Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Dec 22;69(Pt 1):o126. doi: 10.1107/S1600536812050994

Triclinic polymorph of 4-[4-(4-formyl­phen­oxy)but­oxy]benzaldehyde

Tomislav Balić a,*, Berislav Marković a, Ivana Balić a
PMCID: PMC3588312  PMID: 23476387

Abstract

The title compound, C18H18O4, is a triclinic polymorph of the previously reported monoclinic polymorph [Han & Zhen (2005). Acta Cryst. E61, o4358–o4359]. In the crystal of the triclinic polymorph, molecules are linked by two pairs of C—H⋯O hydrogen bonds, forming a two-dimensional network parallel to (102), and enclosing loops with graph set motifs of R 2 2(8) and R 2 2(6).

Related literature  

For the monoclinic polymorph, see: Han & Zhen (2005). For related structures and the synthesis of similar compounds, see: Balić et al. (2012); Ma & Cao (2011); Dehno Khalaji et al. (2011); Narasimha Moorthy et al. (2005); Ilhan et al. (2007). For graph-set analysis of hydrogen bonds, see Bernstein et al. (1995).graphic file with name e-69-0o126-scheme1.jpg

Experimental  

Crystal data  

  • C18H18O4

  • M r = 298.32

  • Triclinic, Inline graphic

  • a = 4.4969 (2) Å

  • b = 7.9507 (6) Å

  • c = 11.0679 (8) Å

  • α = 73.854 (6)°

  • β = 84.788 (5)°

  • γ = 80.903 (5)°

  • V = 374.86 (4) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 190 K

  • 0.59 × 0.35 × 0.21 mm

Data collection  

  • Oxford Diffraction Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) T min = 0.683, T max = 1.000

  • 2235 measured reflections

  • 1473 independent reflections

  • 1272 reflections with I > 2σ(I)

  • R int = 0.010

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.123

  • S = 1.04

  • 1473 reflections

  • 100 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012), PARST97 (Nardelli, 1995) and Mercury (Macrae et al., 2006).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812050994/ng5308sup1.cif

e-69-0o126-sup1.cif (14.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812050994/ng5308Isup2.hkl

e-69-0o126-Isup2.hkl (72.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812050994/ng5308Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O2i 0.95 2.58 3.4985 (16) 162
C1—H1⋯O1ii 0.95 2.59 3.3953 (18) 143

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This work was supported by the Ministry of Science, Education and Sports of the Republic of Croatia (grant No. 119–1193079-1084). The authors wish to thank Professor Dubravka Matković-Čalogović for help with the crystallography.

supplementary crystallographic information

Comment

Reacent structural studies of dialdehydes (Balić et al. 2012; Narasimha Moorthy et al. 2005), or the so called two-arm aldehydes have proposed them as potential precursors for condensation reactions with primary amines (Ilhan et al. 2007; Ma & Cao 2011; Dehno Khalaji et al. 2011). In a relation to this structural studies a new triclinic polymorph of title compound was found. Previously reported monoclinic polymorph (Han & Zhen 2005) was reported in P21/c space group with Z=2. The new polymorph was found in P1 space group (Z=1), with different intermolecular interactions (Figure 1.).

The original polymorph crystallize in monoclinic space group P21/c, with a = 7.988 (2), b = 6.6635 (16), c= 14.260 (4) Å, β= 96.354 (4)° and Z = 2 (Han & Zhen 2005). The title compound crystallizes in the space group P1 with a = 4.5749 (7), b= 7.9467 (10), c = 14.260 (4) Å, α= 73.597 (11)°, β = 83.154 (11)°, γ = 80.533 (12)° and Z = 1. In the reported structure crystallographic inversion centre lies in the center of the molecule, so the asymmetric unit comprises only one half of the molecule. The molecular structure of the title compound is shown in Figure 2. In the triclinic polymorph the molecules are linked in centrosymetric dimers via weak C1— H1···O1 intermolecular interactions, as previously reported by Narasimha Moorthy et al. (2005) and Balić et al. (2012). Additional stabilization of crystal structure is accomplished by weak C4— H4···O2 (Figure 1.). In the previously reported monoclinic polymorph the dihedral angle between benzaldehyde group and four central carbon atoms is 62.82°, while in triclinic polymorph this angle is 42.07°. However, the largest difference between these two polymorphs is manifested by the presence of R22(6) and R22(8) (Bernstein et al. 1995) supramolecular motifs in the triclinic polymorph.

Experimental

The title compound was prepared by folowing procedure: p-hydroxybenzaldehyde (50 mmol) and K2CO3 (50 mmol) were mixed in DMF and the mixture was brought to brisk reflux. 25 mmol of butane-1,4-dibrom dissolved in DMF was then added and the reaction mixture was refluxed for 5 h. After the reaction was complete, 100 ml of water was added and the resulting percipitate was filtered and washed with water. Single crystals suitable for X-ray diffraction were grown via slow evaporation from ethanol solution of the title compound.

Refinement

All H atoms, were positioned geometrically and refined using a riding model with C—H = 0.93 - 0.97 Å and with Uiso(H) = 1.2 times Ueq(C).

Figures

Fig. 1.

Fig. 1.

Crystal packing of title compound viewed down the a axis with dased lines representing weak C— H···O [graph set R22(6), R22(8)] intermolecular interactions.

Fig. 2.

Fig. 2.

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Crystal data

C18H18O4 Z = 1
Mr = 298.32 F(000) = 158
Triclinic, P1 Dx = 1.321 Mg m3
a = 4.4969 (2) Å Mo Kα radiation, λ = 0.7107 Å
b = 7.9507 (6) Å Cell parameters from 1657 reflections
c = 11.0679 (8) Å θ = 4.6–28.5°
α = 73.854 (6)° µ = 0.09 mm1
β = 84.788 (5)° T = 190 K
γ = 80.903 (5)° Block, colourless
V = 374.86 (4) Å3 0.59 × 0.35 × 0.21 mm

Data collection

Oxford Diffraction Xcalibur Sapphire3 diffractometer 1473 independent reflections
Radiation source: Enhance (Mo) X-ray Source 1272 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.010
Detector resolution: 16.3426 pixels mm-1 θmax = 26.0°, θmin = 4.6°
ω scans h = −5→4
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) k = −9→9
Tmin = 0.683, Tmax = 1.000 l = −13→13
2235 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0676P)2 + 0.0807P] where P = (Fo2 + 2Fc2)/3
1473 reflections (Δ/σ)max < 0.001
100 parameters Δρmax = 0.29 e Å3
0 restraints Δρmin = −0.17 e Å3

Special details

Experimental. (CrysAlis PRO RED; Oxford Diffraction, 2009)
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.2410 (3) −0.49759 (14) 0.85962 (11) 0.0490 (4)
O2 0.8584 (2) 0.19238 (11) 0.61242 (8) 0.0289 (3)
C1 0.2367 (3) −0.3608 (2) 0.88964 (14) 0.0377 (4)
H1 0.1248 −0.3496 0.9647 0.045*
C2 0.3920 (3) −0.21240 (17) 0.81809 (13) 0.0283 (3)
C3 0.3932 (3) −0.06701 (18) 0.86379 (12) 0.0308 (3)
H3 0.2870 −0.0627 0.9413 0.037*
C4 0.5460 (3) 0.07238 (17) 0.79893 (12) 0.0280 (3)
H4 0.5453 0.1711 0.8315 0.034*
C5 0.7004 (3) 0.06505 (16) 0.68513 (12) 0.0242 (3)
C6 0.6963 (3) −0.07927 (18) 0.63690 (13) 0.0292 (3)
H6 0.7991 −0.0831 0.5586 0.035*
C7 0.5437 (3) −0.21533 (17) 0.70273 (13) 0.0305 (3)
H7 0.5410 −0.3130 0.6694 0.037*
C8 0.8898 (3) 0.33927 (16) 0.65981 (12) 0.0268 (3)
H8A 0.9914 0.2970 0.7406 0.032*
H8B 0.6892 0.4045 0.6742 0.032*
C9 1.0762 (3) 0.45809 (17) 0.56216 (12) 0.0276 (3)
H9A 1.2708 0.3883 0.5457 0.033*
H9B 1.1206 0.5532 0.5967 0.033*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0659 (8) 0.0366 (7) 0.0488 (7) −0.0282 (5) 0.0138 (6) −0.0119 (5)
O2 0.0378 (5) 0.0208 (5) 0.0297 (5) −0.0128 (4) 0.0082 (4) −0.0076 (4)
C1 0.0431 (8) 0.0373 (8) 0.0326 (8) −0.0182 (6) 0.0064 (6) −0.0048 (6)
C2 0.0292 (7) 0.0262 (7) 0.0282 (7) −0.0087 (5) −0.0004 (5) −0.0026 (5)
C3 0.0335 (7) 0.0356 (8) 0.0233 (6) −0.0095 (6) 0.0045 (5) −0.0072 (6)
C4 0.0337 (7) 0.0255 (7) 0.0271 (7) −0.0079 (5) 0.0007 (5) −0.0094 (5)
C5 0.0245 (6) 0.0211 (6) 0.0257 (6) −0.0057 (5) 0.0005 (5) −0.0032 (5)
C6 0.0342 (7) 0.0254 (7) 0.0291 (7) −0.0087 (5) 0.0073 (5) −0.0095 (6)
C7 0.0352 (7) 0.0235 (7) 0.0346 (7) −0.0101 (5) 0.0047 (6) −0.0094 (6)
C8 0.0309 (7) 0.0215 (7) 0.0301 (7) −0.0083 (5) −0.0009 (5) −0.0080 (5)
C9 0.0275 (6) 0.0230 (7) 0.0328 (7) −0.0086 (5) −0.0023 (5) −0.0051 (6)

Geometric parameters (Å, º)

O1—C1 1.2196 (18) C5—C6 1.3969 (18)
O2—C5 1.3593 (15) C6—C7 1.3704 (18)
O2—C8 1.4372 (15) C6—H6 0.9500
C1—C2 1.4652 (18) C7—H7 0.9500
C1—H1 0.9500 C8—C9 1.5105 (17)
C2—C3 1.3857 (19) C8—H8A 0.9900
C2—C7 1.396 (2) C8—H8B 0.9900
C3—C4 1.3871 (18) C9—C9i 1.525 (3)
C3—H3 0.9500 C9—H9A 0.9900
C4—C5 1.3933 (18) C9—H9B 0.9900
C4—H4 0.9500
C5—O2—C8 118.23 (10) C7—C6—H6 120.1
O1—C1—C2 124.62 (14) C5—C6—H6 120.1
O1—C1—H1 117.7 C6—C7—C2 120.93 (13)
C2—C1—H1 117.7 C6—C7—H7 119.5
C3—C2—C7 118.64 (12) C2—C7—H7 119.5
C3—C2—C1 120.77 (13) O2—C8—C9 107.25 (10)
C7—C2—C1 120.58 (13) O2—C8—H8A 110.3
C2—C3—C4 121.52 (12) C9—C8—H8A 110.3
C2—C3—H3 119.2 O2—C8—H8B 110.3
C4—C3—H3 119.2 C9—C8—H8B 110.3
C3—C4—C5 118.82 (12) H8A—C8—H8B 108.5
C3—C4—H4 120.6 C8—C9—C9i 113.78 (13)
C5—C4—H4 120.6 C8—C9—H9A 108.8
O2—C5—C4 124.74 (12) C9i—C9—H9A 108.8
O2—C5—C6 115.04 (11) C8—C9—H9B 108.8
C4—C5—C6 120.22 (12) C9i—C9—H9B 108.8
C7—C6—C5 119.85 (12) H9A—C9—H9B 107.7
O1—C1—C2—C3 −175.28 (14) C3—C4—C5—C6 1.0 (2)
O1—C1—C2—C7 4.3 (2) O2—C5—C6—C7 179.96 (11)
C7—C2—C3—C4 −1.3 (2) C4—C5—C6—C7 −1.0 (2)
C1—C2—C3—C4 178.22 (12) C5—C6—C7—C2 −0.2 (2)
C2—C3—C4—C5 0.2 (2) C3—C2—C7—C6 1.4 (2)
C8—O2—C5—C4 5.11 (18) C1—C2—C7—C6 −178.21 (12)
C8—O2—C5—C6 −175.90 (10) C5—O2—C8—C9 179.31 (10)
C3—C4—C5—O2 179.95 (11) O2—C8—C9—C9i 64.84 (16)

Symmetry code: (i) −x+2, −y+1, −z+1.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C6—H6···O2ii 0.95 2.58 3.4985 (16) 162
C1—H1···O1iii 0.95 2.59 3.3953 (18) 143

Symmetry codes: (ii) −x+2, −y, −z+1; (iii) −x, −y−1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG5308).

References

  1. Balić, T., Marković, B. & Balić, I. (2012). Acta Cryst. E68, o2664. [DOI] [PMC free article] [PubMed]
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.
  4. Dehno Khalaji, A., Hafez Ghoran, S., Gotoh, K. & Ishida, H. (2011). Acta Cryst. E67, o2484. [DOI] [PMC free article] [PubMed]
  5. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  6. Han, J.-R. & Zhen, X.-L. (2005). Acta Cryst. E61, o4358–o4359.
  7. Ilhan, S., Temel, H., Yilmaz, I. & Kilic, A. (2007). Transition Met. Chem. 32, 344–349.
  8. Ma, Z. & Cao, Y. (2011). Acta Cryst. E67, o1503. [DOI] [PMC free article] [PubMed]
  9. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  10. Narasimha Moorthy, J., Natarajan, R. & Venugopalan, P. (2005). J. Mol. Struct. 741, 107–114.
  11. Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
  12. Oxford Diffraction (2009). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, England.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812050994/ng5308sup1.cif

e-69-0o126-sup1.cif (14.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812050994/ng5308Isup2.hkl

e-69-0o126-Isup2.hkl (72.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812050994/ng5308Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES