Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Dec 8;69(Pt 1):o51. doi: 10.1107/S1600536812049501

3-Hy­droxy-1-(4-meth­oxy­benz­yl)piperidin-2-one

Daniel P Pienaar a, Sanaz Khorasani a, Charles B de Koning a, Joseph P Michael a,*
PMCID: PMC3588348  PMID: 23476435

Abstract

The title compound, C13H17NO3, adopts a conformation in which the aromatic ring and the mean plane of the piperidine ring are almost perpendicular to each other [dihedral angle = 79.25 (6)°]. The presence of the carbonyl group alters the conformation of the piperidine ring from a chair to a twisted half-chair conformation. In the crystal, pairs of strong O—H⋯O hydrogen bonds link the mol­ecules into inversion dimers. Weak C—H⋯O inter­actions extend the hydrogen-bonding network into three dimensions.

Related literature  

For the use of related lactams in the synthesis of febrifugine analogues, see: Michael et al. (2006). For information on the biological activity of febrifugine, a quinazoline alkaloid with potent anti­malarial activity, see: Murata et al. (1998). For the use of chiral oxaziridines in asymmetric hy­droxy­lation, see: Davis et al. (1990). For the conformation of six-membered rings, see: Boeyens (1978).graphic file with name e-69-00o51-scheme1.jpg

Experimental  

Crystal data  

  • C13H17NO3

  • M r = 235.28

  • Monoclinic, Inline graphic

  • a = 12.980 (3) Å

  • b = 7.6143 (17) Å

  • c = 12.189 (3) Å

  • β = 90.497 (5)°

  • V = 1204.6 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 173 K

  • 0.32 × 0.26 × 0.18 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • 8378 measured reflections

  • 2895 independent reflections

  • 2271 reflections with I > 2σ(I)

  • R int = 0.027

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.124

  • S = 1.08

  • 2895 reflections

  • 158 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-NT (Bruker, 2005); data reduction: SAINT-NT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and SCHAKAL99 (Keller, 1999); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812049501/bh2468sup1.cif

e-69-00o51-sup1.cif (21.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812049501/bh2468Isup2.hkl

e-69-00o51-Isup2.hkl (139.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1i 0.96 (2) 1.84 (2) 2.7708 (16) 161.6 (19)
C6—H6B⋯O1ii 0.99 2.43 3.3142 (17) 148
C14—H14B⋯O2iii 0.98 2.52 3.449 (2) 158

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

This work was supported by the University of the Witwaters­rand and the National Research Foundation, Pretoria (grant No. 78837).

supplementary crystallographic information

Comment

The title piperidinone was prepared as an early intermediate for the total synthesis of febrifugine, a quinazoline alkaloid with potent antimalarial activity (Murata et al., 1998). Ongoing investigations in our laboratories have made use of similar lactams for the synthesis of febrifugine analogues (Michael et al., 2006). It should be noted that, although the 3-hydroxy substituent was introduced by attempted asymmetric hydroxylation of the enolate of 1-(4-methoxybenzyl)piperidin-2-one with (+)-camphorsulfonyloxaziridine (Davis et al., 1990), partial racemization occurred; the crystals selected for analysis proved to be racemic.

The title organic compound (Fig. 1) adopts a conformation in which the aromatic ring and the piperidine ring are almost perpendicular to each other. Ring puckering analysis, as implemented in PLATON (Spek, 2009), indicates that the piperidine ring adopts a twisted half-chair conformation owing to the presence of the carbonyl group (Boeyens, 1978). Several hydrogen bonds exist in the structure (Table 1), with the most significant being an O—H···O hydrogen bond. These result in the formation of hydrogen bonded pairs of molecules which are related to each other by a center of inversion (Fig. 1). These molecules interact further through C—H···O interactions (Fig. 2) resulting in an extensive hydrogen bonding network of molecules.

Experimental

To a solution of lithium hexamethyldisilazide, prepared from n-butyllithium (1.6 M in hexane, 1.83 ml, 2.93 mmol) and hexamethyldisilazane (0.63 ml) in THF (10 ml) at -70 °C was added a solution of 1-(4-methoxybenzyl)piperidin-2-one (322 mg, 1.47 mmol) in THF (20 ml). The solution was stirred at this temperature for 1 h, after which a solution of (+)-camphorsulfonyloxaziridine (0.67 g, 2.9 mmol) in THF (20 ml) was added dropwise. Stirring was maintained for a further 16 h at temperatures kept between -70 and -60 °C. The reaction was quenched by addition of saturated aqueous ammonium chloride solution (10 ml) and allowed to warm to ambient temperature. The organic components were extracted with dichloromethane (4 × 15 ml), the combined organic layers were washed with brine (20 ml), dried over MgSO4, and concentrated in vacuo. Purification by column chromatography on silica gel with hexane-ethyl acetate mixtures (9:1 to 1:1 v/v) yielded the title compound, which was recrystallized from hexane-ethyl acetate to yield the product as irregularly shaped colourless crystals (261 mg, 75%), m.p. 347–349 K.

Refinement

All H atoms attached to C atoms were positioned geometrically, and allowed to ride on their parent atoms, with C—H bond lengths of 0.95 Å (Ar—H), 1.0 (CH), 0.99 Å (CH2) or 0.98 Å (CH3), and isotropic displacement parameters set to 1.2 (CH and CH2) or 1.5 times (CH3) the Ueq of the parent atom. The alcohol H atom (H2) was located from the difference map and refined freely with isotropic displacement parameter set to 1.5 times the Ueq of the parent atom O2.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing the hydrogen bonding to another molecule related by a center of inversion. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

O—H···O and C—H···O interactions in the crystal structure of the title compound, which result in an extensive hydrogen bonding network in three dimensions.

Crystal data

C13H17NO3 F(000) = 504
Mr = 235.28 Dx = 1.297 Mg m3
Monoclinic, P21/c Melting point: 347 K
Hall symbol: -P 2ybc Mo Kα radiation, λ = 0.71073 Å
a = 12.980 (3) Å Cell parameters from 958 reflections
b = 7.6143 (17) Å θ = 3.5–28.3°
c = 12.189 (3) Å µ = 0.09 mm1
β = 90.497 (5)° T = 173 K
V = 1204.6 (5) Å3 Irregular, colourless
Z = 4 0.32 × 0.26 × 0.18 mm

Data collection

Bruker APEXII CCD diffractometer 2271 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.027
Graphite monochromator θmax = 28.0°, θmin = 3.1°
φ and ω scans h = −14→17
8378 measured reflections k = −10→10
2895 independent reflections l = −16→9

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124 H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.066P)2 + 0.1896P] where P = (Fo2 + 2Fc2)/3
2895 reflections (Δ/σ)max < 0.001
158 parameters Δρmax = 0.52 e Å3
0 restraints Δρmin = −0.22 e Å3
0 constraints

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C2 0.11028 (9) 0.10275 (17) 0.35921 (10) 0.0283 (3)
C3 0.06871 (9) −0.07971 (17) 0.32619 (11) 0.0304 (3)
H3 −0.0060 −0.0662 0.3072 0.037*
C4 0.12221 (11) −0.15543 (17) 0.22690 (12) 0.0353 (3)
H4A 0.0856 −0.2621 0.2013 0.042*
H4B 0.1939 −0.1883 0.2463 0.042*
C5 0.12221 (11) −0.01793 (18) 0.13695 (11) 0.0374 (3)
H5A 0.1507 −0.0688 0.0689 0.045*
H5B 0.0508 0.0209 0.1214 0.045*
C6 0.18684 (10) 0.13727 (17) 0.17295 (10) 0.0323 (3)
H6A 0.2605 0.1038 0.1716 0.039*
H6B 0.1766 0.2349 0.1204 0.039*
C7 0.20555 (10) 0.36915 (17) 0.31491 (12) 0.0334 (3)
H7A 0.1693 0.4153 0.3800 0.040*
H7B 0.1951 0.4535 0.2540 0.040*
C8 0.31965 (10) 0.35530 (15) 0.34078 (11) 0.0296 (3)
C9 0.35322 (10) 0.27078 (17) 0.43529 (11) 0.0343 (3)
H9 0.3037 0.2227 0.4838 0.041*
C10 0.45748 (11) 0.25429 (18) 0.46121 (11) 0.0349 (3)
H10 0.4786 0.1967 0.5268 0.042*
C11 0.53038 (10) 0.32307 (16) 0.39013 (11) 0.0321 (3)
C12 0.49838 (10) 0.4107 (2) 0.29565 (12) 0.0389 (3)
H12 0.5479 0.4600 0.2477 0.047*
C13 0.39415 (10) 0.42600 (19) 0.27143 (11) 0.0365 (3)
H13 0.3730 0.4856 0.2066 0.044*
C14 0.66904 (13) 0.2242 (2) 0.50439 (15) 0.0495 (4)
H14A 0.6450 0.2894 0.5686 0.074*
H14B 0.7445 0.2192 0.5055 0.074*
H14C 0.6411 0.1047 0.5061 0.074*
N1 0.16062 (8) 0.19805 (13) 0.28388 (8) 0.0270 (2)
O1 0.09468 (8) 0.15790 (15) 0.45317 (8) 0.0444 (3)
O2 0.07623 (8) −0.19755 (14) 0.41449 (10) 0.0457 (3)
H2 0.0256 (18) −0.165 (3) 0.4675 (17) 0.069*
O3 0.63479 (7) 0.31060 (14) 0.40678 (9) 0.0431 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C2 0.0217 (5) 0.0342 (6) 0.0289 (6) −0.0031 (5) −0.0005 (4) 0.0000 (5)
C3 0.0229 (6) 0.0295 (6) 0.0389 (7) −0.0030 (5) −0.0027 (5) 0.0049 (5)
C4 0.0332 (7) 0.0276 (6) 0.0451 (8) 0.0003 (5) −0.0046 (6) −0.0036 (5)
C5 0.0420 (8) 0.0393 (7) 0.0309 (7) 0.0059 (6) −0.0042 (5) −0.0062 (5)
C6 0.0340 (7) 0.0356 (7) 0.0272 (6) 0.0037 (5) 0.0051 (5) 0.0026 (5)
C7 0.0288 (6) 0.0249 (6) 0.0465 (8) −0.0013 (5) 0.0043 (5) −0.0014 (5)
C8 0.0284 (6) 0.0234 (6) 0.0371 (7) −0.0034 (5) 0.0042 (5) −0.0038 (5)
C9 0.0309 (7) 0.0336 (7) 0.0385 (7) −0.0038 (5) 0.0097 (5) 0.0021 (5)
C10 0.0352 (7) 0.0348 (7) 0.0349 (7) −0.0028 (5) 0.0019 (5) 0.0031 (5)
C11 0.0268 (6) 0.0293 (6) 0.0404 (7) −0.0052 (5) 0.0016 (5) −0.0049 (5)
C12 0.0318 (7) 0.0448 (8) 0.0402 (7) −0.0106 (6) 0.0075 (5) 0.0056 (6)
C13 0.0343 (7) 0.0377 (7) 0.0377 (7) −0.0067 (6) 0.0023 (5) 0.0067 (6)
C14 0.0375 (8) 0.0456 (9) 0.0652 (11) −0.0059 (7) −0.0124 (7) 0.0064 (7)
N1 0.0249 (5) 0.0262 (5) 0.0300 (5) −0.0014 (4) 0.0030 (4) 0.0001 (4)
O1 0.0430 (6) 0.0598 (7) 0.0307 (5) −0.0174 (5) 0.0094 (4) −0.0094 (5)
O2 0.0365 (6) 0.0453 (6) 0.0553 (7) 0.0001 (4) 0.0051 (5) 0.0202 (5)
O3 0.0268 (5) 0.0473 (6) 0.0553 (7) −0.0067 (4) −0.0021 (4) 0.0046 (5)

Geometric parameters (Å, º)

C2—O1 1.2381 (15) C7—H7B 0.9900
C2—N1 1.3443 (16) C8—C9 1.3865 (19)
C2—C3 1.5426 (18) C8—C13 1.3977 (18)
C3—O2 1.4039 (16) C9—C10 1.393 (2)
C3—C4 1.5145 (19) C9—H9 0.9500
C3—H3 1.0000 C10—C11 1.3909 (19)
C4—C5 1.5160 (19) C10—H10 0.9500
C4—H4A 0.9900 C11—O3 1.3719 (16)
C4—H4B 0.9900 C11—C12 1.391 (2)
C5—C6 1.5121 (19) C12—C13 1.3871 (19)
C5—H5A 0.9900 C12—H12 0.9500
C5—H5B 0.9900 C13—H13 0.9500
C6—N1 1.4717 (16) C14—O3 1.4272 (19)
C6—H6A 0.9900 C14—H14A 0.9800
C6—H6B 0.9900 C14—H14B 0.9800
C7—N1 1.4753 (16) C14—H14C 0.9800
C7—C8 1.5154 (18) O2—H2 0.96 (2)
C7—H7A 0.9900
O1—C2—N1 122.21 (12) C8—C7—H7B 109.2
O1—C2—C3 119.16 (11) H7A—C7—H7B 107.9
N1—C2—C3 118.62 (11) C9—C8—C13 117.85 (12)
O2—C3—C4 109.87 (11) C9—C8—C7 120.32 (11)
O2—C3—C2 110.71 (11) C13—C8—C7 121.84 (12)
C4—C3—C2 112.93 (10) C8—C9—C10 121.88 (12)
O2—C3—H3 107.7 C8—C9—H9 119.1
C4—C3—H3 107.7 C10—C9—H9 119.1
C2—C3—H3 107.7 C11—C10—C9 119.33 (13)
C3—C4—C5 108.54 (11) C11—C10—H10 120.3
C3—C4—H4A 110.0 C9—C10—H10 120.3
C5—C4—H4A 110.0 O3—C11—C10 123.94 (12)
C3—C4—H4B 110.0 O3—C11—C12 116.31 (12)
C5—C4—H4B 110.0 C10—C11—C12 119.75 (13)
H4A—C4—H4B 108.4 C13—C12—C11 120.02 (12)
C6—C5—C4 109.47 (10) C13—C12—H12 120.0
C6—C5—H5A 109.8 C11—C12—H12 120.0
C4—C5—H5A 109.8 C12—C13—C8 121.16 (13)
C6—C5—H5B 109.8 C12—C13—H13 119.4
C4—C5—H5B 109.8 C8—C13—H13 119.4
H5A—C5—H5B 108.2 O3—C14—H14A 109.5
N1—C6—C5 112.35 (11) O3—C14—H14B 109.5
N1—C6—H6A 109.1 H14A—C14—H14B 109.5
C5—C6—H6A 109.1 O3—C14—H14C 109.5
N1—C6—H6B 109.1 H14A—C14—H14C 109.5
C5—C6—H6B 109.1 H14B—C14—H14C 109.5
H6A—C6—H6B 107.9 C2—N1—C6 125.13 (11)
N1—C7—C8 112.04 (10) C2—N1—C7 119.67 (11)
N1—C7—H7A 109.2 C6—N1—C7 114.78 (10)
C8—C7—H7A 109.2 C3—O2—H2 107.9 (12)
N1—C7—H7B 109.2 C11—O3—C14 117.08 (12)
O1—C2—C3—O2 −36.84 (16) O3—C11—C12—C13 178.67 (13)
N1—C2—C3—O2 144.47 (12) C10—C11—C12—C13 −1.3 (2)
O1—C2—C3—C4 −160.52 (12) C11—C12—C13—C8 0.3 (2)
N1—C2—C3—C4 20.79 (15) C9—C8—C13—C12 0.7 (2)
O2—C3—C4—C5 −174.31 (10) C7—C8—C13—C12 −179.32 (12)
C2—C3—C4—C5 −50.17 (14) O1—C2—N1—C6 176.47 (12)
C3—C4—C5—C6 64.96 (14) C3—C2—N1—C6 −4.89 (17)
C4—C5—C6—N1 −48.71 (15) O1—C2—N1—C7 4.33 (18)
N1—C7—C8—C9 −70.61 (15) C3—C2—N1—C7 −177.02 (10)
N1—C7—C8—C13 109.37 (14) C5—C6—N1—C2 19.25 (17)
C13—C8—C9—C10 −0.5 (2) C5—C6—N1—C7 −168.28 (10)
C7—C8—C9—C10 179.46 (12) C8—C7—N1—C2 98.18 (13)
C8—C9—C10—C11 −0.5 (2) C8—C7—N1—C6 −74.74 (14)
C9—C10—C11—O3 −178.55 (12) C10—C11—O3—C14 −1.19 (19)
C9—C10—C11—C12 1.5 (2) C12—C11—O3—C14 178.80 (13)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O2—H2···O1i 0.96 (2) 1.84 (2) 2.7708 (16) 161.6 (19)
C6—H6B···O1ii 0.99 2.43 3.3142 (17) 148
C14—H14B···O2iii 0.98 2.52 3.449 (2) 158

Symmetry codes: (i) −x, −y, −z+1; (ii) x, −y+1/2, z−1/2; (iii) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2468).

References

  1. Boeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317–320.
  2. Bruker (2005). APEX2 and SAINT-NT. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Davis, F. A., Sheppard, A. C., Chen, B.-C. & Haque, M. S. (1990). J. Am. Chem. Soc. 112, 6679–6690.
  4. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  5. Keller, E. (1999). SCHAKAL99 University of Freiberg, Germany.
  6. Michael, J. P., de Koning, C. B. & Pienaar, D. P. (2006). Synlett, pp. 383–386.
  7. Murata, K., Takano, F., Fushiya, S. & Oshima, Y. (1998). J. Nat. Prod. 61, 729–733. [DOI] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812049501/bh2468sup1.cif

e-69-00o51-sup1.cif (21.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812049501/bh2468Isup2.hkl

e-69-00o51-Isup2.hkl (139.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES