.6 (3) H10A—C10—H10B 109.3
C3—C4—H4 118 (2) C9—N3A—C10A 114.2 (6)
C5—C4—H4 122 (2) C9—N3A—H3A 122.9
C6—C5—C4 120.4 (3) C10A—N3A—H3A 122.9
C6—C5—H5 116 (2) C11A—C10A—N3A 93.3 (9)
C4—C5—H5 123 (2) C11A—C10A—H10C 113.1
C5—C6—C1 120.7 (3) N3A—C10A—H10C 113.1
C5—C6—H6 119.6 C11A—C10A—H10D 113.1
C1—C6—H6 119.6 N3A—C10A—H10D 113.1
O2—C7—H7A 109.5 H10C—C10A—H10D 110.4
O2—C7—H7B 109.5 C10A—C11A—H11D 109.5
H7A—C7—H7B 109.5 C10A—C11A—H11E 109.5
O2—C7—H7C 109.5 H11D—C11A—H11E 109.5
H7A—C7—H7C 109.5 C10A—C11A—H11F 109.5
H7B—C7—H7C 109.5 H11D—C11A—H11F 109.5
N1—C8—C1 121.5 (3) H11E—C11A—H11F 109.5
C8—N1—N2—C9 −176.1 (3) C8—C1—C6—C5 177.8 (3)
C6—C1—C2—O1 179.4 (3) N2—N1—C8—C1 −177.1 (3)
C8—C1—C2—O1 −0.1 (4) C2—C1—C8—N1 177.3 (3)
C6—C1—C2—C3 1.5 (4) C6—C1—C8—N1 −2.2 (5)
C8—C1—C2—C3 −178.0 (3) N1—N2—C9—N3A −10.2 (6)
C7—O2—C3—C4 2.6 (5) N1—N2—C9—N3 16.6 (6)
C7—O2—C3—C2 −177.8 (3) N1—N2—C9—S1 −176.2 (3)
O1—C2—C3—O2 1.6 (4) N3A—C9—N3—C10 −54.4 (10)
C1—C2—C3—O2 179.5 (3) N2—C9—N3—C10 −157.7 (5)
O1—C2—C3—C4 −178.8 (3) S1—C9—N3—C10 35.9 (8)
C1—C2—C3—C4 −0.9 (5) C9—N3—C10—C11 −172.4 (6)
O2—C3—C4—C5 −180.0 (3) N2—C9—N3A—C10A 139.6 (6)
C2—C3—C4—C5 0.5 (5) N3—C9—N3A—C10A 51.5 (9)
C3—C4—C5—C6 −0.7 (5) S1—C9—N3A—C10A −54.8 (9)
C4—C5—C6—C1 1.3 (5) C9—N3A—C10A—C11A 155.8 (9)
C2—C1—C6—C5 −1.7 (5)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1···S1i 0.87 (4) 2.42 (4) 3.169 (3) 145 (3)
N2—H2···O1i 0.82 (3) 2.29 (4) 3.010 (4) 147 (3)

Symmetry code: (i) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GW2126).

References

  1. Bruker (2006). APEX2, SAINT and SADABS Bruker AXS Inc. Madison, Wisconsin, USA.
  2. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  3. Joseph, M., Kuriakose, M., Kurup, M. R. P., Suresh, E., Kishore, A. & Bhat, S. G. (2006). Polyhedron, 25, 61–70.
  4. Kasuga, N. C., Sekino, K., Ishikawa, M., Honda, A., Yokoyama, M., Nakano, S., Shimada, N., Koumo, C. & Nomiya, K. (2003). J. Inorg. Biochem. 96, 298–310. [DOI] [PubMed]
  5. Murali Krishna, P. & Hussain Reddy, K. (2009). Inorg. Chim. Acta, 362, 4185–4190.
  6. Murali Krishna, P., Hussain Reddy, K., Pandey, J. P. & Dayananda, S. (2008). Transition Met. Chem. 33, 661–668.
  7. Paterson, B. M. & Donnelly, P. S. (2011). Chem. Soc. Rev. 40, 3005–3018. [DOI] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Zhao, R.-G., Zhang, W., Li, J.-K. & Zhang, L.-Y. (2008). Acta Cryst. E64, o1113. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812049847/gw2126sup1.cif

e-69-00o61-sup1.cif (22.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812049847/gw2126Isup2.hkl

e-69-00o61-Isup2.hkl (117.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812049847/gw2126Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES